SIEMENS

Teamcenter 10.1
Systems Engineering
and Requirements
Management

Systems Architect/

Requirements
Management
API Reference

REQO0006 * R

Manual History

Manual Teamcenter Requirements Publication
Revision Version Date

A 4.0 December 2003
B 4.1 February 2004
C 5.0 July 2004

D 6.0 March 2005

Teamcenter Systems Engineering and

Manual Requirements Management Publication
Revision Version Date

E 2005 September 2005
F 2005 SR1 June 2006

G 2007 December 2006
H 2007.1 April 2007

I 2007.2 September 2007
J 2007.3 January 2008

K 8 January 2009

L 8.0.1 June 2009

M 8.1 October 2009

N 8.2 October 2010

@) 9 July 2011

P 9.1 May 2012

P1 9.1.5 January 2014

Q 10.0 January 2015

R 10.1 September 2016

This edition obsoletes all previous editions.

2 API Reference REQ00006 R

Contents

Manual History e i e e e e e e 2
Preface et 7
AudienCe 7
Conventions 7

Names and Values e 7

Command Line Entries, File Contents,and Code 8
Submitting Comments 8
Proprietary and Restricted Rights Notice 9
Introduction e e e 11
APl OVeIVIeW e e e e e e 21
Standard Input Parameters 2-1
Listing of API Methods 2-2
Schema Object Display Name and their ActualName 2-6
Using the Java API Client Library to Accessthe APl 3-1
Using the APl . . 3-1

Logging Intothe APl 3-1

Describing the APl Functions 3-2

Describing ResultBeans 3-2

Internal vs External Java APl e 3-3

Describing DataBeans 3-7
Java APl Methods e 3-7
Java APl Examples 3-8
Using C# APl from COM (VBA) it it s e e e e e ae e an s 41
Introduction 4-1
Configuring COM Client (VBA) e e e e e e e 4-2

Prerequisites e e 4-2

Adding Referenceto TcR.tlb e 4-2

Connecting to Systems Architect/Requirements Management 4-2
VBA Examples for Calling C# APl Methods 4-5
Using the Tcl Scripting APl to Accessthe APl 5-1
Introduction e 5-2
Executing Tcl Scripts e e 5-3
Transaction Management e 5-3
Parameter Types 5-3
Listing of Tcl Methods 5-3

REQ00006 R API Reference 3

Contents

Using Activatorst e e e e e e 6-1
Introduction 6-1
Access Privileges for an Activator 6-1
Describing Activator Objects 6-2
Creating Activators 6-3
Using Activators in Excel and Object Templates 6-3
Defining Events 6-5
Defining Object Modify Events 6-5
Defining Session Modify Events 6-7
Change Approval Routing Events 6-8
Import Events 6-10
Storing Event Context e 6-10
Defining the Change List e 6-11
Defining Flags 6-12
Defining Relation Flags e 6-12
Defining Modify Flags 6-13
Defining Delete and Create Flags it 6-13
Using APick List Activator e 6-14
Pass Ownerto Tcl Context 6-14
When A Pick List Activator Gets Called 6-15
Implementing Transaction Control 6-18
Creatinga TclWhere Clause e e e e i 6-19
CreatingaWhere Clause 6-19
Searching Witha TclWhere Clause i 6-19
Tcl Where Clause Example e 6-20
Tcl Global Variables in Where Clause Activators 6-21
Writing Activators When Objects are Deleted, Restored, or Discarded 6-22
TC_XML Export Activator e 6-23
Assigning Teamcenter ltem IDs 6-23
Excluding data from export 6-24
Adjusting type and property names 6-25
Specifying the versionstoexport 6-25
LOID Propertyo 6-26
Activator Examples e 6-26
Determining Requirements With The SameName 6-26
Creatinga Note 6-27
Creating An After Delete Activator Event 6-28
Using createAction FileDownload 6-29
Using createAction Rundava e 6-30
Running an Activator From the Command Line With the tcradmin Script 6-36
Using Macros e 6-37
Creatinga Macro e 6-37
Runninga Macro e 6-38
Macro Examples 6-38
Working with Shortcut Objects 6-40
Working with Reference Links e 6-42
References to Versioned Objects 6-42
UsinglconOverlayt ittt s e e 71

4 API Reference REQ00006 R

Contents

Using Generic LINKSttt et s e e e e e nn e 8-1
Introduction e 8-1
Support for Generic Links e 8-1
Examples of APl Methods e 8-1
Cross-Product Messagingottt et it s e 9-1
PrOXYACHON . . o o e 9-1
Setting Up proxyAction in Systems Architect/Requirements Management 9-1
Incoming proxyAction Requests 9-1
Sending proxyAction Requests 9-2
Setting Up proxyAction in Teamcenter Engineering 9-2
Remote Proxy Objects and Tcl APl e 9-2
Get Remote Proxy Properties e e 9-2
Word Content Activators i e e e A-1
Word Edit Pre-Processor A-1
Word Edit Post-Processor A-2
Word EXport Pre-Processor e e A-2
Word Export Post-Processor e A-2
Examples forusing C# API's i e e e B-1
Accessing Using VBA B-1
Accessing Using C# B-3
g o 1= Index-1
Figures
3-1. InternaldavaAPIExample.java 3-5
3-2. TestinternaldavaAPljava 3-7
3-3. SelectProject.jsp 3-10
3-4. SelectFolder. sp 3-13
3-5. CreateObject.jsp e 3-16
3-6. SearCh.sp e 3-20
3-7. SearchObject.jsp e 3-23
3-8. 1oginUsingTCSS.jSp o oo i 3-27
6-1. Activator Name, Same Name Requirements 6-27
6-2. CreatingaNote e 6-27
6-3. After Delete Activator Event 6-28
6-4. Producingan HTML File e e e 6-29
6-5. E-mailing Requirements or Producing PowerPoint Project from Requirements 6-29
6-6. Setting a Property on Several Objects atthe Same Time 6-38
6-7. Setting Several Properties on Multiple Objects 6-38
6-8. Creating a Derived Requirement 6-39
6-9. Collecting Metrics on Requirements 6-39

REQ00006 R API Reference 5

Contents

7-1. lcon Overlay sample 7-2
Tables

2-1 Standard Input Parameters e 2-1
2-2. Available APl Methods 2-2
5-1. Sample Change List e e 5-62
6-1. tcradmin Arguments for Running an Activator From the Command Line 6-36
8-1. Attributes Supported for GenericLinks 8-1

6 API Reference REQ00006 R

Preface

This manual is an API reference for Teamcenter Systems Architect/Requirements Management 10.1.

Systems Architect/Requirements Management belongs to the Siemens PLM Software portfolio of
digital product lifecycle management software and services.

Audience

This manual contains information for Systems Architect/Requirements Management developers. It
assumes that you understand the structure of the Systems Architect/Requirements Management
product and are familiar with the installation and maintenance of Systems Architect/Requirements
Management.

Conventions

This manual uses the conventions described in the following sections:

Names and Values

This manual represents system names, file names, and values in fonts that help you interpret the
name or value. For example:

Change or add the parameter to the initsid.ora file.

The conventions are:

Bold Bold font represents unvarying text or numbers within a name or value.
Capitalization is as it appears.
Italic Italic font represents text or numbers that vary within a name or value. The

characters in italic text describe the entry. Letters are shown in lowercase, but
the varying text may include uppercase letters.

In initsid.ora, sid identifies a varying portion of the name (a unique system ID).
For example, the name of the file might be:

initBlue5.ora
text-text A hyphen separates two words that describe a single entry.

REQ00006 R API Reference

7

Preface

Command Line Entries, File Contents, and Code

This manual represents command line input and output, the contents of system files, and computer
code in fonts that help you understand how to enter text or to interpret displayed text. For example,
the following line represents a command entry:

msglora -u system/system-password

The conventions are:

Monospace Monospace font represents text or numbers you enter on a command line, the
computer's response, the contents of system files, and computer code.

Capitalization and spacing are shown exactly as you must enter the characters
or as the computer displays the characters.

Ttalic Italic font represents text or numbers that vary. The words in italic text describe
the entry.

The words are shown in lowercase letters, but the varying text may include
uppercase letters. When entering text, use the case required by the system.

For the preceding example, you might substitute the following for
system-password:

KLH3Db
text-text A hyphen separates two words that describe a single entry.

Submitting Comments

Portions of Teamcenter software are provided by third-party vendors. Special agreements with these
vendors require Siemens PLM Software to handle all problem reports concerning the software they
provide. Please submit all comments directly to Siemens PLM Software.

Please feel free to share with us your opinion on the usability of this manual, to suggest specific
improvements, and to report errors. Mail your comments to:

Siemens PLM Software Technical Communications
5939 Rice Creek Parkway

Shoreview, MN 55126

U.S.A.

To submit an incident report, you can use the Siemens PLM Software GTAC online support tools
at the following URL:

http://www.plm.automation.siemens.com/en_us/support/gtac/

8 API Reference REQ00006 R

Preface

Proprietary and Restricted Rights Notice

This software and related documentation are proprietary to Siemens Product Lifecycle Management
Software Inc.

© 2016 Siemens Product Lifecycle Management Software Inc. All Rights Reserved.

All trademarks belong to their respective holders.

REQ00006 R API Reference

9

Chapter 1: Introduction

REQ00006 R API Reference

Chapter 1: Introduction

This chapter contains introductory information about the Systems Architect/Requirements
Management application programming interface (API).

The Systems Architect/Requirements Management API provides developers with a consistent
and stable interface allowing programmatic access to the information within Systems
Architect/Requirements Management. The developer has the option of implementing the API at a
high level using Java™ or by using Tcl scripting.

+ Java Access: The functions in the RequirementService class are available for use when writing
programs in Java or JavaScript. The database contents can be read, modified, or updated
programmatically without using the client GUI (graphical user interface). All functions that are
available from the GUI can be accessed using Java, without the GUI interface.

* Tcl Scripting Access: The database can be read, modified or updated programmatically using
Tcl (Tool Command Language) scripts while using the GUI. You can add activators if you have
project administrators rights. These activators can be triggered on the occurrence of one or more
events such as Create, After Delete, After Modify, Before Delete, and Before Modify on the
BuildingBlocks, Folders, Notes, Requirements object types and their subtypes.

* C# Access: Server calls can be made from a COM client such as VBA (Visual Basic for
Applications) macro using the C# API.

While both Java and Tcl provide full access to the Systems Architect/Requirements Management
API, there are differences in how database transactions are handled. In Java, each API call runs in a
separate transaction. In Tcl, all the API calls made within a Tcl script run in the same transaction.
Because Tcl can run within a single transaction, it is the preferred method to use for iterative or
large batch applications.

The two APIls can be used together very effectively in certain situations. A Java API caller can
(through the runActivator function) run an activator’s Tcl code. The Java program can remain in charge
of an overall process, while handing off its iterative actions to Tcl running within the scope of a single
transaction. This is much, much more efficient than making repetitive calls through the Java API.

The list of Java API functions is provided in the Javadocs. The Javadocs describe each function
along with the response expected from the server. To browse a full list of functions, see the Javadoc
HTML documentation, installed with Systems Architect/Requirements Management on the Web
server. The exact URL may vary, depending on how Systems Architect/Requirements Management
was installed in your web server, but the Javadoc URL will be similar to this:

http:// ... /tcr/ugs/tc/req/apidoc/index.html

The C# API provides an interface that allows making server calls from .Net code and an interface that
exposes the APl methods to COM.

REQ00006 R API Reference 11

Chapter 2: API Overview

Standard Input Parameters 2-1
Listing of API Methods e 2-2
Schema Object Display Name and their ActualName 2-6

REQ00006 R

API Reference

Chapter 2: APl Overview

This chapter contains standard input parameters and lists common API functions.

Standard Input Parameters

Each function takes a set of input parameters unique to the function. There are also several input
parameters that apply to a wide range function calls. Table 2-1 lists the standard input parameters.

Table 2-1. Standard Input Parameters

Input Description

User Specifies the user session ID. This is the first parameter for almost
all Java APl methods. It uniquely identifies an existing (already
logged in) user session. It consists of the user’s login name
concatenated with the HTTP session ID.

Properties Specifies the property values to populate in returned data beans.
This can consist of actual property names or one of the constants
in com.edspim.tc.req.databeans.DataBean (USER_PROPERTY,
SYSTEM_PROPERTY, ALL_PROPERTY or FULL_PROPERTY).

REQ00006 R API Reference 21

Chapter 2:

API Overview

Listing of APl Methods

The complete list of APl methods is shown in the table below. The table describes each method and
indicates if the method is available to the Java API or the Tcl Scripting API.

Table 2-2. Available APl Methods

Method

Description

Java C#

Tcl

authenticate
SSOUser

authenticateUser
calculate
Properties
changeApproval

copyObjects

createAction

createAction
FileDownload

createBaseline

createExternalLink

createLinks

createObject

2-2 API Reference

Validates a user name against
single sign-on server using an SSO
session key.

Validates a user name and
password.

Calculates the numeric properties in
objects.

Updates the status of change
approval objects.

Copies the list of objects to the given
destination.

Instruct Systems
Architect/Requirements
Management client to launch a
URL or run a Macro.

Downloads a file from the server to
the Systems Architect/Requirements
Management client workstation, and
optionally, open it in an application.

The C# method name is
downloadfileCOM.

Creates a baseline containing the
specified objects.

Creates a Teamcenter Interface
(WOLF) link from Systems
Architect/Requirements
Management to an object in
an external application such
as Teamcenter Engineering or
Teamcenter Enterprise.

Creates Trace Links between fromID
object and to each object in tolDs.

Creates a new object in the
database as a LAST_MEMBER

or FIRST_MEMBER or
LAST_SIBLING or NEXT_SIBLING.

X

REQ00006 R

Table 2-2. Available APl Methods

API Overview

Method

Description

C#

createProject

createShortcuts

createUser

createVariant
createVersion

deleteLinks

deleteObjects

displayMessage

emptyTrashcan

export2Excel
exportDocument

exportXML

getAdminMap

getEnvironment

REQ00006 R

Creates a new project in the
database.

Creates a new shortcut to the
existing object.

The C# method name is
createShortcut.

Creates a user object given user
name. Also, sets the password and
the usera€™s maximum privilege
for the database.

Creates a variant of a versionable
object.

Creates a version of a versionable
object.

Deletes complying or defining
traceLinks between fromID object
and objects in tolDs.

Deletes the list of objects and moves
it to trash can of the caller.

Displays a message in the
Systems Architect/Requirements
Management client.

Empties this users trash can by
actually destroying the objects from
the database.

Export an Microsoft Excel file.

Writes objects from the database to
a Word, Excel, AP233, or XML file.

Exports Systems
Architect/Requirements
Management schema objects
or projects to an XML file.

Gets the specified administration
module folder from the database

Retrieves one of
Architect/Requirementsa€™s
configuration parameters.

X

API Reference

2-3

Chapter 2:

API Overview

Table 2-2. Available APl Methods

Method Description Java C# Tel
getList Returns a list of Systems X X X
Architect/Requirements
Management objects related to
the given object.
getObject Gets the given object (one) from the X X X
database with set of properties.
getObjects Gets the given objects (one or X X
more) from the database with set of
properties.
getProjects Returns the list of projects you have X X
access to and returns a specified
set of properties for each object on
the list.
getProperties Gives NumericPropertyDefinitions X X
WithFormula that have a formula attached for the
passed objects.
getProperty Gets the property definition with the X X X
Definition name propName from the project
objID.
getProperty Gets property definitions from the X X X
Definitions database.
getRemote Retrieves the trace report for the X X
ObjectTrace remote object.
Report
getType Gets the type definition with the X
Definition name propName from the project
objld.
getValue Gets the value of a property from X X
the given object.
importDocument Imports a document of type XML, X X X
AP233, Excel, or Word.
The C# method name is importFile.
logoutSSOUser Logs out the given user and closes X
the Systems Architect/Requirements
Management and SSO sessions.
logoutUser Logs out the user whose user X
session ID is passed in.
moveObjects Moves the list of objects to a X X X
destination object.
releaseObject Releases reservation on an object. X X

2-4 API Reference

REQ00006 R

Table 2-2. Available APl Methods

API Overview

Method Description Java C# Tel
restoreFrom Restores objects from this user's X X
Trashcan trash can to the old owner.
runActivator Runs the specified activator X X
specified by Activator ID.
runActivator Runs the specified activator, X X
activator specified by activator name
in the specified project.
runReport Searches the database for objects X X
that match the specified criteria and
output them in a report file.
runScript Runs a Tcl script. X
search Return a list of objects matching the X
search parameters.
search Searches the database for objects X X
that match the specified criteria.
The search is not case sensitive.
sendEmail Tcl command class to send E-Mail X X
to List of Email Ids.
setEnvironment Sets one of Systems X
Architect/Requirements
Management &™s configuration
parameters.
setObject Sets the given object properties and X
the passed in value in the database
the setObject requires NO response.
setObject Sets the given object properties in X X
the database. If setObject requires
a response, set a response.
setObjects Sets the given objects' properties in X
the database.
setPassword Sets password for a user. X X
setUser Allows a user specify their location X X
Preferences so information can be formatted
appropriately.
setValue Sets the value of a property for a X
given object. This function can be
used to set one value of the object
(unlike setObject that sets multiple
values).
undo Undoes the last database X

REQ00006 R

modification.

API Reference

2-5

Chapter 2: APl Overview

Table 2-2. Available APl Methods

Method Description Java C# Tel

uncoupleShortcuts Uncouples a shortcut from the X X
master object, creating a copy of the
master object.

writeLog Writes a message to the server log X
file.

" Indicates the C# method name is different. See description for the method.

Schema Object Display Name and their Actual Name

In some instances, the name displayed in the Systems Architect/Requirements Management client
for out of the box schema objects, such as property and type names, does not match the name stored
in the database. This is because the Systems Architect/Requirements Management client can map
the actual name to something else. This mechanism is primarily intended for mapping the names to
different languages. But some names are also mapped in English.

For example, the Data Definition and Data Dictionary type names are stored in the database with
no space, DataDefinition and DataDictionary. However, for API calls, you must use the actual
schema object name as the display name does not work. This can cause confusion when schema
object names are used in APl methods such as createObject and setValue. You can determine the
actual name of a schema object by creating a macro with the content:

displayMessage [getValue S$selected Name]

This displays the actual name of the selected schema object.

2-6 API Reference REQ00006 R

Chapter 3: Using the Java API Client Library to Access the API

Using the APl . . 3-1
Logging Intothe APl 3-1
Describing the APl Functions 3-2
Describing ResultBeans 3-2

Message Listand ErrorHandling 3-2
Change List 3-3
Schema List 3-3
Database Transactions 3-3

Internal vs External Java APl 3-3
DescribingDataBeans e 3-7
Java APl Methods 3-7
Java APl Examples 3-8

REQ00006 R API Reference

Chapter 3: Using the Java API Client Library to Access the API

This chapter contains information on using the Java API client library to access the API. If you are
developing your client application using Tcl (Tool Command Language) scripting, you can use the Tcl
client library included in the toolkit.

Using the API

The RequirementService class serves as Systems Architect/Requirements Management Enterprise
API. RequirementService contains methods that provide complete access to the Systems
Architect/Requirements Management server and database. All methods in RequirementService
are static, so no instance of the class is required. The RequirementService class is located

in the com.edsplm.tc.req.enterprise package. It is recommended that the Javadocs for
RequirementService as well as for the package com.edsplm.tc.req.databeans be reviewed
thoroughly.

A typical single transaction involves, obtaining a session ID, making a call using one of the API
functions listed in RequirementService, obtaining a ResultBean from the returning API call, and
checking to see if your transaction was successful by inspecting the ResultBean objects.

Logging In to the API

To access the Systems Architect/Requirements Management API you must login using the
AuthenticateUser or AuthenticateSSOUser method. A session ID is constructed from the unique
ID that is passed to a successful call to AuthenticateUser or AuthenticateSSOUser. The session
ID takes the form of the login user name concatenated with the unique ID that was passed to
AuthenticateUser or AuthenticateSSOUser. The unique ID is usually obtained by asking the J2EE
server for the HttpSession ID. Once a successful login occurs, Systems Architect/Requirements
Management keeps track of the user session identified by the session ID. From this session ID, all
subsequent API calls must include the session ID as the first argument.

REQ00006 R API Reference 31

Chapter 3: Using the Java API Client Library to Access the API

User sessions can be closed by calling logoutUser or logoutSSOUser. If a logout is not expressly
called, the user session times out.

// Login to Teamcenter Requirements

ResultBean aBean = RequirementService.authenticateUser ("username",
"password", HTTPSessionID, null);

// Build session ID to use for each API call

String SessionID = "username" + HTTPSessionID;

// API calls...

RequirementService.logoutUser ("username", HTTPSessionID);

Describing the API Functions

The API functions range from creating objects to creating users to searching. To browse a full list of
functions, see the Javadoc HTML documentation, installed with Systems Architect/Requirements
Management on the web server. The exact URL may vary, depending on how Systems
Architect/Requirements Management was installed in your web server, but the Javadoc URL will
be similar to this:

http:// ... /tcr/ugs/tc/req/apidoc/index.html

Describing ResultBeans

All the RequirementService APl methods return a ResultBean. The result bean contains a

flag indicating if the call succeeded. If no error occurred, the ResultBeans contain the desired
return value for the API call, typically a DataBean or vector of DataBeans that represent Systems
Architect/Requirements Management objects or strings. The ResultBean class is located in the
com.edsplm.tc.req.databeans package.

In addition a result bean contains a message list, a change list, and a schema list.

Message List and Error Handling

The MessageBean class is located in the com.edsplm.tc.req.databeans package. A message bean
contains the information for displaying a single error, warning, or information message to the user. The
bean contains a unique tag name for the message which can be retrieved with the getTag method.
The tag names are brief descriptions of the issue. For example, PASSWORD_INCORRECT tag is
used when the wrong password is entered during login. The tag is converted to a readable message
on the client using a language bundle. The message lookup service is not available to server APls.

In addition to the tag, a message bean can contain substitutions and appended text. Substitutions are
variable information included within a message. They can be retrieved with the getSubstitutions
method. Appended text is displayed after the message. Substitutions are typically used to show the
database objects involved. The getAppendedText method is used to get the information on the
appended text.

A ResultBean contains a list of any messages generated during the API call. If an error occurs, the
message list contains an error message to indicate the problem. In addition to the error message, the
entire transaction is nullified.

// Get a list of all the TCR projects
ResultBean resBean = RequirementService.getProjects(SessionlID,

3-2 API Reference REQ00006 R

Using the Java API Client Library to Access the API

null, null);
If (resBean .isSuccess()) {
// call succeeded, get the result
Vector result = resBean.getResult();
} else {
// call failed, get the error messages
Collection messages = resBean.getMessagelList();
for (Iterator i1 = messages.iterator(); i.hasNext();) {
MessageBean msg = (MessageBean)i.next();
System.out.println (msg.getTag());
}
}

Change List

For API calls that modify Systems Architect/Requirements Management objects, a change list is
returned to indicate the new state of any modified objects. A data bean for each modified object is
contained in the change list. The change list is useful for refreshing objects in a user interface.
Because API callers commonly do not need the change list, performance can be improved by turning
this feature off during login.

Properties properties = new Properties();

properties.setProperty (DataBean.SESSION PROPS.RETURN CHANGES, "false");

RequirementService.authenticateUser ("username", "password",
HTTPSessionID, properties);

Schema List

ResultBeans also may contain schema information describing the returned objects. The schema list
is only returned for getObject and getObjects methods. The schema list contains data beans for
property definitions. A property definition for each requested property is included. Property definitions
give detailed information about a property such as the complete choice list for a choice property.

Database Transactions

Every requirement service call uses its own database transaction. When an error occurs, the
transaction is cancelled and any changes are rolled back. If the transaction succeeds, changes are
committed to the database. The undo method can be used to roll back the changes from prior
requirement service calls. Since each requirement service call is a database transaction, transaction
management can cause performance problems when large numbers of API calls are made.

% When calling a large number of APl methods, you should consider using the Tcl API. The Tcl
APl is an internal API so it can run as a single transaction.

Internal vs External Java API

There are two types of Java APls, external and internal. Both external and internal APIs have almost
exactly the same set of methods. However, their arguments differ slightly as every external call

has to carry sessionlID information whereas the internal calls occur inside a transaction where the
session is already known and authenticated.

The RequirementService class is the external Java API. Every call is like a request coming from a
Systems Architect/Requirements Management client. For each RequirementService call such as

REQ00006 R API Reference 3-3

Chapter 3: Using the Java API Client Library to Access the API

getValue, or deleteObject, the Systems Architect/Requirements Management server performs the
following:

1. Validate the user sessionlD passed.

2. Find and connect to an available session in the Versant session pool.

3. Run any before activators that are appropriate as required by the incoming call.
4. Perform the action of the RequirementService call.

5. Run any after activators, based on the objects that have changed.

6. Assemble a result bean with its change beans.

7. Commit the Versant transaction.

8. Release the Versant session.

You do not need to run steps 3, 5, and 7 for calls that don’t modify anything; such calls also do not
take much execution time. If the incoming RequirementService call is runActivator, or runScript,
then that Tcl runs within step 4. Hence, many Tcl calls and actions are carried out within the scope of
one server request and one transaction.

You can execute many actions in one transaction by using the Internal Java API, specifically the
JavaAPI class. It is invoked through the RequirementService.tcrEvaluate method. It crosses the
RequirementService boundary once and runs the evaluate method of the passed TcrExecutable
object within the transaction. From a transaction standpoint, it is similar to calling the runActivator
or runScript, except that it runs Java instead of Tcl. The internal Java API is essential for optimal
performance when accessing a large volume of fine grained data with multiple getValue or getList
calls and/or following relations to visit multiple objects. If you are performing a single action, like
Export or Import, then calling the RequirementService directly is acceptable.

To use the Internal Java API you must define your own class that implements the TecrExecutable
interface, which means that it must have an evaluate method. Your evaluate method can call any
of the JavaAPI class methods. You must write one class with an evaluate method for each unique
task that you want Systems Architect/Requirements Management to accomplish from Java. This is
quite similar to writing individual activators for specific tasks in Tcl.

When you want to run one of these unique tasks, you must create an instance of the class and pass it
in a RequirementService.tcrEvaluate call. In this way, all JavaAPI calls of the evaluate method occur
inside one transaction. In addition to avoiding the overhead of crossing the RequirementService

boundary multiple times, these calls also benefit from the cache built up as you touch different objects.

If the JavaAPI calls are modifying objects, you have the safety of the entire action completing
successfully and committing the transaction, or rolling back the entire transaction if it fails. While
using the RequirementService API to perform a set of interrelated actions, you have the risk of a
later step failing that could leave the incomplete results from the first steps in the database.

The decision to use the Internal Java API or the Tcl API for carrying out a specified task depends
on the language that the developer is most comfortable with. The Internal Java API is always the
most efficient choice. Regardless of whether the JavaAPI class or Tcl APl is called, most of the
execution time is the same for the Systems Architect/Requirements Management code under both
APIs that are called to do the object-level work.

3-4 API Reference REQ00006 R

Using the Java API Client Library to Access the API

Both the JavaAPI and RequirementService classes are covered in the Systems
Architect/Requirements Management JavaDoc.

Figure 3-1 is an example of an internal Java API.

package com.teamcenter.example;

import com.edsplm.tc.req.databeans.DataBean;
import com.edsplm.tc.req.enterprise.JavalApi;
import com.edsplm.tc.reg.enterprise.TcrExecutable;
import com.edsplm.tc.reqg.enterprise.TcrObject;
import java.util.Vector;

/**

* Internal Java API Example
*

*/
public class InternalJavaAPIExample implements TcrExecutable

{

public InternalJavaAPIExample ()
{
super () ;

}

{
TcrObject project = null;
project = javaApi.createProject ("ProjectOne");
if (project == null)
{
return;

}

//Create a folder and requirement

TcrObject folder = null;

TcrObject requirement = null;

try {
folder = javaApi.createObject ("Folderl", project,
requirement = javaBApi.createObject ("Requirementl",

DataBean.TYPE.REQUIREMENT, "");

} catch (Exception e) {

e.printStackTrace () ;

}
//Rename the folder and requirement

javaApi.setValue (requirement, DataBean.PROPERTY.NAME,

public void evaluate(JavaApi javaApi, Vector aVector) throws

DataBean
folder,

Exception

.TYPE.

javaApi.setValue (folder, DataBean.PROPERTY.NAME, "InternalJdavaAPIs")|

"FirstTask");

FOLDER,

r

Figure 3-1. InternalJavaAPIExample.java

REQ00006 R

API Reference

3-5

Chapter 3: Using the Java API Client Library to Access the API

//package com.teamcenter.example;

import com.edsplm.tc.req.databeans.MessageBean;

import com.edsplm.tc.reqg.databeans.ResultBean;

import com.edsplm.tc.reqg.enterprise.RequirementService;
import com.edsplm.tc.req.database.dbutils.*;

import com.edsplm.tc.reqg.enterprise.Config;

import java.util.Iterator;

import java.util.Vector;

import java.util.HashMap;

/**
* Class for testing Internal Java API
*

*/
public class TestInternalJavaAPI

{

public static void main(String argsl[])

{

HashMap argMap = DefineSystem.parseArguments (args);

String dbName = (String) argMap.get ("-db");
if ((dbName == null) || (dbName.equals(""))) {
dbName = "TCR_db"; // deafult value

}

DBManager dbm = new DBManager (dbName) ;
System.setProperty (Config.DBNAME, dbName) ;

InternalJavaAPIExample example = new InternalJavaAPIExample()
Vector tcrObjects = new Vector();

// As with all RequirementService calls there must be an active session for| “usernam
//when making the tcrEvaluate call. Ordinarily that is done once at the begiphning of
//user’s session.
// It is not necessary to have a separate authenticateUser call for each tcrEvaluate

ResultBean loginResult = RequirementService.authenticateUser ("username", "pass
ResultBean result = RequirementService.tcrEvaluate ("username", tcrObjects, exan
if (! result.isSuccess|())

{
// Get error message
Iterator 1 = result.getMessagelist () .iterator();
while (i.hasNext())
{
MessageBean msg = (MessageBean)i.next();
System.out.println("Failed with error: " + msg.getTag()):;

}

else

{
System.out.print ("Successfully executed test");

}

3-6 API Reference REQ00006 R

Using the Java API Client Library to Access the API

Figure 3-2. TestinternalJavaAPl.java

Describing DataBeans

Systems Architect/Requirements Management objects are represented by DataBeans. A DataBean
contains a table of the property values for the Systems Architect/Requirements Management object.
The DataBean class also contains the constant values used in many API calls. When referring to
these values, it is important to use the constants, instead of the actual values.

Java APl Methods

The list of Java API functions is provided in the Javadocs. The Javadocs describe each function
along with the response expected from the server.

REQ00006 R API Reference 3-7

Chapter 3: Using the Java API Client Library to Access the API

Java APl Examples

Figures 3-3, 3-4, and 3-5 work together to provide an example of selecting a project, a folder in the
project, and creating a requirement in that folder. Figure 3-3 displays a drop down list of project
names and allows you to select one.

<!-- This page is used for creating a requirement -->
<!-- This is the first page to be displayed -->
<!-- import statements -->
<%@ page import ="java.io.*" &>
<%@ page import ="java.text.*" &>
<%@ page import ="java.util.*" %>
<%@ page import ="javax.servlet.*" %>
<%@ page import ="javax.servlet.http.*" %>
<%@ page import ="com.edsplm.tc.reqg.enterprise.*" %>
<%@ page import ="com.edsplm.tc.reqg.databeans.*" &>
<!-- Select a project for the list box -->
<HTML>

<HEAD>

<H1>Select Project</H1>

</HEAD>
<BODY>
<!-- select Folder is the second page to be displayed -->
<FORM METHOD=POST ACTION="/tcr/custom/selectFolder.jsp" >
<%

HttpSession aSession = request.getSession();

/* if the user is not logged-in, the log-in page will be displayed */

if (aSession.getAttribute("loggedIn") == null) {
response.sendRedirect ("/tcr/custom/login.jsp?originalURL=" +
request.getRequestURI())

else {
String aUserName = (String) aSession.getAttribute("userplusid"

/A oe
oe Vv

/*
* Returns the list of objects the user has access to and a spec
* set of properties for each object on the list.

* To Gets the list of all projects in the database and their N
* property
 <CODE>

* getList (userId,"",DataBean.LIST.PROJECT, new Stringl[]

* {DataBean.PROPERTY.LOID}); </CODE>
.

*/

ResultBean resPro = RequirementService.getlist (aUserName, "",

DataBean.LIST.PROJECT, new Stringl[]
{DataBean.PROPERTY.LOID}); %>
<% 1f (resPro.isSuccess () == false) { %>
<!-- If no project is found -->

 Did not find any projects.
Successfully created the object= <%= resPro.isSucce

A
o°

}os>
/* Found at least one project */

AN
o°

Vector dbProject = (Vector)resPro.getResult();

API Reference REQ00006 R

ified

gme

oo
\%

ss ()

Using the Java API Client Library to Access the API

Iterator idbProj = dbProject.iterator();
%>
Select a project from the list.

Figure 3-3. SelectProject.jsp (Continued)

REQ00006 R API Reference 3-9

Chapter 3: Using the Java API Client Library to Access the API

<Select Name="project" SIZE = 1 onChange="form.submit ()">
<option VALUE = ""> </option>
<%
/* Gets the list of projects
select the LOID and Name
Populate the drop down list box

*/
while (idbProj.hasNext()) {
DataBean dbProj = (DataBean) idbProj.nexft () ;
%>
<option VALUE = <%= dbProj.getObjectId()f>>
%= dbProj.getName () %$></option>
<% }
}%>
</Select>

</FORM>
</BODY>
</HTML>
Figure 3-3. SelectProject.jsp
Figure 3-4 displays a selectable list of folders from the project specified in figure 3-3. It also opens an
editable text area to enter a requirements text.
<!-- This is the second page to be displayed to Creates a requirement -->
<!-- import statements -->
<%@ page import ="java.io.*" %>
<%Q@ page import ="java.text.*" %>
<%@ page import ="java.util.*" %>
<%@ page import ="javax.servlet.*" %>
<%@ page import ="javax.servlet.http.*" %>
<%@ page import ="com.edsplm.tc.reqg.enterprise.*" %>
<%@ page import ="com.edsplm.tc.reqg.databeans.*" %>
<HTML>
<HEAD>
<H1>Select Folder</H1>
</HEAD>
<BODY>
<!-- createObject will be the next page to be displayed -->
<FORM METHOD=POST ACTION="/tcr/custom/createObject.]jsp" >
<%
HttpSession aSession = request.getSession();
/* if the user is not logged-in, the login page will be displayed */
if (aSession.getAttribute("loggedIn") == null) {
response.sendRedirect ("/tcr/custom/login.jsp?originalURL=" +
request.getRequestURI ())
}
else {
String aUserName = (String) aSession.getAttribute("userplusid"|);
%>
<% /* This Enumeration is not required, To be removed in future| */
3-10 API| Reference REQ00006 R

Using the Java API Client Library to Access the API

Enumeration enum = request.getParameterNames () ;
// System.out.println("enum: " + enum.hasMoreElements());
while (enum.hasMoreElements()) {

Figure 3-4. SelectFolder.jsp (Continued)

REQ00006 R API Reference 3-11

Chapter 3: Using the Java API Client Library to Access the API

3-12

String inputName = (String)enum.nextElement () ;%>
<%String inputValue = request.getParameter (inputName) ;%>
<% } %>
// System.out.println("Project = " + request.getParameter ("project"));
// System.out.println ("UserName = " + aUserName) ;

/*

*

Returns the list of objects the user has access to and a spe
of properties for each object on the list.

@param aUserName

@param request.getParameter ("project") LOID representing the
@param DataBean.LIST.FOLDER name of the list. The list cons
are defined in DataBean.LIST class

@param new String[] {DataBean.PROPERTY.LOID} List of properti
for each object in the list.The DataBean

for each object will have the set of Properties defined in t
The property constantsare defined in DataBean.PROPERTY
Vector of DataBean @Returns ResultBean The result data membe
ResultBean will have a objects.

X% X X X o oF o X %

*

*/
ResultBean resPro = RequirementService.getList (aUserName,
request.getParameter ("project"),

DataBean.LIST.FOLDER, new String[]{DataBean.PROPER|
<!=- if no folder is found resPro.isSuccess () will be false -
<% if (resPro.isSuccess () == false) { %>

 Did not find any projects.
Successfully created the object= <%= resPro.isSuc
<% } %>
<% Vector dbProject = (Vector)resPro.getResult();

Iterator idbProj = dbProject.iterator();
%>
Select a folder from the list.

<Select Name="folder" SIZE = 1 >
<option VALUE = ""> </option>
<%
/* Populate the drop down list box for the folders
while (idbProj.hasNext ()) {
DataBean dbProj = (DataBean) idbProj.nex

%>
<option VALUE = <%= dbProj.getObjectI
<%= dbProj.getName () %></option>
<% } %>
<% } %>
</Select>

<!-- Creates a text area for the input requirement -->
</TABLE><p>Enter Text</p>
<p> <textarea wrap=virtual name=bodyText cols=50 rows=10>

</textarea>
<!-- Creates action buttons -->

API Reference REQ00006 R

cified se
object
tants

es to col
his array

r of the

r'Y.LOID})
>

o

cess () >

Using the Java API Client Library to Access the API

<input type=submit value=0k>

<input type=reset value=Reset>

<input type=button value=Cancel onClick=self.close() >
</FORM>

</BODY>

</HTML>

Figure 3-4. SelectFolder.jsp

REQ00006 R API Reference 3413

Chapter 3:

Using the Java API Client Library to Access the API

Figure 3-5 creates a new requirement in the folder specified in figure 3-4 and sets the text to what
was entered in above.

3-14 API Reference

<!-- This is the 3rd and final page to be displayed when a requirement is cr
<!-- import statements -->
<%@ page import ="java.io.*" %>
<%@ page import ="java.text.*" %>
<%@ page import ="java.util.*" %>
<%@ page import ="javax.servlet.*" %>
<%@ page import ="javax.servlet.http.*" %>
<%@ page import ="com.edsplm.tc.reqg.enterprise.*" %>
<%@ page import ="com.edsplm.tc.reqg.databeans.*" %>
<HTML>
<HEAD>
</HEAD>
<BODY>
<FORM METHOD=POST >
<%
HttpSession aSession = request.getSession();
/* If the user is not logged-in, the login page will be displayed */
if (aSession.getAttribute("loggedIn") == null) {
response.sendRedirect ("/tcr/custom/login.jsp?originalURL=" +
request.getRequestURI())
1
else {
String aUserName = (String) aSession.getAttribute("userplusid"
&>
<%
%>
<% Enumeration enum = request.getParameterNames ()
while (enum.hasMoreElements()) {
String inputName = (String)enum.nextElement () ;%>
<%String inputValue = request.getParameter (inputName) ;%>
<% } %>
<%
/**
* Creates a new object in the database
* @param aUserName The User Session ID of the user
* (@param request.getParameter ("folder") the LOID of the owner
* 1if the value of the position parameter
* sibling (DataBean.POSITION) is FIRST MEMBER or LAST MEMBER;
* or the LOID of the object if the value of the position param
* NEXT SIBLING or LAST SIBLING.
* (@param "Requirement" The type of object to Createsin the dat
* This could be any of the constant type names defined in Data
* or the name of the UserTypeDefinition object
* @param DataBean.POSITION.LAST MEMBER Keyword specifying the
* of the new object relative to ownerId. See DataBean.POSITION
* for more details @Returns ResultBean. The result data member
* ResultBean will actually have

REQ00006 R

eated -->

object

eter 1is

Abase.
Bean.TYPE

location

of the

Using the Java API Client Library to Access the API

* the DataBean of the object created.

Figure 3-5. CreateObject.jsp (Continued)

REQO00006 R API Reference 315

Chapter 3: Using the Java API Client Library to Access the API
examples:
To Creates a Child Requirement on owner id (ex. 123|.45.6789)
<CODE>

createObject (userId, 123.45.6789,DataBean.TYPE.REQUIREMENT,
DataBean.POSITION.LAST MEMBER) ;
</CODE>
To Creates a next sibling Requirement on sibling 12(3.45.6789
<CODE>

createObject (userId,123.45.6789,DataBean.TYPE.REQUIREMENT,
DataBean.POSITION.NEXT SIBLING) ;
</CODE>
*/
ResultBean res = RequirementService.createObject (aUserName,
request.getParameter ("folder"), "Requirement", DataBean.POSITIPN.
LAST MEMBER);
%>

<% /* 1f the object was not created res.isSuccess() will be false */

if (res.isSuccess () == false) { %>

 The object was not created.
Successfully created the object= <%= res.isSuccess () %>

<% } else { %>

<% DataBean db = (DataBean)res.getResult(); %>

<%

3-16

Set mySet = db.getPropertyKeySet ()
Iterator itr = mySet.iterator();
%>
<% /* set the text on the newly created requirement */
ResultBean rb = RequirementService.setObject (aUserName, db.getOpbjectId()
new Stringl[]{"Text"},
new String[]{request.getParameter ("bodyText")}, 0, ""); %>
<!-- Display if the requirement text update was successful or npt -->
It was a success =<%= rb.isSuccess() %>

<!-- Creates an action button -->
<input type=button value=Close onClick=self.close() >
<% } %>
</FORM>
</BODY>
</HTML>
<% } %>
Figure 3-5. CreateObject.jsp
API| Reference REQ00006 R

Using the Java API Client Library to Access the API

Figures 3-6 and 3-7 provide an example of searching a project for objects that match specified
search criteria.

Figure 3-6 displays a selectable list of projects and search options. You can select the object types,
object name, text, and whether the search is case sensitive.

<%@ page import ="java.io.*" %>

<%@ page import ="java.text.*" &>

<%@ page import ="java.util.*" &>

<%@ page import ="javax.servlet.*" %>

<%@ page import ="javax.servlet.http.*" %>

<%@ page import ="com.edsplm.tc.reg.enterprise.*" %>
<%@ page import ="com.edsplm.tc.req.databeans.*" %>

This is the first page to be display for Text search.
Next Jjsp pages to be activated is searchObject.jsp
-—>
<FORM METHOD=POST ACTION="/tcr/custom/searchObject.jsp" >
<%

/*

If the user is not logged-in, the login form is presented.

*/

HttpSession aSession = request.getSession();

if (aSession.getAttribute("loggedIn") == null) {
response.sendRedirect ("/tcr/custom/login.jsp?originalURL=" +
request.getRequestURI ());

}

else {

String aUserName = (String) aSession.getAttribute("userplusid"
%>
<H1> Search for Object: </H1>
<%
ResultBean resPro = RequirementService.getlList (aUserName,
DataBean.LIST.PROJECT, new String[]{DataBean.PROPERTY.LOID}) ;

nmn
4

<!-- ResultBean.isSuccess == true, at least a project was found
ResultBean.isSuccess == false, no projects were fo

<% if (resPro.isSuccess () == false) { %>

 Did not find any projects.
Successfully created the object= <%= resPro.isSuc

<% } %>

<!--

Iterate through getResult of the ResultBean

-—>

<% Vector dbProject = (Vector)resPro.getResult();
Iterator idbProj = dbProject.iterator();

%>

Select a project.

<!-- Provide a blank selection -->
<Select Name="StartObj" SIZE = 1 >
<option VALUE = ""> </option>

REQ00006 R API Reference 317

und

Chapter 3: Using the Java API Client Library to Access the API

<!-- Populate the drop down list box with the list of projects -->
<%
while (idbProj.hasNext()) {
DataBean dbProj = (DataBean) idbProj.nex[t();

Figure 3-6. Search.jsp (Continued)

3-18 API Reference REQ00006 R

Using the Java API Client Library to Access the API

%>
<option VALUE = <%= dbProj.getObjectId()%$>>
<%= dbProj.getName () %$></option>
<% } }%>
</Select>

<&--
<P>Project ID or Folder where search should start
<INPUT TYPE=text NAME=SftartObj
SIZE=30>
-—%>

<P>Name
<INPUT TYPE=text NAME=Name SIZE=30>

Content (Requirement & Note Only)
<INPUT TYPE=text NAME=Content
SIZE=30></P>

<!-- Createsthe check boxes for Folder, Requirement and Note -->
<P><table>
<tr>
<td>
<INPUT TYPE=checkbox NAME="Folder" VALUEF"Yes">
</td>
<td>
Folder
</td>
</tr>
<tr>
<td>
<INPUT TYPE=checkbox NAME="Requirement"
VALUE="Yes" checked>
</td>
<td>
Requirement
</td>
</tr>
<tr>
<td>
<INPUT TYPE=checkbox NAME="Note" VALUE="[fes">
</td>
<td>
Note
</td>
</tr>
<tr><td>
</td></tr>
<!-- Check box for the case sensitive search -->
<tr>
<td>
<INPUT TYPE=checkbox NAME="caseSensitive" VALUE="Yes">
</td>
<td>
Case Sensitive
</td>
</tr>
</table></P>

REQ00006 R API Reference 3-19

Chapter 3: Using the Java API Client Library to Access the API

<!-- create the action buttons -->

<input type=submit value=0k>

<input type=reset value=Reset>

<input type=button value=Cancel onClick=self.close() >

Figure 3-6. Search.jsp

3-20 API Reference REQ00006 R

Using the Java API Client Library to Access the API

Figure 3-7 performs the search and displays the results.

<!-- import statements -->
<%@ page import ="java.io.*" %>

<%@ page import ="java.text.*" &>

<%@ page import ="java.util.*" &>
<%Q@ page import ="javax.servlet.*" %>
<%Q@ page import ="javax.servlet.http.*" %>
<%@ page import ="com.edsplm.tc.reg.enterprise.*" %>
<%@ page import ="com.edsplm.tc.reqg.databeans.*" %>
<%

int x = 0;

int k = 0;

boolean caseSen = false;

HttpSession aSession = request.getSession();
/* 1f the user is not logged-in provide the login form */
if (aSession.getAttribute("loggedIn") == null)
response.sendRedirect ("/tcr/custom/login.jsp?originalURL=" + request.getRequestURI());

else {
String aUserName = (String) aSession.getAttribute("userplusid");
/* iterate through the request to Gets the list of the listed check boxes */
Enumeration enum = request.getParameterNames () ;
while (enum.hasMoreElements()) {
String inputName= (String)enum.nextElement () ;%>
<%String inputValue = request.getParameter (inputName) ;%>
<%}
&>
<!-- count the number of check boxes selected and assign this value to x -->
<% 1f (request.getParameter ("Folder") != null && request.getParameter ("Folder") .equals("Yes")) {
x = x+1; }
if (request.getParameter ("Requirement") != null && request.getParameter ("Requirement") .equals("Yes"))
{x = x+1; }
if (request.getParameter ("Note") != null && request.getParameter ("Note") .equals("Yes")) {
x = x+1;
String[] SelectFrom = new String[x];
/*select a an array of objects to select from. It could have Folder, Requirement and Note.f/
if (request.getParameter ("Folder") != null && request.getParameter ("Folder") .equals("Yes")) {
SelectFrom[k] = DataBean.TYPE.FOLDER;
k = k+1;}%>
<%if (request.getParameter ("Requirement") != null && request.getParameter ("Requirement") .equals("Yeg")
) {SelectFrom[k] = DataBean.TYPE.REQUIREMENT;
k = k+1;}
if (request.getParameter ("Note") != null && request.getParameter ("Note") .equals("Yes")) {
SelectFrom[k] = DataBean.TYPE.NOTE; }
/* If the search has to be case sensitive, assign true to caseSen. */
if (request.getParameter ("caseSensitive") != null && request.getParameter ("caseSensitive")
.equals ("Yes"))
caseSen = true;

%>
<% /*Search the selected object types for the text */
for(int i= 0; i <SelectFrom.length; i++)

System.out.println(SelectFrom[i]); %>

<& /%
* Search the database for objects that match the specified criteria.
* @param userName The sessionID + userName
* @param request.getParameter ("StartObj") The project or folder object ID
* where search should start
* @param request.getParameter ("Name") The object name search criterion
* (@param request.getParameter ("Content") The requirements content search criterion
* @param SelectFrom Objects types to search for (RequirmentDB, NoteDB, FolderDB)
* @param new String[]{"Text"} The desired properties to Returns for each object
* (@param caseSen if true the search is case sensitive
* @Returns Collection of DataBeans that match search criteria

*/

ResultBean rb = RequirementService.search (aUserName, request.getParameter ("StartObj"),
request.getParameter ("Name"), request.getParameter ("Content"), SelectFrom, new String[]
{"Text"} , caseSen) ;%>

<% if (rb.isSuccess () == false) { %>

<!-- Error in finding selected object -->

The text was entered successfully = <%= rb.isSuccess() %>

<input type=button value=Close onClick=self.close() >

<% } else {%>
<%
/* No error, Match may or may not be found */
if (rb.isSuccess () == true) {
Vector vdb = (Vector)rb.getResult();
Iterator itr = vdb.iterator();
%>

Figure 3-7. SearchObject.jsp (Continued)

REQ00006 R API Reference 3-21

Chapter 3:

Using the Java API Client Library to Access the API

</TD>
</TR>

<% } else {

<

oe
oo

}

<TD>

<H2> Found : <%= vdb.size() %> </H2>

<TABLE BORDER=2>

<TR>

<!-- Column headings -->
<TD><i>Name </i></TD>

<TD><i>Type</i></TD>
<TD><i>Text</i></TD>
<TD><i>Send email</i>

<%

while (itr.hasNext()) {
DataBean db = (DataBean) itr.next();

%>

<TR>
<!-- Createslink to the text object -->
<TD><% 1if (db.getType () .equals
(DataBean.TYPE.REQUIREMENT)) {%>

<a href="/tcr/custom/getText.jsp?loid=
<%= db.getObjectId() %>

" ><%= db.getName () $>

&>
<%= db.getObjectId() %>

</TD>

<%= db.getType () %>
</TD>

* Gets the given object from the database with set
of properties

@param aUserName User Session id of the user
@param db.getObjectId() LOID of the object
@param new String[] {DataBean.PROPERTY.HTML}

List of properties to return.

Keyword can include

DataBean.ALL PROPERTY/SYSTEM PROPERTY/USER PROPERTY
@param openForEdit True if the user is opening
the object with the

intent to modify the object. This will place

a reservation (lock) on the object

to prevent others from modifying the object.

The caller must use the
RequirementService.releaseObject method to

clear the reservation.

This flag is used only for Requirement and Note
objects and DataBean.PROPERTY.MHTML is in
desiredProps.

* For all other object types and property value,

F ok oF OF b oF F b OF F oF OF b b o b X X

* this flag is ignored.

* @Returns ResultBean The result data member of
* the ResultBean

* will have the DataBean for

* the object and its desiredProps. The schemalist
* data member

* of the ResultBean will have

* a data bean for Property Definitions

* for each of the

* property names in desiredProps. This

* gives the caller all the necessary information
* to edit the properties of this object.

*

*/

ResultBean res = RequirementService.getObject

(aUserName, db.getObjectId(),new

String[] {DataBean.PROPERTY.HTML},

false);

DataBean obj = (DataBean)res.getResult ()

%>

<%= obj.get (DataBean.PROPERTY.HTML) %>
</TD>

<TD>

<a href="mailto:?subject=Approval is
requested! &body=/tcr/custom/getText.jsp?
loid=<%= db.getObjectId()%> Please click on the link
to read the text.">

Click here to send an email for approval.

3-22

API Reference

Figure 3-7. SearchObject.jsp (Continued)

REQ00006 R

Using the Java API Client Library to Access the API

</TD>
</TR>

<% } %>
<!-- close button -->

</TABLE>
<input type=button value=Close
onClick=self.close() >

<% } %>
<%} %>

<

o
oo

} >

Figure 3-7. SearchObject.jsp

Figure 3-8 provides an example of using the Teamcenter SSO for validation. The is
loginUsingTcSS.jsp file is available in the custom directory of the ter.war file.

<!-- This page 1is presented to the user when the user is not logged-in -->
<!-- Import Statements -->

<%@ page import="java.io.*,java.util.*" %>

<%Q@ page import="com.edsplm.tc.req.web.utils.ParamWebXml" %>
<%Q@ page import ="java.text.*" $>

<%@ page import ="javax.servlet.*" %>

<%@ page import ="javax.servlet.http.*" %>

<%Q@ page import="com.edsplm.tc.req.database.API" %>

<%

String warFileName = API.getWarFileName () ;

%>

<html>

<head>

<title>Teamcenter 10 for systems engineering</title>

</head>

<body bgcolor="#ffffff" topmargin="10" leftmargin="10" MARGINWIDTH="10" MARGINHEIGHT="10" >
<jsp:useBean id="validationBean" scope="page" class="com.edsplm.tc.req.web.utils.CrossSitevValidationBean"/>
<script language= JavaScript>

</script>
<!-- Checking the authorization Error by getting the attribute value for "TcR.AuthenticateError"
and checking for cross site validation -->

<%

String authError = (String) request.getSession().getAttribute ("TcR.AuthenticateError");

if (!validationBean.isInputValidAgainstCrossSiteScripting (authError)) ({
response.sendRedirect ("/" + warFileName + "/ugs/tc/req/CrossSiteScriptingThreat.jsp");
return;

}

// Setting response header and ssoEnabled
response.setHeader ("TcR.AuthenticateRequired", "TcR.AuthenticateRequired");
boolean ssoEnabled = false;

// Getting the ParamWeb value for SSO.Enabled

try {

String temp = ParamWebXml.getConfigParam("SSO.Enabled", getServletConfig().getServletContext());
if (temp.equalsIgnoreCase ("true")) {
ssoEnabled = true;

} catch (Exception e) {
e.printStackTrace () ;

// If the SSO is enabled, authorization error is checked
if (ssoEnabled) {

if (authError != null && authError.length() > 0) {

<!-- Architect/Requirement is unable to authenticate user after SSO login -->
>

o°

<body bgcolor="#ffffff" topmargin="0" leftmargin="0" MARGINWIDTH="0" MARGINHEIGHT="O0" >

<jsp:include page="copyright table.html"/>

<!-- Restrict table to 750 pixels so that it fits in 800x600 popup login screen -->
<table border="0" cellspacing="0" cellpadding="0" width="750" align="center">

<tr>

<td> </td>

</tr>

<tr>

<td align="left" width="35%" valign="top" ></td>
<td width="65%" align="right">

Figure 3-8. loginUsingTcSS.jsp (Continued)

REQ00006 R API Reference 3-23

Chapter 3: Using the Java API Client Library to Access the API

<table cellspacing="0" cellpadding="8" border="0">
<tr>
<td><p>Unable to authenticate user in Teamcenter 10 for Systems Engineering.
<p>Error: <%= authError %>.
<p>Please contact your Teamcenter administrator</td>
<td></td>
</tr>
</table>
</td>
</tr>
</table>
</body>
</html>

oe

<
// ssoEnabled continued
out.close();
return;

// Get the SSO login URL
String ssoLoginURL = ParamWebXml.getConfigParam("SSO.LoginURL", getServletConfig() .getServletContext ()

// If the SSOLogin URL is null, throw exception
if (ssoLoginURL == null) throw new Exception ("SSO.LoginURL param missing from web.xml");

// Else append the SSO login URL
ssoLoginURL += "/weblogin/login redirect";

// Get the SSO AppID
String ssoAppID = ParamWebXml.getConfigParam("SSO.AppID", getServletConfig().getServletContext());

if (ssoAppID == null) throw new Exception ("SSO.AppID param missing from web.xml") ;
// Get the URL TcR.LoginRequestURL
String url = (String) request.getSession().getAttribute ("TcR.LoginRequestURL") ;
if (!validationBean.isInputValidAgainstCrossSiteScripting(url)) {
response.sendRedirect ("/" + warFileName + "/ugs/tc/req/CrossSiteScriptingThreat.jsp");
return;
}
int uriStart = -1;

// Check for URL
if(url != null){
uriStart = url.indexOf ("/tcr");

}

// If URL is null, throw an exception
if (uriStart < 0) throw new Exception("Unable to determine SSO return URI. Request URL is: " + url);
String ssoURI = url.substring(uriStart, url.length());

// Create a form and auto-post it to the SSO login URL
String launch mode = request.getParameter ("launch mode");
if (launch mode == null) { -

launch mode = "";

}
if(!validationBean.isInputValidAgainstCrossSiteScripting(launch mode)) {

response.sendRedirect ("/" + warFileName + "/ugs/tc/req/CrossSiteScriptingThreat.jsp");
return;
}
String html = "<body onLoad=\"document|['redirect'].submit ()\" >"
+ "<form name=\"redirect\" action=\"" + ssoLoginURL + "\" method=POST >"

+ "<input type=\"hidden\" name=\"TCSSOAPPID\" value=\"" + ssoAppID + "\">"
+ "<input type=\"hidden\" name=\"TCSSORURI\" value=\"" + ssoURI + "\">"
+ "<input type=\"hidden\" name=\"launch mode\" value=\"" + launch mode + "\">";

// Pass the request parameters

java.util.Enumeration paramNames = request.getParameterNames () ;
while (paramNames.hasMoreElements()) {
String paramName = (String) paramNames.nextElement () ;

String paramValue = request.getParameter (paramName) ;
if (!validationBean.isInputValidAgainstCrossSiteScripting (paramName) ||
!validationBean.isInputValidAgainstCrossSiteScripting (paramValue)) {
response.sendRedirect ("/" + warFileName + "/ugs/tc/req/CrossSiteScriptingThreat.jsp");
return;

}
html += "<input type=\"hidden\" name=\"" + paramName + "\" value=\"" + paramValue + "\">";
}

html += "</form></body>";
out.println (html) ;

out.close();
return;

o°
\

3-24

Figure 3-8. loginUsingTcSS.jsp (Continued)

API Reference REQ00006 R

Using the Java API Client Library to Access the API

<script language= JavaScript>

function writeCookie () {
var nextyear = new Date();
var user = document.login.j username.value;
if (user == "") -
alert ("User Name field must not be blank");
return false;

<!-- Encode the username and password -->

var password = encodeURIComponent (document.login.j password.value);
document.login.j password.value = password; -

document.login.j username.value = encodeURIComponent (user) ;
nextyear.setFullYear (nextyear.getFullYear ()+1);
document.cookie = "TcRLogin="+ escape (user) + "; path=/;expires="+nextyear.toGMIString() ;
return true;

function readCookie () {

var allcookies = document.cookie;
var pos = allcookies.indexOf ("TcRLogin=") ;
var value = "";
if (pos !'= -1) {
var start = pos + 9;
var end = allcookies.indexOf (";", start);
if (end == -1) end = allcookies.length;

var value = allcookies.substring(start, end);
value = unescape (value);

document.login.j username.value = value
}

function setFocus () {
if (document.forms[0].]j username.value.length > 0) {

else {
}
}

function cancellogin (queryParams)

var url = '/<%$=warFileName%>/ugs/tc/req/CloseApplication.jsp';
if (queryParams != null && queryParams.length >
url += ('?' + queryParams);

}
location.href = url;

}
</script>

Figure 3-8. loginUsingTcSS.jsp (Continued)

REQ00006 R API Reference 3-25

Chapter 3: Using the Java API Client Library to Access the API

<!-- The following page is displayed when the user is already logged on -->
<!-- Architect/Requirements Login Page -->
<body bgcolor="#ffffff" topmargin="0" leftmargin="0" MARGINWIDTH="0" MARGINHEIGHT="0">

<jsp:include page="copyright table.html"/>
<table border="0" cellspacing="0" cellpadding="0" width="750" align="center">
<form name="login" method="POST" action="/<%=warFileName%>/custom/loggingIn.jsp" >

<tr>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>

<tr>
<td> </td>

<td align="left" width="35%" valign="top" ></td>
<td width="65%" align="right">

<table cellspacing="0" cellpadding="8" border="0">

<tr>
<%
if (authError != null && authError.length() > 0) {
out.write ("<td>" + authError + "</td>");
}
String invalidLicense = (String) session.getAttribute ("TcR.InvalidLicense");
String invalidPassword = (String) session.getAttribute ("TcR.InvalidPassword");

if (!validationBean.isInputValidAgainstCrossSiteScripting(invalidLicense) ||
!validationBean.isInputValidAgainstCrossSiteScripting(invalidPassword)) {
response.sendRedirect ("/" + warFileName + "/ugs/tc/req/CrossSiteScriptingThreat.jsp"
return;
. }
%>

<script language=JavaScript>
var invalidPassword = "<%= invalidPassword %>"
if (invalidPassword == "true"
document.write ("<td>Invalid username and/or password.</td>");
}
var licenseThere = "<%= invalidLicense %>"
if (licenseThere == "true")
document.write ("<td>Invalid server license. Contact your TCR administrator.
</td>");

}

</script>
</tr>
<tr>

<td><nobr>User Name:</nobr></td>
<td><input style="TCInput" type=text id="userID" name="7j username" size="25"></td>
</tr> -
<tr>

<td>Password:</td>

<td><input style="TCInput" type=password name="j password" value="" size="25"></td>
</tr>

<tr>

<td valign=middle>Language: </td>

<td valign=middle><SELECT name='LOCALE PARAM'>

<OPTION value="en US" SELECTED>English (United States) - Default</OPTION>
</SELECT></td>
</tr>
<tr>
<td valign=top colspan=2 align=right><input align="middle" type="Submit" value=" Log In ">
<%
if (authError != null && authError.length() > 0) {

StringBuffer url = request.getRequestURL() ;

String queryStr = request.getQueryString() ;

if (!validationBean.isInputValidAgainstCrossSiteScripting(url.toString()) ||
!validationBean.isInputValidAgainstCrossSiteScripting (queryStr)) {

response.sendRedirect ("/" + warFileName + "/ugs/tc/req/CrossSiteScriptingThreat.jsp

return;

if (url != null && url.lastIndexOf ("interface login") != -1) {
&> -
<input type="button" value=" Cancel Login "
align="center"
onclick="javascript:cancellLogin ('<%= queryStr $>")" />

A
o°

o0~
\2

</td>
</tr>
</table>
</td>
</tr>

Figure 3-8. loginUsingTcSS.jsp (Continued)

3-26 API Reference REQ00006 R

Using the Java API Client Library to Access the API

<%
// Pass all the request parameters

java.util.Enumeration paramNames = request.getParameterNames () ;
while (paramNames.hasMoreElements()) {
String paramName = (String) paramNames.nextElement () ;

String paramValue = request.getParameter (paramName) ;
if (!validationBean.isInputValidAgainstCrossSiteScripting (paramName) ||
!validationBean.isInputValidAgainstCrossSiteScripting (paramvValue)) {
response.sendRedirect ("/" + warFileName + "/ugs/tc/req/CrossSiteScriptingThreat.jsp");

%>

<input type="hidden" name="<%$= paramName $>" value="<%= paramValue %>" >
<%

} // end while
%>
</form>
</table>

</body>
</html>

Figure 3-8. loginUsingTcSS.jsp

REQ00006 R API Reference 3-27

Chapter 4: Using C# API from COM (VBA)

Introduction e 4-1
Configuring COM Client (VBA) e e e e e e e 4-2
Prerequisites 4-2
Adding Referenceto TcR.tlb 4-2
Connecting to Systems Architect/Requirements Management 4-2
VBA Examples for Calling C# APl Methods 4-5
createObjectCOM 4-7
getObjectCOM 4-8
setObjectsCOM 4-9
createLinksCOM 4-10
getResUltCOM 4-11
getPropertiesCOM 4-12
getDataBeansCOM 4-13
runActivatorCOM 4-14

REQ00006 R API Reference

Chapter 4: Using C# API from COM (VBA)

This chapter contains information about using the C# API from COM (Component Object Model).

Introduction

The C# API methods provide functionality to make server calls from a COM client such as the VBA
(Visual Basic for Applications) macro.

The following figure provides a graphical representation of the architecture of the Systems
Architect/Requirements Management API.

API architecture

Server
Database . , Internet
package API Requirement service TclAPI Java AP
Handlers JEP

_ i
Client i i

Web service C# interface

Internet

TcSE client MS Office client SR

The C# API contains methods to make Systems Architect/Requirements Management server calls.
Interfaces are provided to make the calls using .NET, VBA or COM. The API methods are contained
in TcR.dIl and TcR.tlb files. The TcR.tlb contains the information required to use procedures or
classes in the TcR.dll file. The important components of API include:

ITcRConnection — ITcRConnection interface provides methods for making server calls from .NET
code using VBA or COM.

REQ00006 R API Reference 4-1

Chapter 4: Using C# APl from COM (VBA)

ITcSEConnection — ITcSEConnection interface provides methods for making API calls using .NET
and exposes the API methods to COM. ITcSEConnection is a wrapper around ITcRConnection to
support COM-specific parameter format.

ResultBean — The API methods return a ResultBean. In addition to the requested data, the
ResultBean contains status information about the call. This includes a flag indicating if the call
succeeded and any error, warning or informational messages generated during the call. The success
flag must be checked after each API call and error messages can be extracted and displayed. If no
error occurs, the ResultBean contains the desired return value for the API call, typically a DataBean
or list of DataBean that represent Systems Architect/Requirements Management objects.

%= Systems Architect/Requirements Management uses beans to return data from the Systems
Architect/Requirements Management server to the client applications. In Java, a bean is a
type of object that meets certain criteria. This includes the ability to be passed from a
web server to a client application.

DataBean — A DataBean represents a single Systems Architect/Requirements Management object.
A DataBean contains the name, type and unique database identifier (LOID) of an object. Databean
also contain a list of property names and values.

DataBean constants — There are a number of DataBean sub classes that contain keywords for
use in API calls. For example, the DataBean.LIST class contains the legal values for the listType
argument of the getList APl method. When referring to these values, you must use these constants
instead of the actual values.

For more information on on Systems Architect/Requirements Management’s public API, see the
online API manual.

Configuring COM Client (VBA)

This section specifies the prerequisites and describes the procedures to get started with programming
in VBA, a COM client.

Prerequisites

+ Systems Architect/Requirements Management Client must be installed.

Adding Reference to TcR.tlb

Adding reference to TcR.tlb enables a VBA macro to make calls to Systems Architect/Requirements
Management C# API.

1. Open the Visual Basic Editor and choose Tools—References.

2. Browse to the location and select TcR.tlb.

Connecting to Systems Architect/Requirements Management

A connection to the Systems Architect/Requirements Management server is made using the
TcRConnectionService class. You can connect to a Systems Architect/Requirements Management

4-2 API Reference REQ00006 R

Using C# API from COM (VBA)

server through the Systems Architect/Requirements Management client or directly to the
Systems Architect/Requirements Management server. TcRConnectionService first attempts

to connect through the Systems Architect/Requirements Management client. If a Systems
Architect/Requirements Management client is not running then a direct connection to the Systems
Architect/Requirements Management server is used.

A connection through the Systems Architect/Requirements Management client uses the TcRChannel
class. If the Systems Architect/Requirements Management client is not running or not configured
(connection port is not specified), it connects to the Systems Architect/Requirements Management
server directly using TcRWebService. You can use the These TcRWebService or the TcRChannel
class instead of TcRConnectionService class if you need to control the type of connection.

%= Siemens PLM Software recommends using TcRConnectionService to establish the
connection. TcRConnectionService automatically selects the appropriate connection type.

To make a connection, the following information is required.

* Machine name of the Systems Architect/Requirements Management server
* Port used by the application server
+ Valid Systems Architect/Requirements Management user ID and password

When connecting through the Systems Architect/Requirements Management client, you also need to
specify a port number for communicating with the Systems Architect/Requirements Management
client.

» Connect through TcRConnectionService

This is the preferred way to connect to Systems Architect/Requirements Management. It is used
to obtain an instance of either TcRChannel or TcRWebService.

Dim connectionService As TcR.TcRConnectionService

Dim tcrConnection As TcR.ITcSEConnection

Set connectionService = New TcR.TcRConnectionService

connectionService.tcr client socket port = "4000"

connectionService.tcr client socket url = "tcseclient"

connectionService.tcr server controller url =
"http://tcseserver:8080/tcr/controller/"

connectionService.user name = "tcseuser"

connectionService.user password = "password"

Set tcrConnection = connectionService.CONNECTIONCOM
If (tcrConnection.connectCOM()) Then
If (tcrConnection.isConnectedCOM = CONNECTION CLIENT) Then
MsgBox "Connection to TcRChannel Successful"
ElseIf (tcrConnection.isConnectedCOM = CONNECTION SERVER) Then
MsgBox "Connection to TcRWebService Successful”
End If
Else
MsgBox "Connection to TcR Failed"
End If

REQ00006 R API Reference 4-3

Chapter 4: Using C# APl from COM (VBA)

The following is the explanation of the parameters used in the above example:

Parameter Definition

tcr_client_socket_port The port on which the Systems
Architect/Requirements Management client
listens and the data is communicated. For example,
"4000"

Do not set if the Systems Architect/Requirements
Management client is not installed. The connection
happens automatically.

Ports available for use are specified in the
PortRangeStart and PortRangeEnd web application
parameters.

% A Microsoft Office application launched
from the Systems Architect/Requirements
Management client uses one of the ports
making it unavailable.

ter_client_socket_url The machine name on which the Systems
Architect/Requirements Management client is
installed. For example, "tcseclient”

Do not set if the Systems Architect/Requirements
Management client is not installed. The connection
happens automatically.

tcr_server_controller_url The controller URL of the server. You must provide
the URL of the server as a value to this parameter. For
example, "http://tcseserver:8080/tcr/controller/".

user_name The Systems Architect/Requirements Management
user name. For example, "tcruser”

user_password The password for the login user name provided as
value to the user_name parameter.

For example, "password"

The above example indicates that the Systems Architect/Requirements Management client is
installed from the http://tcseserver:8080/tcr server on the machine with name tcseclient and
the client is running on the port 4000.

You can determine the name of the machine dynamically (at the run time) using the following
method:

Private Declare Function GetComputerName Lib "kernel32"
Alias "GetComputerNameA"
(ByVal lpBuffer As String, nSize As Long) As Long

Function ReturnComputerName () As String
Dim rString As String * 255, sLen As Long, tString As String

4-4 API Reference REQ00006 R

Using C# API from COM (VBA)

tString = ""
On Error Resume Next
sLen = GetComputerName (rString, 255)
sLen = InStr(l, rString, Chr(0))
If sLen > 0 Then
tString = Left (rString, sLen - 1)
Else
tString = rString
End If
On Error GoTo O
MsgBox UCase (Trim (tString))
ReturnComputerName = UCase (Trim(tString))
End Function

* Connect through TcRWebService

This method is used to directly communicate with the Web server using the TcRWebService
instance. This is an HTTP communication.

Dim webService As TcR.TcRWebService
Dim tcrConnection As TcR.ITcSEConnection

Set webService = New TcRWebService
webService.TcRControllerCOM =
"http://pni3pl79:8080/tcr/controller/"

webService.user idCOM = "test"
webService.passwordCOM = "password"
If (webService.connectCOM()) Then

MsgBox "Connection to TcRWebService Successful”
Else

MsgBox "Connection to TcRWebService Failed"
End If

+ Connect through TcRChannel

This method is used to communicate through a socket with the Systems Architect/Requirements
Management client. The Systems Architect/Requirements Management client then forwards the
call to the Systems Architect/Requirements Management Web server. This is a socket service
communication. As TcRConnectionService attempts to connect using TcRChannel first, avoid
using TcRChannel directly to make a connection.

When connecting through the Systems Architect/Requirements Management client any
modifications to database objects is refreshed in the client.

%= You must always use the TcRConnectionService instance to get the right connection
type (TcRWebService or TcRChannel).

VBA Examples for Calling C# APl Methods

This section provides a few examples for using C# API methods from VBA. For a list of all the
methods, visit the Systems Architect/Requirements Management client launch page and click APl C#
Doc.

REQ00006 R API Reference 4-5

Chapter 4: Using C# APl from COM (VBA)

A working example of using the APl methods from VBA and C# is provided with the Systems

Architect/Requirements Management release package. You must have Microsoft Visual Studio 2010
installed to view the example from C#.

For more information on the examples, see Appendix - Examples for using C# API's.

4-6 API Reference REQ00006 R

Using C# API from COM (VBA)

createObjectCOM

DESCRIPTION

SYNTAX

ARGUMENTS

RETURNS

EXAMPLE

REQ00006 R

Creates an object in TcR and sets the given properties. It is a wrapper around the
createObject method.

Public Function createObjectCOM (
owner As String,

type As String,

position As String,

ByRef propertyNames As String(),
ByRef propertyValues As String/()

) As ResultBean

* owner (string): Object ID of the owner of the new object.

* type (string): Object type defined in DataBean.TYPE.

* position (String): Object position defined in DataBean.POSITION.
* propertyNames (String ()): String array for the property names.

* propertyValues (String ()): String array for the property values.

A ResultBean object from Systems Architect/Requirements Management.

‘Define variables

Dim propName (1) As String
Dim propVal(l) As String
Dim rBean As TcR.ResultBean

‘Set Variables
propName (0) = "Name"
propval (0) = "MyReql"

Set rBean = tcrConnection.createObjectCOM("5.0.3131327",
"RequirementDB", "LAST MEMBER", propName, propVal)

If (rBean.isSuccess) Then

MsgBox "Requirement created succesfully"
End If

API Reference 4-7

Chapter 4: Using C# APl from COM (VBA)

getObjectCOM

DESCRIPTION
Gets the properties of a given object. It is a wrapper around the getObject method.

SYNTAX
Public Function getObjectCOM (
objectId As String, _
ByRef propertyNames As String(),
ByRef propsInFile As Boolean(),
reqChange As Boolean
) As ResultBean
ARGUMENTS
. objectId (String): Object ID of the object.
* propertyNames (String ()): String array for the property names.
* propsInFile (Boolean ()): Boolean array indicating property names are to be set
in a file.
* regChange (Boolean): Boolean to indicate locking the object.
RETURNS
A ResultBean object from Systems Architect/Requirements Management.
EXAMPLE

‘Define variables

Dim propName (1) As String
Dim propInFile(2) As Boolean
Dim obj As Object

Dim rBean As TcR.ResultBean

‘Set variables

propName (0) = "Name"
propInFile (0) = False
propInFile(l) = False

Set rBean = tcrConnection.getObjectCOM("1.0.183339",
propName, propInFile, False)

Set obj = rBean.getResult ()
MsgBox obj.getValue ("Name")

4-8 API Reference REQ00006 R

Using C# API from COM (VBA)

setObjectsCOM

DESCRIPTION

SYNTAX

ARGUMENTS

RETURNS

EXAMPLE

REQ00006 R

Sets the object properties in Systems Architect/Requirements Management. Itis a

wrapper around the setObjects method.

Public Function setObjectsCOM (
ByRef databeans As DataBean ()
) As ResultBean

* databeans (DataBean ()): Array of DataBean objects.

A ResultBean object from Systems Architect/Requirements Management.

‘Define variables

Dim dBArray(l) As DataBean
Dim dBean As New TcR.DataBean
Dim rBean As TcR.ResultBean

‘Set variables

dBean.objectId = "1.0.151747"
dBean.setValue "Name", "MyRegl23"
Set dBArray(0) = dBean

Set rBean = tcrConnection.setObjectsCOM (dBArray)

API Reference

49

Chapter 4:

Using C# API from COM (VBA)

createLinksCOM

DESCRIPTION

SYNTAX

ARGUMENTS

4-10

RETURNS

EXAMPLE

API Reference

Creates trace links with the given type in Systems Architect/Requirements
Management. It is a wrapper around the createLinks method.

Public Function createLinksCOM (
from As String, _

ByRef to As String(),

linkType As String, _

subType As String

) As ResultBean

* from (String): Object ID to indicate the beginning of links.
* to (string ()): String array for object IDs to indicate the end of links.

* linkType (String): String for the trace link type.

* subType (String): Subtype of link to create. If null, the base type is used.

A ResultBean object from Systems Architect/Requirements Management.

‘Define variables
Dim toLink(0) As String
Dim rBean As TcR.ResultBean

‘Set Variables
toLink (0) = "1.0.151747"

Set rBean = tcrConnection.createLinksCOM("1.0.151761", toLink,

"Defining",

REQ00006 R

wi

Using C# API from COM (VBA)

getResultCOM

DESCRIPTION

SYNTAX

ARGUMENTS

RETURNS

EXAMPLE

REQ00006 R

Gets the output from the result bean. It is a wrapper around the getResult method.

Public Function getResultsCOM (
output As Object,
databeans to As DataBean|()

)

* output (Object): Resultif the return type is String or DataBean, else null.

* databeans (DataBean()): Array of DataBean collection if the return type is
DataBean collection, else null.

None.

‘Define variables

Dim toLink(l) As String

Dim rBean As TcR.ResultBean
Dim output As Object

Dim beans () As DataBean

‘Set Variables

toLink (0) "1.0.151747"

Set rBean tcrConnection.createLinksCOM("1.0.151761", tolLink, "Defining",
rBean.getResultCOM output, beans

In this example, the createLinksCOM method returns a result bean that contains a
collection of DataBean, which is now available in the beans array.

API Reference 4-11

wi

Chapter 4:

Using C# API from COM (VBA)

getPropertiesCOM

DESCRIPTION

SYNTAX

ARGUMENTS

4-12

RETURNS

EXAMPLE

NOTES

Gets the property names and values from the DataBean.

Public Function getPropertiesCOM (
name As String(),

value to As String()

)

* name (String()): String array for the property names present in the DataBean.

* value (string()): String array for the property values present in the DataBean.

None.

‘Define variables

Dim toLink(l) As String

Dim rBean As TcR.ResultBean
Dim name As String/()

Dim value () As String()

Dim dBean As DataBean

‘Set Variables

toLink (0) = "1.0.151747"

Set rBean = tcrConnection.createLinksCOM("1.0.151761", toLink, "Defining", "'
rBean.getResultCOM output, beans

Set dBean = beans (0)

dBean.getPropertiesCOM name, value

In this example, the getPropertiesCOM method returns two arrays, one array
containing property names and the other array containing the values for the property
names.

Similarly, you can use the getChangeFlagsCOM method on DataBean to get the
change flags.

API Reference REQ00006 R

Using C# API from COM (VBA)

getDataBeansCOM

DESCRIPTION
Gets the data beans from the DataBean dictionary.

SYNTAX
Public Function getDataBeansCOM (
beans As DataBean ()
)
ARGUMENTS
* beans (DataBean()): Data beans from the DataBean dictionary.
RETURNS
None.
EXAMPLE

‘Define wvariables

Dim toLink (1) As String

Dim rBean As TcR.ResultBean
Dim rd As DataBeanDictionary
Dim beans () As DataBean

‘Set Variables

toLink (0) = "1.0.151747"

Set rBean = tcrConnection.createLinksCOM("1.0.151761", toLink, "Defining", "'
Set rd = rBean.getResultDictionary()

rd. getDataBeansCOM beans

In this example, the getDataBeansCOM method returns an array (beans) with all the
data beans from the DataBean dictionary.

REQ00006 R API Reference 4-13

Chapter 4: Using C# APl from COM (VBA)

runActivatorCOM

DESCRIPTION
Run an activator’s Tcl script.

SYNTAX
Public Function runActivatorCOM (_
activatorID As String, _
ByRef selectedIds As String()
) As ResultBean
ARGUMENTS
. activatorID (String). Object ID of the activator.
* selectedIds (String ()): String array of Systems Architect/Requirements
Management object IDs or other values. This array is available in Tcl as a global
list named “selected”.
RETURNS
A ResultBean object from Systems Architect/Requirements Management. The result
value is the string specified in the Tcl return statement.
EXAMPLE

‘Define variables

Dim selectedIds(l) As String
Dim rBean As TcR.ResultBean
Dim tclReturnValue As Object

‘Set Variables

selectedIds (0) = "Hello"

‘Run the activator named Hello World in MyProject

Set rBean = tcrConnection.runActivatorCOM ("\\MyProject\Activators\HelloWorld'
selectedIds)

Set tclReturnValue = rBean.getResult ()

4-14 API Reference REQ00006 R

Chapter 5: Using the Tcl Scripting API to Access the API

Introduction e 5-2
Executing Tcl Scripts 5-3
Transaction Management e 5-3
Parameter TYpes e 5-3
Listing of Tcl Methods e 5-3
calculateProperties e 5-4
changeApproval 5-5
COPYObJECtS 5-6
create ACtion 5-7
createAction FileDownload e 5-10
createAction Rundava e 5-12
createBaseline 5-15
createExternallink 5-16
createLinks 5-17
createObject 5-18
createProject 5-19
createShortcuts 5-20
createlUser 5-21
createVariant 5-22
createVersion 5-23
deleteLinks 5-24
deleteObjects 5-25
displayMessage 5-26
emptyTrashcan 5-27
EXPOM2EXCEl 5-28
exportDocument 5-30
eXPOrtXML . . 5-32
getEnvironment 5-33
getlist . . . 5-34
getObject 5-35
getProjects . . . 5-36
getPropertiesWithFormula 5-37
getPropertyDefinition 5-38
getPropertyDefinitions e 5-39
getRemoteObjectTraceReport e 5-40
getValue 5-41
importDocument 5-43
MOVEODJeCtS 5-45
restoreFromTrashcan 5-46

REQ00006 R API Reference

TUNREPOI . . . e 5-48
SBAICN . . L e, 5-49
SBAICN . . L e, 5-50
sendEmail e 5-51
setEnvironment 5-52
SetODbjeCt 5-57
setPassword e 5-58
setUserPreferences e 5-59
setValue e 5-60
uncoupleShortcuts e 5-64
WHEELOG 5-65

API Reference REQ00006 R

Chapter 5: Using the Tcl Scripting API to Access the API

This chapter contains information on using the Tcl API client library to access the API. If you are
developing your client application in Java, you can use the Java client library included in the toolkit.

%= The list of Java API functions is provided in the APl Javadoc. The API Javadoc describes
each function along with the response expected from the server. Additionally, the list of
Property Names, Lists, Keywords and other Constants are defined in the DataBean class in
APl Javadoc.

You can access the Javadoc from Systems Architect/Requirements Management home
page.

1. Click API Javadoc.
2. Click the com.edsplm.tc.req.databeans package link.

3. From the Class Summary list, click the DataBean link.

The constants are defined in a HTML table.

== The list of Java API functions is provided in the API Javadoc. The API Javadoc describes
each function along with the response expected from the server. Additionally, the list of
Property Names, Lists, Keywords and other Constants are defined in the DataBean class in
API| Javadoc.

You can access the Javadoc from Systems Architect/Requirements Management home
page.

1. Click APl Javadoc.
2. Click the com.edsplm.tc.req.databeans package link.

3. From the Class Summary list, click the DataBean link.

The constants are defined in a HTML table.

REQ00006 R API Reference 5-1

Chapter 5: Using the Tcl Scripting API to Access the API

Introduction

Tcl (Tool Command Language) is an interpreted language, originally developed by Professor John
Ousterhout at the University of California, Berkeley. The Tcl interpreter is freely available on the
Internet. Tcl has been ported to most popular operating systems (Microsoft Windows, many UNIX
variants, and Macintosh) and hardware platforms.

Tcl is similar to other scripting languages like the Bourne shell, C shell, and Perl. These scripting
environments let you execute other programs, providing enough programmability to integrate existing
tools into a new tailored application that fits your needs. As an internal macro-like language, Tcl lets
you create small applications that automate routine sets of commands.

Systems Architect/Requirements Management includes JACL, a Tcl interpreter written in Java.
JACL supports the basic Tcl language (Tcl version 8.0), but does not support Tk, the graphical user
interface companion to Tcl.

There are many Internet resources for additional Tcl/Tk information. This is a good starting place:

http://www.tcl.tk

There are number of Tcl books available in bookstores that carry a good selection of computer
related technical books. A partial list follows:

* Practical Programming in Tcl and Tk, Brent Welch; Prentice Hall

* Tcl and the Tk Toolkit, John K. Ousterhout,; Addison-Wesley

» Tcl/Tk in a Nutshell, Paul Raines & Jeff Tranter, O’Reilly & Associates

» Tcl/Tk Pocket Reference, Paul Raines, O’Reilly & Associates

A wide variety of Tcl extensions are freely available in the public domain. However, these have not

been tested with Systems Architect/Requirements Management and are not supported in any way
by Siemens PLM Software.

5-2 API Reference REQ00006 R

Using the Tcl Scripting API to Access the API

Executing Tcl Scripts

Tcl scripts can be executed in two ways:

+ Tcl scripts stored in activator objects can be triggered when a specified event occurs. (See
chapter Using Activators.)

+ Java API clients can execute Tcl scripts using the RequirementService methods runActivator
and runScript.

Transaction Management

Tcl scripts run in a single database transaction. If an error occurs, all changes made by the script are
rolled back. When activators are triggered by a RequirementService call, the activators run in the
same transaction as the APl method. So if an error occurs in any activator, the changes made by all
the activators and the API call are rolled back.

Parameter Types

In addition to the standard Tcl parameter types, Systems Architect/Requirements Management
Tcl has these addition types:

+ OBJECT: TcR database object identifier.
+ OBJECT_LIST: A Tcl list of database object identifiers.

A Systems Architect/Requirements Management database object can be identified by its unique
database ID (LOID). Objects in the administration module may also be identified by name. The
following naming convention is used:

\\projectName\administrationFolderName\objectName
For example, the Requirement type definition in Project1 can be identified with:
\\Projectl\Type Definitions\Requirement

The administrationFolderName in this syntax refers to the special predefined folders that appear just
beneath a project in the administration module. Subfolders below that level are not recognized in this
syntax. For example, if within the Activators folder there is a Macros folder, and under that a Get
Input macro, its name would be \\projectName\Activators\Get Input, without the Macros level.

Listing of Tcl Methods

The sections that follow detail Tcl methods available to the Tcl Scripting API.

REQ00006 R API Reference 5-3

Chapter 5: Using the Tcl Scripting API to Access the API

calculateProperties

DESCRIPTION
Calculates the numeric properties in objects. The values are calculated from all
member objects. If it is a tree, it is calculated bottom up, using a formula at every
parent object, recursively.
SYNTAX
calculateProperties objects properties
ARGUMENTS
* object: OBJECT_LIST — objects selected for calculation.
* properties: OBJECT_LIST — numeric properties, which has formula.
RETURNS
Void, the calculated values are directly set on the objects.
EXAMPLES

calculateProperties S$SobjectORobjectList Sproperties

5-4 API Reference REQ00006 R

Using the Tcl Scripting API to Access the API

changeApproval

DESCRIPTION

SYNTAX

ARGUMENTS

RETURNS

NOTES

EXAMPLES

REQ00006 R

This method is used to update the status of a change approval object. This method is
used to submit a requirement or building block for approval or update the status of an
existing change approval object. It can be used to force a change of change approval
status of an object already being routed. This method is independent of the four
out-of-the-box activators shipped with Systems Architect/Requirements Management,
Change Approved, Change Rejection, Change Response, and Change Submit.

changeApproval objectIds action comment subject

* objectids: OBJECT_LIST— The object ids (LOID) of the change approval objects.
The object ids (LOID) of the change approval objects, or (when the action is
Change Submitted) the LOIDs of the objects being submitted for approval.

* action: STRING_LIST — List of string identifying actions for the objectlds (Change
Rejected, Change Approved, and Change Submitted are the only valid actions.
Use only one of these actions). This list has a one to one correspondence with
objectlds.

* comment: STRING_LIST — List of string identifying user comments for the objectlds.
The comment applies to this change approval object by this user. This list has a
one to one correspondence with objectlds.

* subject: STRING — The subject line of the email.

The updated objects.

The lists (objectlds, action, and comment) must have the same number of entries.
The changeApproval call fails if multiple objectlds and one action and comment are
passed.

#get loid of the Change Approval Object.
set objectId [list S$currentObject]

set action [list "Change Rejected"]

set comment [list "Comment for S$SobjectId"]

changeApproval S$objectId Saction S$comment $subject

API Reference 5-5

Chapter 5: Using the Tcl Scripting API to Access the API

copyObjects
DESCRIPTION
Copies the source objects to the specified destination. In addition to the source
objects, all their descendents, owned objects and links are also copied.
SYNTAX
copyObjects sources destination deep
ARGUMENTS
* sources: OBJECT_LIST - objects to copy.
* destination: OBJECT — owner of copies.
* deep:BOOLEAN - If true, copies all descendants of the sources. If false, copies
the source objects only.
RETURNS
OBJECT_LIST—The copied objects.
NOTES
Some operations are performed using copy and paste in the Architect/Requirements
client but are not possible using the copyObijects API.
For example, you can copy and paste an object into a group in the
Architect/Requirements client, but you must use the createlLinks method when using
the API.
EXAMPLES

set copies [copyObjects Srequirements S$folder]

5-6 API Reference REQ00006 R

Using the Tcl Scripting API to Access the API

createAction

DESCRIPTION
Allows macros or activators executed on Systems Architect/Requirements
Management servers to initiate Systems Architect/Requirements Management client
actions, for example, launch workstation applications.

createAction FileDownload allows macros or activators executed on Systems
Architect/Requirements Management servers to download a file to the Systems
Architect/Requirements Management client workstation, and optionally open it in an
application. See createAction FileDownload.

SYNTAX
createAction actionClass [parameter or list of parameters]

createAction LaunchWebBrowser urlString

createAction LaunchWebBrowser [list urlString sessionVarName sessionID]
createAction RunMacro [list projId macroName selected]

createAction RunReport [list testReport startObjectID]

createAction RunReport [list testReport]

createAction GoToAndOpen objectId

createAction GoToAndOpen [list objectId OpenCommand]

createAction GoToAndOpen [list objectId OpenCommand readOnly]
createAction GoToAndOpen [list objectId OpenCommand readOnly moduleName]
createAction Refresh

ARGUMENTS
* actionclass: STRING — Identifies the client action to be taken.

LaunchWebBrowser: Open the given URL in a browser.
rRunMacro: Run the named macro from the given.
rRunkeport: Run saved reports from Macros or Activators.
GoToAndopen: Navigate to an object and optionally open it.

refresh: Refreshes the client as though the user pressed the Refresh button
on the client toolbar.

* urlstring: STRING — URL to open in the browser.

* sessionvarName:=: STRING — optional mechanism to allow the Systems
Architect/Requirements Managements client to pass a sessionID to a JSP,
avoiding the need for the JSP to perform its own Teamcenter Requirements
login. This is the name of an argument to pass to the JSP. The Systems
Architect/Requirements Managements client appends an argument by that name
to the URL before sending it to the web browser.

* sessionID: STRING — optional mechanism for the JSP to obtain the argument to
be used for the sessionID sessionvarname above. The value obtained (from the
Systems Architect/Requirements Management server) for sessionID is assigned
10 sessionvarName.

* projid: STRING — objectld (LOID) for the project in which the macro is found.

REQ00006 R API Reference 5-7

Chapter 5: Using the Tcl Scripting API to Access the API

RETURNS

NOTES

5-8 API Reference

macroName: STRING — The name of a Macro to run in that project.

selected: STRING — This value is set as the se1ected global Tcl variable when the
macro runs. This argument replaces the normal value of selected, which is a list
of the selected objects in the user interface. This argument is optional. If it is not
provided, the normal value for se1ected, the selected objects, is used.

testrReport: STRING — The name of the report.

startobject1D: STRING — start object for search.

If there is no startobject1D specified, the action class uses the currently selected
object or saved location as start object. The action class displays all reports in the
project and lets the user pick one if the specified report does not exist in the project.

object1d: STRING — The ID for the object to become selected.

opencommand: STRING — Keyword that selects whether to simply go to the object,
or to go to the object and open it.

o To go to the object and open it, use coToandopen. The object is opened in the
application that is used when the open command is used on the object.

o To go to the object without opening it, use coTo.
If opencommand is not specified, the default is coTo.

readonly. STRING — trueif the object to be opened should be opened in read-only
mode. Otherwise, false.

If readon1y is not specified, the default is raise.

moduleName: STRING — Identifies whether to go to the Administration Module or
the User Module.

0 Use tcradmin for the Administration module.
o Use tcr for the user module.

If modulename is not specified, the default is tcr.

None

Calling createAction adds information to the transaction result that requests certain
actions to occur at the Systems Architect/Requirements Management client. These
actions occur only when the client initiates the request. If the action came from
Systems Architect/Requirements Management's Excel Live or Visio Live, or from a
JSP calling the Requirements Service API, the requested action does not occur. For
example, a Create activator might call createAction RunMacro to prompt the user for
additional information on the newly created object. If the new object is created through
Excel or Visio, the macro will not be run.

REQ00006 R

Using the Tcl Scripting API to Access the API

EXAMPLES
There are two ways to call the LaunchWebBrowser action class.

* Launch Internet Explorer and navigate to a specified URL:

set url http://www.ugs.com
createAction LaunchWebBrowser S$Surl

* Launch Internet Explorer and pass in the user name and session to a Systems
Architect/Requirements Management custom JSP in order to avoid login when
accessing Systems Architect/Requirements Management objects:

set url “http://tcr server url:8080/tcr/..../xxx.jsp”
set jspParmName tcrSessionId
createAction LaunchWebBrowser [list Surl $jspParmName]

The userplusid is the parameter name for user id and session. The jsp should use
the parameter value. To avoid this from happening login as follows:

String tcrID = request.getParameter ("tcrSessionId");
ResultBean result = RequirementService.getList (tcrID, null,
DataBean.LIST.PROJECT, new String[] {DataBean.ALL PROPERTY}, 1, 0);

* The following is an example for the RunMacro action class:

createAction RunMacro [list S$currentProject macroName]

where macroName is an existing macro name in the current project.

* The following is an example for the GoToAndOpen action class:
createAction GoToAndOpen [list $myObject GoToAndOpen]

This example navigates to the object nyobject, and opens the object for edit.

* The following is an example for the GoToAndOpen action class:
createAction GoToAndOpen [list S$myActivator GoToAndOpen tcrAdmin]

This example navigates to the object myactivator in the Administration module
and opens the object for edit.

The following is an example of how to obtain the session1p from the server in your
macro or activator:

set sessionID [setEnvironment SessionID]
createAction LaunchWebBrowser [list urlString sessionVarName $sessionID]

REQ00006 R API Reference 5-9

Chapter 5: Using the Tcl Scripting API to Access the API

createAction FileDownload

DESCRIPTION
Allows macros or activators executed on Architect/Requirements servers to download
a file to the Architect/Requirements client, and optionally open it in an application. Also
allows optionally opening a local client file without downloading from the server.

SYNTAX
createAction FileDownload [list serverFile app localFilePath isLive]

ARGUMENTS
* serverrile: STRING — (required) The following options are available:

o The path of the file on server that the user wants to download.

o The keyword OpenLocalFileOnly. When that keyword is used, the file is not
downloaded from the server, but already exists on the client machine.

* app: STRING — The following options are available:

o If this parameter is not present, the file is downloaded and a message is
shown providing the location. No application is launched.

o If the value of this parameter is keyword, Default, the downloaded file is
opened in Internet Explorer.

o If the value of this parameter is keyword, MS_EXCEL or EXCEL, the file is
opened in Microsoft Excel.

o If the value of this parameter is keyword, MS_WORD, the file is opened in
Microsoft Word.

o If the value of this parameter is keyword, VISIO, the file is opened in Microsoft
Visio.

o In all other cases, the file is opened using the user-specified application. The
complete path name to the executable file must be specified.

o If the value of this parameter is keyword, NO, then the file is not opened, and
the user is not notified that file download has successfully completed.

* localrilerath: STRING — The local file path. If this parameter is missing or
contains a “~ string, a temporary file is created.

If this parameter is a simple file name, then that file name is used when writing to a
temporary path. The temporary path is the same path that is retrieved when using
the ClientJavaAPl.getTempDir function, which can be called from external Java
code (run via createAction RunJava).

* istive: STRING — This is true if the file is to be opened live. Otherwise the
value is fa1se. If this parameter is missing or contains a ~~ string, the value
of false is used.

RETURNS
None

5-10 API Reference REQ00006 R

Using the Tcl Scripting API to Access the API

NOTES
If the localFilePath argument is omitted and the default TcSE-nnnn temp file name is
used, the client file gets deleted when the user logs out.

EXAMPLES
* When the activator runs, the file D:/XYZ.ppt is downloaded from the server and is
opened using Internet Explorer:

set serverFile "D:/XYZ.ppt"
set application Default
createAction FileDownload [list $serverFile S$Sapplication]

* When the activator runs, the file D:/XYZ.ppt is downloaded from the server and is
opened using the user-selected application, PowerPoint:

set serverFile " D:/XYZ.ppt "

set application {C:\win32app\Microsoft
Office\Officel0\POWERPNT.EXE}

createAction FileDownload [list $serverFile S$application]

* When the activator runs, the file D:/XYZ.ppt is downloaded from the server and is
opened using the user-selected application, Excel:

set serverFile " D:/XYZ.ppt "
set application “EXCEL"”
createAction FileDownload [list $serverFile S$Sapplication]

* When the activator runs, the file D:/XYZ.vsd is downloaded from server, copied to
D:/ABC.vsd, and it is opened using the user-selected application, Visio:

set serverFile "D:/XYZ.vsd"

set clientFile “D:/ABC.vsd”

set application {C:\win32app\Microsoft Office\Visioll\VISIO.EXE}
createAction FileDownload [list $serverFile S$application S$clientFile]

» Or the application keyword can be used: When the activator runs, the file
D:/XYZ.vsd is downloaded from server, copied to D:/ABC.vsd, and it is opened
using the user-selected application, Visio:

set serverFile "D:/XYZ.vsd"

set clientFile “D:/ABC.vsd”

set application “WISIO”

createAction FileDownload [list $serverFile Sapplication SclientFile]

* When the activator runs, no file is downloaded from server, local file D:/ABC.mht is
opened Live using the user-selected application, Excel:

set serverFile " OpenLocalFileOnly"

set clientFile “D:/ABC.mht”

set application “EXCEL”

set isLive “true”

createAction FileDownload [list $serverFile S$Sapplication $clientFile
SisLive]

REQ00006 R API Reference 5-11

Chapter 5:

Using the Tcl Scripting API to Access the API

createAction RunJava

DESCRIPTION

Allows identification of Java classes and execution of methods from those classes in
activators, macros, or custom menu items.

SYNTAX

+ createAction RunJava executes your Java code in the
Architect/Requirements client process. Faulty code can cause the client
to freeze, abort, consume excessive memory, or become unstable. The
burden is on the Java developer to avoid such consequences.

+ Although createAction RunJava runs Java code in the
Architect/Requirements client, this is not intended as a customization
point to add or modify client behavior, and there is no client Java
API. This is intended as an interface point to aid in integrating
Architect/Requirements with other client applications, and is supported
only in that context.

createAction RunJava [list className methodName]

createAction RunJava [list className methodName requiresOfficelLive]
createAction Rundava [list className methodName requiresOfficelive
parameterl parameter? ...]

ARGUMENTS

5-12

RETURNS

className: STRING — The name of the class containing the method to run.
methodName: STRING — The name of the method in the class to be run.

requiresOfficelLive: STRING — true if Office Live installation is required to run
the method. Otherwise, ralse.

The Java file may be a wrapper around C# code that is communicating with the
client through the socket, and thus may require that the Office Live interface be
installed to function properly. If this parameter is not used, the value is faise.

parameterl, parameter2, etc.: STRING — Values to be passed to the Java
method being called.

None

NOTES

API Reference

To run methods from the .jar file, the class must always include a method with
this signature:

public String connectTcSE (String controllerPath, String serverIP,
String socketServicePort, String sessionID)

This method provides the necessary parameters needed for the external
application to connect back with Architect/Requirements. To connect back to the
client, the first three parameters can be used. To connect back to the server,
the last can be used.

REQ00006 R

Using the Tcl Scripting API to Access the API

* Only public methods can be called.

» Valid return types for the Java methods are void, string, and string[]. Any values
returned from the method are printed to the log file.

* The method parameters must either be empty (no parameters) or must be a single
parameter of type string[].

* The location of the .jar file must be identified to Architect/Requirements via the
Package.Location parameter set by the administrator.

EXAMPLES

% For source code related to these examples, see Using createAction RunJava
in chapter **Unsatisfied xref reference**, **Unsatisfied xref title**.

When the activator runs, it gets a list of all the public methods in the class:
createAction RunJava [list TestRunJavaClass ShowMethods]
* When the activator runs, it runs the method named doNothing, which prints a
message to the log and displays a dialog for the user to click:
createAction RunJava [list TestRunJavaClass doNothing]
* When the activator runs, it verifies that the live Office interface is installed before
running the doNothing method:

createAction Rundava [list TestRunJavaClass doNothing true]

* When the activator runs, it displays a Hello World! dialog:
createAction RunJava [list TestRunJavaClass
printHelloWorld false argl]
* When the activator runs with the class name misspelled, it returns a message
indicating that the class could not be found:

createAction Rundava [list TestRunJavaClas doNothing]

* When the activator runs with the method name misspelled, it logs and returns a
message indicating that the method could not be found:

createAction RunJava [list TestRunJavaClass doNothin]

 When each of these activators runs, there are no errors:

createAction RunJava [list TestRunJavaClass

printHelloWorld false argl]

createAction Rundava [list TestRunJavaClass doNothing false argl argZ2
createAction RunJava [list TestRunJdavaClass doNothingString]
createAction RunJava [list TestRunJavaClass

doReturnStringArray]

* When each of these activators runs, it results in errors and a return message
indicating that the method could not be found:

createAction RunJava [list TestRunJavaClass returnInt]

REQ00006 R API Reference 5-13

Chapter 5: Using the Tcl Scripting API to Access the API

createAction RunJava [list TestRunJavaClass doSomething false 21]
createAction RunJava [list TestRunJdavaClass doSomething false argl arg
createAction RunJava [list TestRunJavaClass

printIt whatever]

« When Java runs on the client that calls a server macro:

createAction RunJava [list TestRunJavaClass runTestMacro false
[getValue $selected Name]]

You must create a macro named HelloWorldMacro for the command to work.
Add the following code to the macro:

displayMessage "Hello World, From Macro, selected: S$selected"
return "Hello World (Result)"

The example demonstrates passing information to and from the client. The name
of the selected object is passed to a Java method running on the client and back
to a macro running on the server where the name is displayed. The return value
from the macro is passed to the client. The client then displays the return value.

5-14 API Reference REQ00006 R

Using the Tcl Scripting API to Access the API

createBaseline

DESCRIPTION

SYNTAX

ARGUMENTS

RETURNS

NOTES

EXAMPLES

REQ00006 R

Creates a baseline containing the specified objects.

createBaseline objects name

* objects: OBJECT_LIST — List of versionable objects to baseline.

name: STRING — The new baselines name.

Void
Versionable object types are Requirements and Building Blocks.

createBaseline [getList $folder MEMBER LIST] “Version 1”

API Reference

5-15

Chapter 5: Using the Tcl Scripting API to Access the API

createExternalLink

DESCRIPTION
Creates a Teamcenter Interface (WOLF) link from Systems Architect/Requirements
Management to an object in an external application such as Teamcenter Engineering
or Teamcenter Enterprise. This API creates a Systems Architect/Requirements
Management database entry to record the link, but its operation is entirely internal to
Systems Architect/Requirements Management.

%= createExternalLink does not create such a link in the external application. It
does not make any call to notify the external application of the existence of
the link. To create such a link in the external application, you must invoke an
API of that application, either before or after calling createExternalLink.

% createExternalLink can be used only for creating original WOLF links; it
cannot be used to create new proxy links.

SYNTAX
createExternallink GUID OID name icon biDirectional tcrObject description
ARGUMENTS
* curp: STRING — Teamcenter Interface external application identifier.
* o1p: STRING — Teamcenter Interface external object identifier.
* name: STRING — Name of the external object.
* icon: OBJECT — This argument is reserved for future use.
* DbiDirectional: BOOLEAN — This argument is reserved for future use.
* tcrobject:OBJECT — Systems Architect/Requirements Management end of the
WOLF link.
* description: STRING — Description of the link.
RETURNS

OBJECT-The new WOLF handle object.

5-16 API Reference REQ00006 R

Using the Tcl Scripting API to Access the API

createLinks

DESCRIPTION
Creates trace links, generic links, or connections from one object to a list of objects.
SYNTAX
createlinks from to [linkType] subtype
ARGUMENTS
 rrom: STRING - start of links or connections.
* to: OBJECT_LIST — end of links or connections.
* 1linkType: STRING —type of tace link, generic link, or connection to create, default
Complying, see examples and DataBean.LINK.
* subtype: STRING — subtype of trace link, generic link, or connection to create,
if null the base type is used.
RETURNS
OBJECT _LIST-The new trace links, generic links, or connections.
EXAMPLES
+ To create trace link where from is defining object and to is complying:
createLinks S$from $to
set newLinks [createlinks $defining $complyingObjs Complying S$subTypel
+ To create trace link where from is complying object and to is defining:
createlinks $from $to Defining
» To create connection beginning at from and ending at to:
createLinks $from $to Connection
» To create connection in the reverse direction:
createlLinks $from S$to {Defining Connection}
+ To create generic link beginning at from and ending at to:
createlinks $from $to {Outgoing Generic Link}
* To create generic link in the reverse direction:
createlLinks $from $to {Incoming Generic Link}
SEE ALSO

createObject

REQ00006 R API Reference 5-17

Chapter 5: Using the Tcl Scripting API to Access the API

createObject
DESCRIPTION
Creates a design object in the database. This command does not create a trace link or
project, those are separate commands.
SYNTAX
createObject name owner type [position]
ARGUMENTS
* name: STRING — Name of the new object, if blank, a unique name is generated.
* owner: OBJECT — Owner, or sibling, of the new object.
* type: STRING — Type, or subtype, of the new object
* position: STRING — position of the new object relative to owner. See
DataBean.POSITION.
RETURNS
OBJECT- The new Object. A Tcl error if objects of the give type can not be owned by
subordinate to objects of the given owners type.
NOTES
Valid positions are LAST_MEMBER, FIRST_MEMBER, LAST_SIBLING and
NEXT_SIBLING. Systems Architect/Requirements Management schema objects
may also be created. These objects are normally only created by a Systems
Architect/Requirements Management project administrator.
EXAMPLES

Create a requirement as a sibling of a given requirement
createObject "" SReqg Requirement NEXT SIBLING

Create a Note named "mynote" with the "Rationale" subtype
set newNote [createObject "mynote" S$req Rationale]

5-18 API Reference REQ00006 R

Using the Tcl Scripting API to Access the API

createProject

DESCRIPTION
Creates and initialize a new Systems Architect/Requirements Management project.

SYNTAX
createProject [name]
ARGUMENTS
* name: STRING — the new projects name, if not provided an unique default name
is generated.
RETURNS
OBJECT-The new project object.
NOTES
Project administration privilege level is required to use this command.
EXAMPLES

set proj [createProject {My Project}]

REQ00006 R API Reference 5-19

Chapter 5: Using the Tcl Scripting API to Access the API

createShortcuts

DESCRIPTION
Creates a new Shortcut to the existing object.

SYNTAX
createShortcuts orig owner position
ARGUMENTS
* orig: OBJECT_LIST — The original objects for which the shortcuts are to be
created.
* owner: OBJECT — The owner (or sibling) of the shortcut.
* position: STRING — Position of new shortcut relative to owner, see
DataBean.POSTITION. This argument is optional. It defaults to LAST_MEMBER.
RETURNS
* scobjects: The new shortcut objects.
EXAMPLES

createShortcuts $requirement $folder LAST MEMBER

5-20 API Reference REQ00006 R

Using the Tcl Scripting API to Access the API

createUser
DESCRIPTION
Creates a new Systems Architect/Requirements Management user object.
SYNTAX
createUser owner name password maxPrivilege
ARGUMENTS
* owner: OBJECT - Project that the user belongs to.
* name: STRING — The new projects name, if not provided a unique default name
is generated.
* rassword: STRING — The user's initial password.
* maxPrivilege: STRING — The maximum privilege the user can have to any project.
See DataBean.USER_PRIVILEGE.
RETURNS
OBJECT-The new user object.
NOTES
If the owner is null the Administration Project is used. All user objects are created in
the Administration project. If the owner is another project, the user is added to that
project. If a user with the given name already exists then a new user object is not
created, but the user is added to the given project.
EXAMPLES

set user [createUser S$project "fred" "" "Read and Write"]

REQO00006 R API Reference 5-21

Chapter 5: Using the Tcl Scripting API to Access the API

createVariant

DESCRIPTION
Creates a variant of a versionable object.
SYNTAX
createVariant object
ARGUMENTS
* object: OBJECT — The object.
RETURNS
OBJECT-The new variant.
EXAMPLES

set variant [createVariant S$Req]

5-22 API Reference

REQ00006 R

Using the Tcl Scripting API to Access the API

createVersion

DESCRIPTION
Creates a version of a versionable object.
SYNTAX
createVersion object
ARGUMENTS
* object: OBJECT — The object to version.
RETURNS
OBJECT—The new version.
EXAMPLES

set version [createVersion S$SReq]

REQ00006 R API Reference 5-23

Chapter 5: Using the Tcl Scripting API to Access the API

deleteLinks

DESCRIPTION
Remove links between one object and a list of objects.

SYNTAX

deletelinks from to [linkType] subtype

ARGUMENTS
* from: OBJECT — Start of links.
* to: OBJECT_LIST — End of links.
* 1linkType: STRING — Type of link to delete, default Complying, see DataBean.LINK.
* subtype: OBJECT - Type definition ID for the subtype of link to delete. If this is

null, any subtype may be deleted. This argument is optional.
RETURNS
OBJECT_LIST-The deleted links.
NOTES

1inkType may be Defining, Complying, Connection, Uses, Group, Incoming Generic
Link, or Outgoing Generic Link.

A link can also be deleted using a deleteobjects call on the link itself. In some cases,

there can be multiple links of the same type between two objects. This causes

deleteLinks to fail due to ambiguity. deleteobiects should be used in these cases.
EXAMPLES

deletelinks $from $to

set newLinks [deletelinks $defining $complyingObjs Complying S$subType]
SEE ALSO

restoreFromTrashcan

5-24 API Reference REQ00006 R

deleteObjects

Using the Tcl Scripting API to Access the API

DESCRIPTION

SYNTAX

ARGUMENTS

RETURNS

NOTES

EXAMPLES

REQ00006 R

Deletes Systems Architect/Requirements Management objects and moves them to
trashcan. Objects that are already deleted are destroyed.

deleteObjects objects

* objects: OBJECT_LIST — The objects to delete or destroy.

OBJECTS_LIST-Successfully deleted objects or VOID if destroying objects.

Be very careful using deleteObjects. For most objects, deletions occur without any
further confirmation. The extent of the deleteObjects action is the same as if it
were done from the user interface. The action for deleteObjects is subject to the
Access Control settings in the database. When you delete an object (either directly,
or because it was a descendent of a deleted object or owned by a deleted object),
subsequent attempts to reference it may generate a Tcl error.

When an object is deleted using the Systems Architect/Requirements Management
client, a confirmation message window is displayed. For some objects, a second
confirmation message window is displayed. The second message warns about special
conditions, such as not being able to undo the delete. Tcl developers should confirm
in these cases, using setEnvironment SetResponse. Projects and other schema
objects require OPT_PARAM_DELETE_PROJECT set to Yes in order to work.

For example:

delete the project
setEnvironment SetResponse Yes OPT PARAM DELETE PROJECT
deleteObjects $project

See the setEnvironment command for additional details.

Using deleteObjects on an object that is already deleted causes it to be removed from
the recycle bin. This means, calling deleteObjects twice on the same object causes it
to be destroyed rather than left in the recycle bin.

deleteObjects $objList

API Reference 5-25

Chapter 5: Using the Tcl Scripting API to Access the API

displayMessage

DESCRIPTION
Displays a message in the Systems Architect/Requirements Management client.
SYNTAX
displayMessage message [type] [object]
ARGUMENTS
* message: STRING — The message to display.
* type: INTEGER — See MessageBean.
0 4 — INFO (default) display message in popup information box.
o 5 —WARNING Display message in popup warning box.
0 6 — ERROR Display message in popup error box.
* object: OBJECT — Database object to attach to the message. The object name is
added to the message.
RETURNS
VOID.
NOTES
Messages are displayed after the current transaction has completed. Popup message
windows remain until you click OK.
EXAMPLES

displayMessage "Hello World"
displayMessage "Message" 4 Sreq

5-26 API Reference REQ00006 R

Using the Tcl Scripting API to Access the API

emptyTrashcan

DESCRIPTION

SYNTAX

ARGUMENTS

RETURNS

EXAMPLES

REQ00006 R

Destroys the objects in the current user's trashcan.
emptyTrashcan

« None

VOID

emptyTrashcan

API Reference

5-27

Chapter 5: Using the Tcl Scripting API to Access the API

export2Excel

DESCRIPTION

SYNTAX

ARGUMENTS

RETURNS

NOTES

EXAMPLES

Exports a Systems Architect/Requirements Management object to a Microsoft Excel
file.

export2Excel objects properties isAlive templateID level
relationship [sessionID]

* objects: OBJECT_LIST — List Systems Architect/Requirements Management
objects to export.

* properties: STRING_LIST — The properties to export for each object. This value
is unused if a template1d argument is provided.

+ isalive: BOOLEAN - If true the Excel file can be used in an Excel live session.

* templateid: OBJECT — The Excel template or saved view used to format the
output. This value must be {} or " if a properties list is provided to format the
output.

* level: INTEGER_LIST — Indentation level of corresponding object. This value
is used only when the temp1ate1p argument identifies an Excel template object.
See Notes for additional details.

* relationship: STRING_LIST — Relationship between corresponding object and
its superior. This value is used only when the temp1ateTp argument identifies an
Excel template object. See Notes for additional details.

* sessioniD: STRING — Optional session ID.

STRING — Excel file name.

Either a properties list or a temp1aternp must be provided. If both are provided, then
the template1p argument is used and properties is ignored.

If an Excel template is identified in the temp1atetp argument and the level and/or
relationship lists are provided, they must each be the same length as the objects
list. Entries in level and relationship are matched to the corresponding Systems
Architect/Requirements Management object in the objects list. If the Excel template
does not have level or relationship rules, then the level and/or relationship arguments

can be passed as {} or "".

A unique file name is generated automatically for the excel file. The pathname of
the file is returned.

Locate a search object and extract the query. The search script is as follows:

SELECT Requirement
FOREACH
ADD Complying Objects

5-28 API Reference REQ00006 R

Using the Tcl Scripting API to Access the API

set search {\\Test\Reports and Formatting\ExcelExampleSearch}
set script [getValue $search Script]

Run the search.
set result [search $script $selected]

Iterate over the first-level search result entries. Entries are lists with 3 elements, the
Architect/Requirements object, relationship to the object it is indented under, and a
list of sub-entries.

foreach entry Sresult {
extract the information from the entry
set req [lindex Sentry 0]
set relation [lindex Sentry 1]
set subEntries [lindex $entry 2]

build lists for the objects, level and relationship arguments for
lappend objects S$req

lappend relations Srelation

lappend levels 1

iterate over the second level entries (complying objects) ,
extract the information and add it to the argument lists
foreach subEntry $subEntries {

set obj [lindex $subEntry 0]

set relation [lindex $subEntry 1]

lappend objects S$o0bj

lappend relations S$relation

lappend levels 2

}
Set the Excel template to use for the export. Its rule table appears as follows:
Level Relationship
{%L-1}
{%L-2} {%R-Complying Objects}

set template {Excel Example}

Initialize the remaining export2Excel arguments.

set live true
set properties {}

Export the excel file.

set excelFile [export2Excel S$objects Sproperties $live Stemplate S$levels
displayMessage SexcelFile

REQO00006 R API Reference 5-29

Chapter 5: Using the Tcl Scripting API to Access the API

exportDocument

DESCRIPTION

Writes objects from the database to a Word, Excel, AP233 STP (Part 21 Standard),
AP233 XML (Part 28 Standard), or Systems Architect/Requirements Management
XML file.

SYNTAX

exportDocument objectList type outputTemplate deep includeOLE live

ARGUMENTS

RETURNS

objectnist: OBJECT_LIST — The objects to export.

type:: STRING — The type of file to export. MS_WORD, MS_EXCEL, AP233,
AP233 28, XML, SCHEMA, or PROJECT. The default is MS_WORD.

outputTemplate: OBJECT or STRING — The Excel or document template used
to format the output. The template can be identified by its object LOID or by its
name. The LOID is preferred because it avoids the overhead of searching for a
name match.

deep: BOOLEAN — For Word exports, deep specifies whether to include the
descendents of the selected object(s) in the export. The default is true.

includeoLE: BOOLEAN — For Word exports, includeole specifies whether
embedded OLE objects are included in the export. The default is true.

1ive: BOOLEAN — Applies to Excel exports only. If true, creates an Excel live file.
If false, creates a static Excel file. The default is false.

STRING—Path name of the exported file.

NOTES

If a folder is specified in objectrist, the document template property of the folder is
used as the style sheet of the document if the outputTemplate argument is omitted.

The exported file types are:

5-30 API Reference

MS_WORD - Word file in MHTML format.

MS_EXCEL — Excel file in MHTML format.

AP233 — AP233 STP file in STEP format, conforming to the Part 21 standard.
AP233 28 — AP233 XML file, conforming to the Part 28 standard.

XML — Systems Architect/Requirements Management XML file of the specified
objects.

SCHEMA — XML file of schema objects for the specified project.
PROJECT — XML file for all of the specified project.

TC_XML — Export data for migration to Teamcenter.

REQ00006 R

Using the Tcl Scripting API to Access the API

% Exports done through this API are always carried out within the web server
process, even if the Systems Architect/Requirements Management's
ExternallmportExport setting has been configured to use an external
process. This could result in performance or memory consumption issues
within the web server process.

%= The file created by exportDocument is temporary. It may not have the correct
extension and it is deleted automatically after some time. To retain the file, it
must be copied or renamed after the export. This can be done using the Tcl
file copy OF file rename COMmand.

EXAMPLES
set wordFile [exportDocument S$folder]
file rename SwordFile {myDocument.mht}
set excelFile [exportDocument S$folder MS EXCEL SexcelTemplate]

create an Excel live file
set excelFile [exportDocument $selected MS EXCEL "Default Excel Template" fal

REQ00006 R API Reference 5-31

Chapter 5: Using the Tcl Scripting API to Access the API

exportXML
DESCRIPTION
Exports Systems Architect/Requirements Management schema objects or projects
to an XML file.
SYNTAX
exportXML objects [filename]
ARGUMENTS
* objects: OBJECT_LIST — List of objects to export.
* filename: STRING — Filename for the new XML file. The default is to generate a
unique filename.
RETURNS
STRING — the XML file name.
NOTES
If objects contains a single project object then that entire project is exported, otherwise
the individual schema objects in the list are exported.
% This method is deprecated. Instead, the exportDocument APl method is
recommended.
EXAMPLES

set xmlFile [exportXML S$myProject]

5-32 API Reference REQ00006 R

Using the Tcl Scripting API to Access the API

getEnvironment

DESCRIPTION
Retrieves one of Systems Architect/Requirements Management configuration
parameters.

SYNTAX
getEnvironment paramName
ARGUMENTS
* paramName: STRING — Name of the parameter to retrieve.
RETURNS
STRING - the parameter value.
NOTES
The valid parameter names can be seen in the parameter name column of Systems
Architect/Requirements Management’ Web Application Configuration web page.
EXAMPLES

set path [getEnvironment ImportExportDir]

REQ00006 R API Reference 5-33

Chapter 5: Using the Tcl Scripting API to Access the API

getList
DESCRIPTION
Retrieves a list of Systems Architect/Requirements Management objects that are
related to the given object by the specified relationship.
SYNTAX
getList object listType [depth]
ARGUMENTS
* object: OBJECT — Object containing or owning the list.
* 1listType: LIST_ENUM — The type of object list, see DataBean.LIST.
* depth: INTEGER — Recursive depth to follow relationship. Default is 1.
RETURNS
OBJECT_LIST.
NOTES
The depth argument is only supported when 1istType is MEMBER_LIST, and the
given object is a requirement.
% The list of Java API functions is provided in the API Javadoc. The API
Javadoc describes each function along with the response expected from the
server. Additionally, the list of property names, lists, keywords and other
constants are defined in the DataBean class in AP| Javadoc.
You can access the Javadoc from the Systems Architect/Requirements
Management home page.
1. Click API Javadoc.
2. Click the com.edsplm.tc.req.databeans package link.
3. From the Class Summary list, click the DataBean link.
The constants are defined in a HTML table.
EXAMPLES

set members [getList $folder MEMBER LIST]

getList Sobj {PROPERTY LIST}

Returns the list of actual property objects for the given object. This list includes all
user-defined properties. It includes some standard properties, but does not include
system-defined properties that are stored as Java data members on the object itself,
like Create or Change User and Time.

For each Property instance, these calls will return its name and value:
getValue Sprop {Name}

getValue Sprop {Current Value}

5-34 API Reference REQ00006 R

getObject

Using the Tcl Scripting API to Access the API

DESCRIPTION

SYNTAX

ARGUMENTS

RETURNS

NOTES

EXAMPLES

REQ00006 R

Returns a list of property values for the given object.
getObject object propertylList

* object: OBJECT — The Systems Architect/Requirements Management object.

* propertyList: STRING_LIST — List of desired properties, see
DataBean.PROPERTY.

OBJECT _LIST — Property values for regular calls and for PickList property objects that
are stored in the dynamic choice property.

In addition to the system properties defined in DataBean.PROPERTY, any applicable
user-defined properties may be used.

The LOID of a pick list object can be obtained using the getobject TcL function. The
only needed change is that the property name in these function has a prefix of LOID.

So when you need the values for a property, you simply use the getobject. But if
your need the LOID(s) of the objects that are stored as values in the PickList choice
property, use getobject and prefix Lo1p: in front property name. For additional
information, see Using A Pick List Activator in chapter **Unsatisfied xref number**,
Unsatisfied xref title.

For information on user-defined, dynamic choice property (pick list property, see the
section Setting a Dynamic Choice List for a Choice Property Definition in the Systems
Architect/Requirements Management Project Administrator's Manual.

set values [getObject $Requirement {ROIN Name Text}]

If Assign to is a dynamic choice property that exists on the object:

* To obtain the value in the Assign to property, make a call as follows:

getObject S$object “Assign To”

» To obtain the LOID of the object in the Assign To property, make a call as follows:

getObject $object {"LOID:Assign To"}

API Reference 5-35

Chapter 5: Using the Tcl Scripting API to Access the API

getProjects
DESCRIPTION
Returns a list of Systems Architect/Requirements Management project objects.
SYNTAX
getProjects PROJECT LIST
getProjects ADMIN VIEW LIST
getProjects USER VIEW LIST
ARGUMENTS
* progecT 11sT: OBJECT_LIST — Get all projects except the admin project.
* apmin view 11sT: OBJECT_LIST — Get all projects including admin.
* user view 11sT: OBJECT_LIST — Get all projects except the admin and include
the trash can. This argument is the default if no argument is given.
RETURNS
OBJECT_LIST — Projects to which this user has access.
EXAMPLES

set projects [getProjects PROJECT LIST]
set projects [getProjects ADMIN VIEW LIST]

set projects [getProjects USER VIEW LIST]

5-36 API Reference REQ00006 R

Using the Tcl Scripting API to Access the API

getPropertiesWithFormula

DESCRIPTION

SYNTAX

ARGUMENTS

RETURNS

EXAMPLES

REQ00006 R

Returns a property definition that applies to the given object.

getPropertiesWithFormula objects

* object: OBJECT — object for which numeric properties with formula is obtained.

OBJECT_LIST-AIl the Numeric Properties that have formula for the passed objects.

getPropertiesWithFormula $objects

API Reference

5-37

Chapter 5: Using the Tcl Scripting API to Access the API

getPropertyDefinition

DESCRIPTION

SYNTAX

ARGUMENTS

RETURNS

EXAMPLES

Returns a property definition that applies to the given object.
getPropertyDefinition object property
* object: OBJECT — object containing or owning the list.

* property: STRING — The property name.

OBJECT- The property definition.

set propertyDef [getPropertyDefinition $folder Name]

5-38 API Reference

REQ00006 R

Using the Tcl Scripting API to Access the API

getPropertyDefinitions

DESCRIPTION

SYNTAX

ARGUMENTS

RETURNS

NOTES

REQ00006 R

Returns a list of property definition names that apply to the give object types.

getPropertyDefinitions object types

* object: OBJECT — type or subtype definition.

* types: STRING_LIST — type of property definitions to retrieve. The default value
is All Property.

STRING_LIST-Property definition names.

Hidden properties are those that do not appear in the content pane of the Systems
Architect/Requirements Management client. These properties contain information
that is not readable.

API Reference 5-39

Chapter 5: Using the Tcl Scripting API to Access the API

getRemoteObjectTraceReport

DESCRIPTION
Retrieves the trace report for the remote object. This is used in conjunction with Proxy
linking between Systems Architect/Requirements Management and Teamcenter
Engineering or Teamcenter Enterprise. It is not useful with the original WOLF linking.
This action posts a request to the remote system to retrieve the trace report. Hence,
there can be a delay at that point.

%= For troubleshooting, first try using the Trace Report Ul command. If
the Trace Report fails then it is likely a configuration problem and not
mis-use of the API. Check the Architect/Requirements and Teamcenter
Engineering/Teamcenter Enterprise logs for error messages.

SYNTAX
getRemoteObjectTraceReport tcrObject

tcrObject is the proxy object created when a Teamcenter Engineering/Teamcenter
Enterprise object is dragged (or copy/pasted) into Architect/Requirements.

ARGUMENTS
* tcrobject: STRING — Proxy object.

RETURNS
* String traceReport: Irace reportin HTML format.

5-40 API Reference REQ00006 R

Using the Tcl Scripting API to Access the API

getValue
DESCRIPTION
Retrieves a value from an object.
SYNTAX
getValue object property
ARGUMENTS
* object: OBJECT — Object containing desired value.
* property: STRING — System property name (see DataBean.PROPERTY) or
user-defined property name.
RETURNS
The property’s value, or an empty string if the property is not found on the object.
NOTES

The LOID of a pick list object can be obtained using the getvalue TcL function. The
only needed change is that the property name in these function has a prefix of LOID.

When you need the values for a property, use the getvalue. But if your need the
LOID(s) of the objects that are stored as values in the Pick list choice property, use
getvalue and prefix Lo1p: in front of the property name.

For more information, see Using A Pick List Activator in chapter **Unsatisfied xref
number**, **Unsatisfied xref title**. For information about setting a dynamic choice list
for a choice property, see the Systems Architect/Requirements Management Project
Administrator's Manual.

% The MHTML keyword is used to retrieve the text content of a note or
requirement including graphics. For performance reasons the OLE content
is not included when the MHTML keyword is used. If the text content is
opened in Microsoft Word, or used to set the content of another requirement,
the OLE objects will be represented with a graphic, but the OLE application
cannot be launched. To include OLE content use the MHTML_FULL keyword
instead. The MHTML_FULL keyword is only supported in getValue, always
use MHTML in setValue.

For example: # copy the content of a note to a new note including OLE objects

setValue $SnewNote MHTML [getValue $oldNote MHTML FULL]

REQ00006 R API Reference 5-41

Chapter 5: Using the Tcl Scripting API to Access the API

% The list of Java API functions is provided in the APl Javadoc. The API
Javadoc describes each function along with the response expected from the
server. Additionally, the list of Property Names, Lists, Keywords and other
Constants are defined in the DataBean class in API Javadoc.

You can access the Javadoc from Systems Architect/Requirements
Management home page.

1. Click API Javadoc.
2. Click the com.edsplm.tc.req.databeans package link.

3. From the Class Summary list, click the DataBean link.

The constants are defined in a HTML table.

The Member Count property returns an approximate value. Some members may
not be visible because they are deleted or not effective. For performance reasons,
these are not filtered out of the member count. To get a precise member count, use
Actual Member Count.

EXAMPLES
set name [getValue S$obj Name]
set txt [getValue S$object Text]

If Assign to is a dynamic choice property that exists on the object.

* To obtain the value in the Assign to property, make a call as follows:

getValue S$Sobject “Assign To”

» To obtain the LOID of the object which is stored as the value in the Assign to
property, make a call as follows:

getValue S$object “LOID:Assign To”

Get the number of items in a folder:
* Get the approximate number of items in a folder

set memberCount [getValue $folder “Member Count’”]

* Get the precise number of items in a folder

set memberCount [getValue $folder “Actual Member Count”]

5-42 API Reference REQ00006 R

Using the Tcl Scripting API to Access the API

importDocument
DESCRIPTION
Imports a Word file or other document type into Systems Architect/Requirements
Management.
SYNTAX
importDocument owner filename docLocation [subtype] [filetype]
ARGUMENTS

* owner: OBJECT — The document owner.

* filename: STRING - Full path name and the MHTML or XML file name.

* docLocation: STRING — Path name of the original document.

* subtype: STRING — For MS_WORD and MS_EXCEL import file types, subtype
identifies the type or subtype name to use for all imported objects. Default is the
base requirement type.

For AP233 import file type, the subtype argument should specify the property
name to use as the unique identifier for objects to be updated. If no updates
are desired, specify "".

For all other import types, the subtype argument should be present; however, it
is unused (specify).

* filetype: STRING — The type of file to import. MS_WORD, STYLESHEET,
MS_EXCEL, EXCEL_TEMPLATE, AP233, XML, XML_UPDATE, SCHEMA or
PROJECT. The default is MS_WORD.

NOTES

The imported file types are:
+ MS_WORD - Word file in MHTML format.

+ STYLESHEET — Word file in MHTML format. Only the stylesheet section is
imported. Owner must be a Stylesheet.

+ MS_EXCEL - Excel file in MHTML or XML format.

« EXCEL_TEMPLATE - Excel file in MHTML format. Owner must be an Excel
Template.

+ AP233 - AP233 file in STEP format.
+ XML - XML file with information about new objects to be created.

+ XML_UPDATE — XML file with information to update existing objects (when the ID
matches an existing object's LOID) or create new objects.

+ SCHEMA — XML file of schema objects. Owner must be a project.

+ PROJECT — XML file for an entire project. Specify a real project for the owner. A
new project is created.

REQO00006 R API Reference 5-43

Chapter 5: Using the Tcl Scripting API to Access the API

For more information about the Architect/Requirements XML format, see the Systems
Architect/Requirements Management Project Administrator's Manual.

%= |mports done through this API are always carried out within the web server
process, even if the Systems Architect/Requirements Management's
ExternallmportExport setting has been configured to use an external
process. This could result in performance or memory consumption issues
within the web server process.

RETURNS
STRING-Folder LOID number.

5-44 API Reference REQ00006 R

moveObjects

Using the Tcl Scripting API to Access the API

DESCRIPTION

SYNTAX

ARGUMENTS

RETURNS

EXAMPLES

REQ00006 R

Moves the source objects to the specified destination.

moveObjects sources destination

* sources: OBJECT_LIST — Objects to move.

* destination: OBJECT — New owner of moved objects.

OBJECT_LIST-The moved objects.

moveObjects S$requirements $folder

API Reference

5-45

Chapter 5: Using the Tcl Scripting API to Access the API

restoreFromTrashcan

DESCRIPTION

SYNTAX

ARGUMENTS

RETURNS

EXAMPLES

Restores deleted objects. Restored objects are no longer marked as deleted and are
moved to the specified new owner or back to their original owner.

restoreFromTrashcan objects [newOwner]

* objects: OBJECT_LIST — Object containing desired value.

* newowner: OBJECT — New owner for the restored objects, default is to restore to
the original owner.

OBJECT_LIST-The restored objects.

set object [restoreFromTrashcan $deleteObject]

5-46 API Reference REQ00006 R

Using the Tcl Scripting API to Access the API

runActivator

DESCRIPTION
Runs the specified activator specified by Activator ID.
SYNTAX
runActivator name current selected
ARGUMENTS
* name: STRING — The name of the activator.
* current: OBJECT — Object to set as the current object in the activator
* selected: LIST — List of additional information to pass into the activator
RETURNS

STRING - the activator result or an error message if the activator failed.

REQ00006 R API Reference 5-47

Chapter 5: Using the Tcl Scripting API to Access the API

runReport
DESCRIPTION
Searches the database for objects that match the specified criteria and output them
in a report file.
SYNTAX
runReport report template startingObject live
ARGUMENTS
* report: OBJECT — Saved Search object that contains the search query.
* template: OBJECT - Excel Template, Document Template or saved View object
used to format the report output.
* startingobject: OBJECT - Starting object for the search. If omitted or empty then
the starting object for the saved search is used.
* 1ive: BOOLEAN - Pass true if exporting to Excel via a Template or View to get a
"Live" spreadsheet, or false for static spreadsheet.
The 1ive argument is not used when exporting to MS Word. Export to MS Word is
implied when the tempiate argument identifies a Document Template object.
RETURNS
Full pathname of the server file where the Word or Excel report output is written. The
createAction FileDownload API can be used to move this file to the client workstation.
EXAMPLES

set report "\\\\[getValue S$currentProject Name]\\Reports and Formatting\\myRe
set report [getValue S$report LOID]

set template "\\\\[getValue ScurrentProject Name]\\Reports and Formatting\)
set template [getValue S$template LOID]

Run the report, download the server file to the client and open in Excel

set filePath [runReport S$report Stemplate S$startingObject "false"]
createAction FileDownload [list SfilePath MS EXCEL]

5-48 API Reference REQ00006 R

Using the Tcl Scripting API to Access the API

search
DESCRIPTION
Return a list of objects matching the search parameters.
SYNTAX
search searchSpec startingObject
ARGUMENTS
* searchspec: STRING — XML specification for the search.
* startingobject: OBJECT — Starting point for search
RETURNS
OBJECT_LIST- Nested list of objects matching the search criteria.
NOTES
Constructing the searchspec XML can be difficult. Instead of constructing it from within
your Tcl, use the Search module user interface to construct and debug a search, save
the search and let TcSE give you the XML. In the Administration module, select the
Search object and scroll the Properties tab to find its Script property. Triple-click in
the field and use Ctrl+C to copy the script's XML text to the clipboard. Now, paste the
text in a text editor, or directly into your Tcl code. You can see where to substitute
different property names or values in WHERE clauses, or conditionally exclude or
add sections of the script as required.
EXAMPLES

REQ00006 R

set results [search $searchXml $obj]

API Reference 5-49

Chapter 5: Using the Tcl Scripting API to Access the API

search
DESCRIPTION
Searches the database for objects that match the specified criteria. The search is
not case sensitive.
SYNTAX
search base nameSpec contentSpec types [caseSensitive]
ARGUMENTS
* base: OBJECT — Folder or project to search in.
* namespec: STRING — The object name search criterion.
* contentspec: STRING — The body text search criterion.
* types: STRING — Object types to include in the result, see DataBean.TYPE.
* casesensitive: BOOLEAN - True to perform case sensitive search, false for
noncase sensitive search. The default is false.
RETURNS
OBJECT_LIST— Objects matching search criteria.
NOTES
Types may only inclueNoteDB, FolderDB, and RequirementDB. The wildcards ? and *
may be used in the spec strings. contentSpec applies for notes and requirements;
it is ignored for folders.
EXAMPLES

set reqgs [search S$project "" "shall" {RequirementDB}]

5-50 API Reference REQ00006 R

Using the Tcl Scripting API to Access the API

sendEmail
DESCRIPTION
TcL Command class to send E-Mail to List of Emaillds.
SYNTAX
sendEmail recipients subject objectContentFormat objects sendMailAs
mailBodyMessage docTemplate
ARGUMENTS
recipients: LIST — List holding recipients IDs.
subject: STRING — Variable to hold the subject of the mail.
objectContentFormat: STRING — Variable to hold object's content format options:
Text, HTML,MHTML or URL.
objects: LIST — List of Systems Architect/Requirements Management objects.
sendMailas: STRING — String to hold send mail option: send as body/attachments.
mailBodyMessage: S1RING — String to hold mailBodyMessage.
docTemplate: STRING — String document template used to get object's content
as expected document.
RETURNS
mailSendStatus: Boolean indicating success or failure of sendMail function.
NOTES

REQ00006 R

The recipients argument is a Tcl list including one or a combination of the following:

o Actual email addresses in the form name@host.
0 UserGroup object Name or LOID.
0 User object Name or LOID.

When a User is identified by Name, LOID or User Group membership, the email
is sent using the Email property value for that user.

The objects argument must be a list of LOIDs.

TcSE's MailServerlP configuration setting must point to a valid email server.

API Reference 5-51

Chapter 5:

setEnvironment

Using the Tcl Scripting API to Access the API

DESCRIPTION

Sets one of Systems Architect/Requirements Management' configuration parameters.

SYNTAX

setEnvironment param value

ARGUMENTS

5-52

RETURNS

param: STRING — Name of the parameter to set.

value: STRING — The new value for param.

VOID.

NOTES

Parameters that may be set are:

API Reference

changeList: Value may be set to true or false. Setting changerist to false
suppresses change handling in Systems Architect/Requirements Management.
This can be useful to improve the performance of large Tcl transactions.
Turning change handling off suppresses After activator execution, but Before
activators run as usual. Also, turning change handling off results in the Systems
Architect/Requirements Management client not refreshing completely.

checkRedundantLinks: Value may be set to true or false. The default value is true.
Setting checkredundantLinks {0 false suppresses redundant relationship checking
when creating trace links and group links. This can be useful to improve the
performance of operations that create a large number of links. The setting lasts
until it is explicitly changed again or the end of the transaction. Exercise caution
when setting checkredundantLinks to false as it creates redundant links.

checkCircularLinks: Value may be set to true or false. The default value is true.
Setting checkcircularLinks t0 false suppresses circular relationship checking
when creating trace links and group links. This can be useful to improve the
performance of operations that create a large number of links. The setting lasts
until it is explicitly changed again or the end of the transaction. Exercise caution
when setting checkcircularLinks to false as it creates circular links.

contextProject: Value passed must be the LOID of a project object. Systems
Architect/Requirements Management always has the notion of a "current project"”.
This value is reflected in the currentProject global Tcl variable. But, there are
times when a different project context is needed. For example, the getValue call
for the "User Access" property of a User object returns that person's access

to the current project. This example would allow getting the access level for a
different project:

setEnvironment ContextProject $proj2
set access [getValue S$user "User Access"]

The Project context change only applies during the activator execution where the
setEnvironment call is made. When the activator ends, the ContextProject is reset
to the current project. But, within the same activator, it may be necessary to reset
the context project back to the original value as it could influence later API calls

REQ00006 R

REQ00006 R

Using the Tcl Scripting API to Access the API

within that activator. If your activator continues on to perform other actions it is
better to reset the context project to the current project:

setEnvironment ContextProject ScurrentProject

FastMode: Boolean option to enable or disable implicit re-number refresh. The
default is true, which enables implicit re-number refresh. Requirements and
building blocks have a hierarchy property. When a numbered object is created,
deleted or moved it may cause some of its siblings and descendents to be
re-numbered. Refreshing the client can be expensive when a large number of
siblings are present. Suppressing re-number refresh may improve performance
significantly, at the cost of displaying outdated number information until the next
refresh.

The rastMode setting is effective for the entire client session. The mode applies
until the client logs out or it is reset with another setEnvironment call.

FlushUndo: NoO value required. riushundo empties the undo queue so no prior
transactions can be undone.

initProgress: Macros and menu commands run from the client displays the client's
progress meter thereby preventing timeouts. initprogress allows Tcl developer to
inform users of a command's progress and enables cancelling the command. Tcl
setEnvironment actions controls the content displayed in the progress dialog.

setEnvironment initProgress <message> <totalSteps>

The given message is displayed in the progress dialog's message area. The
totalSteps given in the initpProgress informs the progress meter of the "steps"
it required to reach 100%. The currentstep values passed in subsequent
updateProgress calls must be from 0 to the totalSteps value. If totalSteps is
omitted, the progress meter oscillates and does not show a progression from
0% to 100%.

MessageQueue: Value may be omitted or set to clear.

o If the value is omitted, the current contents of the message queue (message
tags, not the full text) is returned.

o If the value is clear, the message queue is also cleared.

API callers need to use this call with caution. Users may be left unaware
of important messages when this call is used.

queueResult — This command causes a copy of the results of the current server
call to be stored off so they can be retrieved and processed by the TcSE client at a
later time. This is useful in situations where a server call is made from something
other than the TcSE client, such as a JSP, but you want the results to be handled
in the client. Login activators run during a server call from the login JSP so this
command is needed if the login activator generates any messages or actions that
need to be processed on the client. Information on the result includes:

API Reference 5-53

Chapter 5:

5-54

Using the Tcl Scripting API to Access the API

API Reference

o Change list — Information about objects modified in the transaction that is used
to refresh the client.

0 Message list — Message generated by the TcSE server or the Tcl
displayMessage command.

o Action list — actions generated by the Tcl createAction command.

If this command is included in Tcl code that was run during a call from the client it
will be ignored. This prevents the same result information from being processed
twice. Once a queued result is saved on the server it will be returned to the client
immediately following the next server call from the client. This means that some
user action, such as selecting an object, is required in order to see the result.

saveData: Allows Tcl to save values that can be retrieved during a different
transaction later in a user's session. This data will be lost if the session times out,
or when the user logs out. The form of the call to save a value is:

setEnvironment SaveData unigquelID value

The value argument is any Tcl string. The uniqueIp argument is a string identifier,
which will be used later to retrieve the value. If a value has already been saved
with that ID, the old value is replaced by the new one. But, that old value is
returned as the result of the setEnvironment call. So, you an retrieve the old value
and set a new one all as one call:

set oldValue [setEnvironment SaveData uniquelID newValue]

The form of the call to just retrieve a previously saved value is:

set myValue [setEnvironment SaveData uniquelID]

If there is no previously saved value with that ID, the result is an empty string, with
no error indication. A retrieved value remains stored and can be retrieved again.
To release the memory from a saved value, set it to the empty string:

setEnvironment SaveData uniqueID ""

This call retrieves the existing value and clears it as one operation:

set oldValue [setEnvironment SaveData uniqueID ""]

%= Clearing values that are retrieved and no longer needed is a
recommended practice. Values saved with this feature occupy Web
server memory associated with the user's HTTP session. Use this
feature for storing simple flags, or short values. Avoid saving large
amounts of text this way.

SetResponse: Value is Yes (the default Value) or No. Use the setResponse
parameter for operations that require a user response before executing. For
example, some database modifications cause the system to prompt you with a
warning; you must click Yes to continue. When this occurs during Tcl execution,
the programmer must provide the response using the setresponse parameter.

REQ00006 R

REQ00006 R

Using the Tcl Scripting API to Access the API

The setEnvironment method supports the following named responses:

OPT_PARAM DELETE_ PROJECT Used by the deleteobjects method, for
objects in the Administration module.

OPT_PARAM CREATE_ BASELINE Used by the createBase1ine method.

OPT PARAM NO PENDING CHANGE Used by the createraseline method.

CREATE BASELINE

For example, a selected activator can be deleted by using a macro that contains:

setEnvironment SetResponse Yes OPT_ PARAM DELETE PROJECT
deleteObjects $selected

The unnamed response " is used by all other methods.

sessionID: NO value required. sessioniD contains the value the server maintains
for the current Systems Architect/Requirements Management sessionip. This
value can be used for automating Systems Architect/Requirements Management
logins from JSP code launched from an activator or macro.

assignRoins: In order to avoid locking conflicts with the ROIN counter object a
ROIN is not assigned to a requirement when it is created. ROINs are instead
assigned when the transaction is committed. If you need to examine the ROIN
of a newly created requirement you will need to force the assignment of a ROIN.
The assignroins command will assign ROINs to all the requirements created in
the current transaction that do not yet have a ROIN.

setEnvironment assignRoins

updateProgress: Macros and menu commands run from the client displays the
client's progress meter thereby preventing timeouts. updateprogress allows
Tcl developer to inform users of a command's progress and enables cancelling
the command. Tcl setEnvironment actions controls the content displayed in the
progress dialog.

setEnvironment updateProgress <message> <currentStep>

The given message is displayed in the progress dialog's message area. The
totalSteps given in the initpProgress informs the progress meter of the "steps"
it required to reach 100%. The currentstep values passed in subsequent
updateProgress calls must be from 0 to the totalSteps value. If totalSteps is
omitted, the progress meter oscillates and does not show a progression from
0% to 100%.

deltaMode: The web application parameter pe.peltacapture sets the capture
settings for the LOIDs of modified database objects. The LOIDs of modified
database objects are captured if pB.peltacapture is set to true. ps.peltacapture
can be overridden within the current transaction, using the boolean de1taMode
parameter.

Following is the command to disable LOID capture:

setEnvironment deltaMode false

API Reference 5-55

Chapter 5: Using the Tcl Scripting API to Access the API

EXAMPLES
Example of common usage:

setEnvironment ChangeList false
Example of common usage of session1D parameter:

set sessionID [setEnvironment SessionID]
createAction launchWebBrowser [list urlString sessionVarName S$sessionID]

5-56 API Reference REQ00006 R

Using the Tcl Scripting API to Access the API

setObject
DESCRIPTION
Sets a list of property values on the given object.
SYNTAX
setObject object propertylList valuelist
ARGUMENTS
* object: OBJECT — The Systems Architect/Requirements Management object.
* propertyList: STRING_LIST — List of desired properties, see
DataBean.PROPERTY.
* wvalueList: STRING_LIST - List of the values to set.
RETURNS
VOID.
NOTES
In addition to the system properties defined in Databean.PROPERTY, any applicable
user defined properties may be used.
If you are setting the value of the property by passing some String, simply use the
regular setobject. But if you want to pass the LOID of the objects for the Pick list
property as its values, you need to make the same setobject call with Loip: as a
prefix for the property. If you are setting the value on a pick list, hat value should be a
name of the object or its LOID.
For additional information, see Using A Pick List Activator in chapter **Unsatisfied
xref number**, **Unsatisfied xref title**.
For information on user-defined, dynamic choice property (pick list property, see the
section Setting a Dynamic Choice List for a Choice Property Definition in the Systems
Architect/Requirements Management Project Administrator's Manual.
Setting a dynamic choice property using the LOID: form is significantly faster than
setting it by value.
EXAMPLES

REQ00006 R

setObject S$Requirement {Name {Paragraph Number}} {Speed 2}]

If Assign to is a dynamic choice property that exists on the object, and ¢ User Group
is an object that exist in the project:

* To set the object of the Assign To property, make the following call:

setObject S$currentObject "Assign To" "c User Group"

» To pass the LOID of the object of the Assign To property as its values, make
the following call:

setObject S$currentObject "LOID:Assign To" "497.0.7800

% 497.0.7800 is an example LOID.

API Reference 5-57

Chapter 5: Using the Tcl Scripting API to Access the API

setPassword

DESCRIPTION
Changes a user’s password.

SYNTAX
setPassword name newPassword oldPassword
ARGUMENTS
* name: STRING — The name of the user.
* newPassword: STRING — The new password for user.
* oldrassword: STRING — User's old password.
RETURNS
OBJECT-The modified user object.
NOTES
May be used only by the project administrator or to change your own password.
Project administrators do not need to specify oc1drassword when changing another
user's password.
EXAMPLES

setPassword "fred" "xyzzy" "plugh"]

5-58 API Reference REQ00006 R

Using the Tcl Scripting API to Access the API

setUserPreferences

DESCRIPTION
Allows users to specify their location so that information can be formatted appropriately.

SYNTAX
setUserPreferences names values
ARGUMENTS
* name: STRING_LIST — List of preferences names.
* values: STRING_LIST — List of preference values.
RETURNS
None.
NOTES
Preferences that can be set are:
timezone: Specify the time zone of the client so dates and times are displayed
in local time (see DataBean.PROPERTY.TIMEZONE and java.util. TimeZone).
Timezone determines the time shift from GMT.
locale: Specify the locale of the client (see DataBean.PROPERTY.LOCALE and
java.util.Locale). Locale controls how date, time and numbers are formatted, and
in what language months are displayed
Java developers can use setobject {0 set preferences.
EXAMPLES

SetUserPreferences timezone “America/Los Angeles”

setUserPreferences [list timezone locale] [list “GMT-8:00” “en US”]

REQ00006 R API Reference 5-59

Chapter 5: Using the Tcl Scripting API to Access the API

setValue
DESCRIPTION
Sets the value of a property on the given object.
SYNTAX
setValue object property value [lightweight]
ARGUMENTS
* object: OBJECT — The Systems Architect/Requirements Management object.
* property: STRING — The property to set, see DataBean.PROPERTY.
* value: STRING — New value for property.
* lightweight: BOOLEAN — True if setting a lightweight property, false otherwise.
The default is false.
RETURNS
BOOLEAN - Value indicating whether or not the operation was successful.
NOTES

In addition to the system properties defined in DataBean.PROPERTY, any applicable
user defined property may be used.

Lightweight properties allow an API caller to save a named value on an object without
requiring a property definition. Setting a lightweight property creates, or updates, a text
property instance with the given name and value. Setting a lightweight property to an
empty string (“”) causes the lightweight property instance to be deleted.

Lightweight properties are intended for cases where only a minority of objects need
that particular value saved. If most or all instances of a type require the value, an
ordinary property definition should be defined and assigned to that object type.
Lightweight properties have several limitations:

+ Cannot be displayed as a column in the Systems Architect/Requirements
Management client views

* Appear in the Properties tab, but are not editable
* Do not appear in the selection list of properties in the Search module

» Cannot have a lightweight property of the same name as a System or User
Defined property on the same object.

When certain properties are set, such as the Properties property of a Type Definition,
you are prompted with a warning message and must click Yes to continue. When
setting these properties using setvalue, the answer to the question must be supplied.
The following line of code must be included before the setValue or the property will
not be set:

setEnvironment SetResponse Yes

5-60 API Reference REQ00006 R

REQ00006 R

Using the Tcl Scripting API to Access the API

To add, remove, or reorder the allowed choices for a Choice List property definition, set
its Choice List property. When calling setValue, you must pass a string that includes
alternating new and old values, in the order you want them to be in. The values are
separated by the internal delimiter (middle dot (.)) as follows:new.o1d.new.o014. Added
choices or deleted choices are indicated by a null string (empty string) between the
delimiters. That is, when adding a choice, there is no old value, so there are two
adjacent middle dot characters. Likewise, when deleting a choice, the new position

is empty.

If you are setting the value of the property by passing some String, use the regular
setvalue. But if you want to pass the LOID of the objects for the Pick list property as
its values, you need to make the same setvalue call with Lorp: as a prefix for the
property. If you are setting the value on a pick list, that value should be a name of the
object or its LOID. For more information, see Using A Pick List Activator in chapter
Unsatisfied xref number, **Unsatisfied xref title**.

Setting a dynamic choice property using the LOID: form is significantly faster
than setting it by value. For information about setting a dynamic choice list for a
choice property, see the Systems Architect/Requirements Management Project
Administrator's Manual.

®: Use the Static property for freezing and unfreezing an object.

+ Setting Static to true freezes the object.
+ Setting Static to false unfreezes the object.

For example:

freeze the requirement
setValue S$req Static true

% Due to delayed ROIN assignment it may be necessary to explicitly assign
ROINs before setting the text content (MHTML) of a requirement (see

setEnvironment assignRoins)

% The MHTML keyword is used to retrieve the text content of a note or
requirement including graphics. For performance reasons the OLE content
is not included when the MHTML keyword is used. If the text content is
opened in Microsoft Word, or used to set the content of another requirement,
the OLE objects will be represented with a graphic, but the OLE application
cannot be launched. To include OLE content use the MHTML_FULL keyword
instead. The MHTML_FULL keyword is only supported in getValue, always
use MHTML in setValue.

For example:
copy the content of a note to a new note including OLE objects

setValue S$newNote MHTML [getValue $oldNote MHTML FULL]

API Reference 5-61

Chapter 5: Using the Tcl Scripting API to Access the API

% The list of Java API functions is provided in the APl Javadoc. The API
Javadoc describes each function along with the response expected from the
server. Additionally, the list of property names, lists, keywords and other
constants are defined in the DataBean class in API Javadoc.

You can access the Javadoc from the Systems Architect/Requirements
Management home page.

1. Click API Javadoc.
2. Click the com.edsplm.tc.req.databeans package link.
3. From the Class Summary list, click the DataBean link.

The constants are defined in a HTML table.

EXAMPLES
setValue $Requirement Name "Maximum speed"

To make the changes in the following table:

Table 5-1. Sample Change List

New Old Description

Susan Susie Change name from Susie to Susan.

Mark Mark No change.

Sally null Add Sally in the third position.

null Peter Delete Peter.

Henry null Add Henry in the fourth position.

y X Rename from x to y; troublesome rename,

server catches.

X y Rename from y to x; troublesome rename,
server catches.

5-62 API Reference REQ00006 R

Using the Tcl Scripting API to Access the API

The Tcl code to set the choices in the example would be:
global choiceDelimiter

set choices [list Susan Susie Mark Mark Sally "" "" Peter Henry "" y x x °
setValue S$object "ChoicePropertyName" [Jjoin Schoices S$choiceDelimiter]

* To set the object of the Assign To property, make the following call:
setValue S$currentObject "Assign To" "c User Group"

» To pass the LOID of the object of the Assign To property as its values, make
the following call:

setValue S$ScurrentObject "LOID:Assign To" "383.0.19579"

%= 383.0.19579 is an example LOID.

REQ00006 R API Reference 5-63

Chapter 5: Using the Tcl Scripting API to Access the API

uncoupleShortcuts

DESCRIPTION
Uncouples a shortcut from the master object, creating a copy of the master object.
If the shortcut includes the children of the original object, then it is a deep copy.
Otherwise only the master object is copied.
SYNTAX
uncoupleShortcuts shortcut
ARGUMENTS
* shortcuts: OBJECT_LIST — The shortcut objects to be uncoupled.
RETURNS
newObjects: The new object copies.
EXAMPLE

uncoupleShortcuts $shortcut

5-64 API Reference REQ00006 R

Using the Tcl Scripting API to Access the API

writeLog
DESCRIPTION
Writes a message to the web server's log file.
SYNTAX
writelLog message
ARGUMENTS
* message: STRING — Message to place in log file.
RETURNS
VOID.
NOTES

The name and default location of the web server log file varies with each of the web
servers, and the server may be configured to use a different location.

Use caution in writing to the log file. Excessive logging can impact performance, and
lead to very large log files. Recording error conditions or other significant events is
appropriate, but do consider how frequently these events may happen in production.
Debug printing is appropriate when developing activators or other Tcl, but must be
removed for production operations.

REQ00006 R API Reference 5-65

Chapter 6: Using Activators

Introduction e 6-1
Access Privileges for an Activator 6-1
Describing Activator Objects e 6-2
Creating Activators 6-3
Using Activators in Excel and Object Templates 6-3
Defining Events 6-5
Defining Object Modify Events 6-5
Defining Session Modify Events 6-7
Using A Login/Logout Activator 6-7
Change Approval Routing Events 6-8
Import Events 6-10
Storing Event Context 6-10
Defining the Change List e 6-11
Defining Flags 6-12
Defining Relation Flags e 6-12
Defining Modify Flags e 6-13
Defining Delete and Create Flags 6-13
Using APick List Activator e 6-14
Pass Ownerto Tcl Context 6-14
When A Pick List Activator Gets Called 6-15
Pick List Activators and Performance 6-16
Implementing Transaction Control 6-18
Creatinga Tcl Where Clause e e 6-19
CreatingaWhere Clause 6-19
Searching Witha Tcl Where Clause 6-19

Tcl Where Clause Example 6-20

Tcl Global Variables in Where Clause Activators 6-21
Writing Activators When Objects are Deleted, Restored, or Discarded 6-22
TC_XML Export Activator e 6-23
Assigning Teamcenter ltem IDs 6-23
Excluding datafromexport e 6-24
Adjusting type and property names e 6-25
Specifying the versionstoexport e 6-25
LOID Propertyo 6-26

REQ00006 R API Reference

Activator Examples e 6-26

Determining Requirements With The SameName 6-26
Creatinga Note 6-27
Creating An After Delete Activator Event 6-28
Using createAction FileDownload 6-29
Producingan HTML File e 6-29
E-mailing Requirements or Producing PowerPoint Project from Requirements 6-29

Using createAction Rundava 6-30
Setting up to run Java code in Architect/Requirementsclient 6-30

The ClientdJavaAPl class e 6-30

Java Development Environment 6-31

Code example e 6-33
Running an Activator From the Command Line With the tcradmin Script 6-36
USINg MacCIOS o 6-37
Creating @a Macro 6-37
FormValues 6-37

Tcl Environment 6-37
Runninga Macro 6-38
Macro Examples e 6-38
Setting a Property on Several Objects atthe Same Time 6-38

Setting Several Properties on Multiple Objects 6-38
Creating a Derived Requirement 6-39
Collecting Metrics on Requirements 6-39
Working with Shortcut Objects 6-40
Working with Reference Links 6-42
References to Versioned Objects 6-42

API Reference REQ00006 R

Chapter 6: Using Activators

This chapter describes activators, including macros, and explains how to use them.

Introduction

In Systems Architect/Requirements Management customized behavior can be associated with object
types. This behavior is defined in objects called activators. For example, an activator can be
associated with requirements so that it is triggered when any requirement is modified.

Activators can access the Systems Architect/Requirements Management database, operating system
commands, and other applications. Systems Architect/Requirements Management uses Tcl (Tool
Command Language) as the language for programming activators.

Access Privileges for an Activator

Users need the script authoring privilege to create, edit and run activators in each project. To give this
privilege to a user for a particular project, change the user's user object in the project's users folder by
setting the Additional Privilege property to include Script Authoring. Because Enterprise users have
access to all projects in the system, their user objects appear only in the users folder of the Systems
Architect/Requirements Management Administration project. However, a user does not need script
authoring privilege if an activator is triggered as a result of another user's actions.

%= You must have the following access privileges to create, edit, or view a Tcl script for an
activator:

+ To create or edit an activator, the maximum privilege level assigned to you in the project
must be Project Administrator or Enterprise Administrator.

» After an activator is created, it can have a security profile that grants editing rights to
other users with Read and Write access privilege.

* In all cases, you must have the special privilege of Script Authoring in the project to
create, edit, or view the text of an activator.

For more information about project access and special privileges, see the Systems
Architect/Requirements Management Project Administrator's Manual.

REQ00006 R API Reference 6-1

Chapter 6: Using Activators

Describing Activator Objects

Activators are executable behavior that trigger and execute when certain events occur as a result of
user action in the Systems Architect/Requirements Management client. Activators contain executable
code written in Tcl. When an activator triggers, the Tcl code it contains is executed. For example, an
activator that triggers on requirement modification could:

» Create a note to record the rationale for the requirement change.
+ Set an attribute showing that the requirement had changed and needs review.
* Notify members of the Configuration Control Board of the change through E-mail.

Activators are created in the Activators folder of a project in the Administration module. Activators
have an event property that indicates which events cause the activator to trigger.

To enhance performance and for technical reasons, there are cases where Activator events are not
triggered by design.

» Activators triggered by a Before event do not cause other Before activators to be run. But, Before
activators cause After activators to be run.

+ Activators triggered by an After event do not cause any other Before or After activators to be run.

» After events are not triggered when the setEnvironment changeList FaLSE option is in effect. The
internal mechanism that collects the change list also drives the After events, so that information is
not available when the change list is suppressed. Before activators are still run as usual.

* When you import Word, XML, AP-233, or Excel file in create or update mode, the Undo
command does not work.

* When you update properties while importing an AP233 file, Change Logs are captured if you

enable Change Logging for those modifications. For all imports (Word, XML, AP-233, or Excel)
in create mode, changes should not be logged even if Change Logging is enabled

6-2 API Reference REQ00006 R

Using Activators

Creating Activators

This section presents the steps required to set up an activator.

™ See Access Privileges for an Activator for information about access privileges required to
create an activator.

To set up an activator:

1. In the administration module, open a project, select the Activators folder and run the
New:Activator command.

2. Open the activator and enter the Tcl script to execute.
3. Edit the Activators Events property and set the events that will trigger the activator.

4. Open the Type Definitions folder, select an object type, edit the activators property and select the
activator so that it applies to objects of this type.

%=« After the Tcl script of an activator is saved, there may be a small delay of a few seconds
until the changes are saved on the server. If the user reopens the .tcl file immediately,
the changes may not be reflected.

This delay is caused by the mechanism used to determine whether any changes are
made to the file. The Systems Architect/Requirements Management has no direct
access to the editing application as it allows the user to use any editor to edit an
activator. Therefore, the Systems Architect/Requirements Management must poll the
edited file to check whether there are any changes. Polling too often may affect the
performance, so there is an interval of a few seconds between the polls.

* When you open an activator for editing in multi-pane editors, the Systems
Architect/Requirements Management places a reservation on the activator. You must
use the Tools—Release Reservation command if other users want to edit the same
activator. For more information, see the chapter Working With Object Properties in the
Systems Architect/Requirements Management User's Manual.

Using Activators in Excel and Object Templates

Excel templates and object templates allow activators to be called as follows:
* {%Activator%Name}

The activator is called when exporting an object using the Excel template row or the object
template. If an activator by the given name is found in the current project, it is used. If none is
found, the Architect/Requirements Administration project is checked. If none is found there,
an error is generated.

When the activator is run, the object being exported is identified in the currentObject global Tcl
variable. Arguments can be passed to the activator using this syntax:

For more information about Excel templates and document templates, see the Systems
Architect/Requirements Management Project Administrator's Manual.

REQ00006 R API Reference 6-3

Chapter 6: Using Activators

* {%Activator%Name%Arg1%Arg2%Arg-n}

From within the activator code, the arguments are found as a Tcl list in the selected global
Tcl variable.

Properties of the current object can be passed as argument values by embedding the
{%propName} syntax, as it is normally used in Excel and object templates:

* {%Activator%Name%{% Create User}%{%Change User}}.
Within the activator, those arguments are retrieved from the Tcl list like this:
set createUser [lindex $selected 0]
set changeUser [lindex $selected 1]

When used within an object template, an activator is expected to return valid HTML text. This
could be a plain text string with no HTML markup or the string could include simple HTML
markup, such as <e>bold and <1>italic</I>. It can also include complex tables, using

the <table>, <tr>, <td> notation, or any other valid HTML content that Microsoft Word allows.

If the string is to include any HTML reserved characters as visible text, they must be encoded
using HTML conventions. For example, ampersand (&) is encoded as "samp", and less than
(<) as "s1t". Non-ASCII characters must be encoded, else they do not display correctly.
Architect/Requirements property values are allowed to contain non-ASCII characters, so strings
returned by getValue must be encoded. Use the following command for encoding:

set encodedContent [java::call org.htmlparser.util.Translate encode S$content]

When used in an Excel template, an activator returns one of the following:

o0 A static string to be displayed in that cell of the exported Excel spreadsheet. The returned
string can be plain text, or can include HTML markup, as described above, and subject to
what Excel allows in cell content. Even if the spreadsheet is exported to live Excel, this text is
not associated with any object or property.

%2 The getvalue sobj HTML return value for a requirement (or paragraph or note)
may or may not be valid HTML to be inserted in an Excel cell. Excel does not
support all the content and formatting that Word does, or in the same way. For
example, paragraph breaks and certain style ranges in the HTML text cause extra
rows to appear in Excel. These are traits of how Excel handles HTML content,
and is not Architect/Requirements behavior. Also, if the text includes embedded
graphics or OLE objects, they are not included in the result. If you want to include
an objecta€™s text, use the Text property, although it does not retain any markup.

0 An object and property reference to create a live cell, as a colon-delimited string in the
form :nn.n.nnnn:propName:, where nn.n.nnnn is the LOID of an object (in valid format), and
propName is the name of a property of that object. In the Excel export file, the cell displays
the current value of that property on that object. If the spreadsheet is exported to live Excel,
cells exported in this form are associated with the object and property and can be edited in
the same way as other live cells.

6-4 API Reference REQ00006 R

Using Activators

Defining Events

Systems Architect/Requirements Management recognizes many internal states, each of which could
be considered an event. When such an event occurs, any activators defined for that event, on that
type of object, are executed. Events generally fall into two categories:

* Object Modify Events occur when objects get modified. This includes relationships, moves,
and editing properties.

+ Session Activity Events are events that are triggered by logging into or out of Systems
Architect/Requirements Management.

%= Objects modified while running an activator do not trigger an event.

Defining Object Modify Events

An Object Modify event type is generated when objects are modified, created, or deleted. There are
two types of Object Modify events: Before Change events and After Change events.

* A Before Change event is generated just before an object is modified, but only after the necessary
objects are locked and access control is checked.

* An After Change event is generated after the modification is complete, but just before the
transaction completes and the response is returned to the user.

Before Change events are triggered only on objects that are selected for an operation, while After
Change events are triggered for all modified objects. For example, if a folder is selected for deletion,
a Before Delete event is triggered on the folder, but not on requirements in the folder. But After Delete
events are triggered for all objects that are deleted. When more than one After Modify activator is
triggered by an operation, they may be run in any order.

Before Change events are triggered when a modify operation is requested. After Change events are
not triggered until the end of the API call, after all changes have been completed. Even if an object
is modified multiple times, there is only one activator run for a particular event. For example, if two
property values are modified, an After Modify Activator runs once for the modified object. The change
list identifies which two properties were modified.

Before Change events are useful if you want to execute, check, or test a few conditions before the
actual modification takes place. For example, to do additional consistency checking, enforce a
design methodology, or impose additional access control, you could define a Before Modify event
on an activator.

After Modify events are useful if the user wants to perform additional operations on the objects
involved in the event or on some other objects; for example, if you want to set a few attributes after
an object is created.

REQ00006 R API Reference 6-5

Chapter 6: Using Activators

The typical trigger for Object Modify events is a user modifying objects in the Systems
Architect/Requirements Management client. But, Tcl API calls can also be the trigger. Ordinary
activators running in response to object events do not cause other activators to be triggered. This
behavior protects against the infinite recursion that’s possible if one activator caused others to run.
But, other Tcl code, running outside the context of an event, can cause Object Modify events to be
queued and applicable activators to run. This includes Tcl running as macros and menu commands.

The following events are supported in Systems Architect/Requirements Management:

6-6

Before Create: This event is set on the Type Definition for the type of object that is about to
be created. But, the new instance of that type does not exist at the time of the Before event, so
the target object of the activator is the intended owner of the new object. (You need two target
objects when creating a link.) This activator could cause the Create action to be cancelled
before any change takes place.

Create: This event is generated after an object is created.

Before Modify: This event is generated when a property of an object changes. The event is
triggered before the actual database modification occurs.

After Modify: This event is generated when a property of an object changes.

Before Delete: This event is generated when an object is deleted. This operation occurs before
the object is actually deleted. This event is triggered only on objects that are selected for deletion.
Objects that are deleted as a side effect of deleting the selected object (such as notes, trace links,
and children of the selected object) do not trigger this event.

When a User Group object is deleted, a Before Delete event gets executed twice.

o ltis triggered first just after you reply Yes to the Are you sure you want to delete the
selected object? message, just before the This operation cannot be undone. Continue?
message appears. Even thought the Before Delete event has triggered at this point, the User
Group is not yet deleted, and does not deleted if you reply No.

o If you now reply Yes, then the Before Delete event is triggered the second time and the
User Group is deleted.

There is no way to tell the difference between these two Before Delete events. Unlike ordinary
Groups, there is no After Delete event when a User Group is deleted.

Performing actions in before activators generally does not work, and it is not recommended.
For example, if you want to put deleted objects in a special folder instead of the trash can you
cannot use a before activator. You can move the objects, but they are still deleted when the
command continues.

After Delete: This event is generated when an object is deleted. Because this event occurs after
an object is deleted many operations, such as setValue, will fail. The object would first have

to be restored from the trash can before it could be modified. After Delete events trigger for all
objects that are deleted, not just the objects that are selected for deletion. For example, deleting
a folder triggers After Delete activators on requirements in the folder.

API Reference REQ00006 R

Using Activators

+ Before Open: This event occurs when text is opened for modification in Microsoft Word. Before
Open activators can be used to prevent Word from opening or to open the text read-only. Use
this Tcl code to open the text read-only:

global actionContinue
set actionContinue stop

Use the Tcl error command to stop the transaction and prevent Word from opening. If you wish to
suppress the normal Tcl error message use this syntax:

error STOP

+ After Relation: This event is generated when a relationship to an object changes. Relationship
changes include moving an object and adding or removed a note, trace link, or child.

Defining Session Modify Events

Session Activity events are events that are triggered by logging into or out of Systems
Architect/Requirements Management. The following Session Modify events are supported by
Systems Architect/Requirements Management:

+ After Login: This event is generated when you first login Systems Architect/Requirements
Management. This event is also generated when a re-login occurs after session timeout.

+ Before Logout: This event is generated before you log out of Systems Architect/Requirements
Management Logout can occur either by exiting the application or from a timeout due to inactivity.

Using A Login/Logout Activator

The After Login and Before Logout events are a unique and you must consider that in writing
activators that are enabled for these events.

The After Login event occurs in the server shortly after the user successfully enters their
UserlD/Password in the login Web page. This is before the client is initialized, and it occurs without
the context of any target object, or even any project.

Similarly, the Before Logout event occurs in the server at a time when Systems Architect/Requirements
Management client is already in the process of shutting down. This event also has no context of

a target object or project, regardless of what object might have been selected in the Systems
Architect/Requirements Management client user interface at the time.

As a result, these conditions apply to After Login and Before Logout activators:

+ They must be defined in the Systems Architect/Requirements Management Administration
project.

+ They must be set as activators for the User type definition object in that project.

+ Since the Systems Architect/Requirements Management client is either not yet initialized or
is shutting down, calls to API functions that depend on the Systems Architect/Requirements
Management client are ineffective, including displayMessage and createaction. For the After
Login activators, this problem can be overcome by using the queueresu1t action of the
setEnvironment APl. However, this is not effective for Before Logout activators.

REQO00006 R API Reference 6-7

Chapter 6: Using Activators

After Login and Before Logout activators can examine, create, and modify objects. However,
the errors occuring during these times are not reported to users because the client is not in a
normal running state.

Unlike other activators, errors occurring in After Login activators do not cause the current
transaction to be aborted because that would abort the entire session login action. This abort
means no one can log in. However, such errors may cause other side effects and hence, the
After Login activators should be tested well before enabling that event.

Change Approval Routing Events

The following events are change approval routing events:

6-8

Change Submitted: This event is generated when a change is submitted. It performs as the
following tasks:

0 Prepares to send an email with present text and proposed text (new text). Addresses the
email to everyone on Change Approvers list and on Change Notifiers list of the Change
Approval object

o0 Prepares the text messages for both sets of emails. Sends email to everyone on the Change

Approvers list of the Change Approval object. If sending email is successful, it freezes the
object (Requirements/Building Block).

o Prepares and sends emails to everyone on the Change Notifiers list.

Change Approved: This activator is generated by Change Response activator. This activator
performs the following tasks:

o0 Makes a line entry to the table in the Change Approval object with information such as time,
user name, comment, and action.

o Attaches the MHTML content of the Change Approval object and the content of the parent
object (Requirement or the Building Block) to the email.

0 Freezes the parent object if it is not frozen.
o0 Sends an email to each approver and to the originator of the change approval request.

Change Rejected: This activator is generated by Change Response activator. This activator
performs the following tasks:

0 Makes a line entry to the table in the Change Approval object with information such as time,
user name, comment, and action.

o Attaches the MHTML content of the Change Approval object and the content of the parent
object (Requirement or the Building Block) to the email.

o Freezes the parent object if it is not frozen.

o Sends an email to the originator of the change approval request.

API Reference REQ00006 R

Using Activators

Change Response: This activator obtains the user name (tcrUser), the user input text, and the
user action, either approved or rejected, from the database and the jsp form input.

This program enters the information such as user name, user comments, user's response, and
the time in the table in the Change Approval object.

REQ00006 R API Reference 6-9

Chapter 6: Using Activators

Import Events

An activator trigger on a folder can be used to prevent a document import. An after import event
allows post processing of imported data.

+ Before import: A before import allows you to cancel before a document import occurs. The type
of import is passed in as a global. This code selectively prevents Word imports.

Check if this is a Word import, could also be XML, AP233, PROJECT, SCHEMA,
STYLESHEET, MS EXCEL or EXCEL TEMPLATE
if {Sselected == "MS WORD"} {

throw error to cancel transaction and provide message back to user
error " Word import not allowed"

+ After import: An after import event allows post processing of imported data. Only the selected
object appears in the change list because change processing is turned off for performance
reasons. A change flag indicates the type of import.

Also because change list processing is disabled during import, Create activators are not triggered
for most of the objects created by the import. Create events are only triggered for the topmost
objects created, that is, those objects created directly in the folder where the import took place.
Tcl can iterate from those objects down to visit all the objects created.

Storing Event Context
When an activator fires, information about the event that caused the activator to fire is passed into

the Tcl environment. The event information is stored as Tcl global variables. The following global
variables are set in the Tcl interpreter when activator execution begins.

+ currentObject: The object that triggered the activator.

+ currentProject: The project in which the currentObject resides.

+ event: The type of event that triggered the activator.

+ tcrUser: The user object of the current user.

» tcrSubtype: The subtype name for the object that is about to be created when a Before Create
activator runs. The activator can reset this variable to a different subtype name, but it must be

a subtype of the same base type.

+ selected: A list of additional information that may be passed into activator when an activator
is run using the RequirementService runActivator method.

+ changelList: An array detailing exactly what changes were made to the currentObject. This list
is not available in Before activators.

+ choiceDelimiter: Separator used between the choices of a multi choice property.

6-10 API Reference REQ00006 R

Using Activators

Defining the Change List

Events, such as After Modify, do not indicate what was modified for an object. However, specific
information about a change is kept in the change list. The change list array contains flags that
indicate exactly what changes occurred. The change flags are the indexes of the Tcl global array
named changeList. The presence of an index in the array indicates that type of change occurred.
Some of the flags also have a value in the array. These values contain additional information about
the change. For example, if a note is added to a requirement, an after relation activator fires. The
changeList array has an Add Note entry whose value is the new note.

The following code detects that a note has been added and gets the note object:

set changeFlag “Add Note”

get the list of change flags

set flags [array names changelList]

check if notes have been added

if {[lsearch $flags SchangeFlag] != -1} {
note has been added, get the note objects
set notes $changelist ($changeFlag)

* The change flag constants are documented in the Javadoc for the AccessEnum class.

REQ00006 R API Reference 6-11

Chapter 6: Using Activators

Defining Flags

Three types of change flags can be set in activators.

Defining Relation Flags

Relation flags are the change flags that may be set in an After Relation activator. All the add and
remove flags have a list of the added or removed objects as the changeList array value.

6-12

Add Member: A child or member object has been added (either created or moved in).
Remove Member: A child or member object has been removed (either deleted or moved out).
Add Note: A note has been added.

Remove Note: A note has been removed.

Add Defining: A trace link has been created that gives the current object a new defining object.
Remove Defining: A trace link has been deleted that removes defining object.

Add Complying: A trace link has been created that gives the current object a new complying
object.

Remove Complying: A trace link has been deleted that removes a complying object.

Move Object: The current object has been moved; the old owner is stored as the changeList
value.

Modify Owner: The current object has a new owner.

Restore Object: The current object has been restored from the trash can.

API Reference REQ00006 R

Defining Modify Flags

Modify flags are the change flags that may be set in an After Modify activator. They indicate the
properties that have changed and, in some cases, the original property value.

Modify Name

Modify ROIN

Modify Text: The original text is stored as the array value.
Modify Owner

Modify Value: Some system property has been modified.

Modify Security: The security profile property has been modified.

Using Activators

Modify Property: A user-defined property has been modified; a list of the modified user property

names is stored as the array value.

Defining Delete and Create Flags

Delete and create flags are set when an object is deleted or created.

Delete Object

New Object

REQ00006 R

API Reference

6-13

Chapter 6: Using Activators

Using A Pick List Activator

Pick list activators list the database objects that can be used in the choice list of a dynamic choice
property. The pick list activator returns any list of objects, based on user-supplied logic. You can
create any number of pick list activators in a project. For information about setting a dynamic choice
list for a choice property definition, see the Systems Architect/Requirements Management Project
Administrator's Manual.

Three sample scripts for pick list activators are in the Activators folder of the TcSE Administration
project as example pick list activators. For more information, see the methods getObiject, getValue,
setObject, and setValue in chapter **Unsatisfied xref number**, **Unsatisfied xref title**.

%= See Access Privileges for an Activator for information about access privileges required to
create, edit, or view an activator.

+ Choice List: This example returns a list of folders in a particular Project. This list can be used
as a choice list in a dynamic choice property.

set project ScurrentProject
set members [getList $project FOLDER LIST]

+ Users: This example returns a list of users in the current project. This list can be used as a
choice list in a dynamic choice property.

set project ScurrentProject
set members [getList $project USER LIST]

* User Groups: This example returns a list of users and user groups in the current project.

set project ScurrentProject
set members [getList $project USER AND GROUP LIST]

Pass Owner to Tcl Context

Depending on how they are used, Dynamic Choice Properties may have a choice list that is constant
across all objects, or choices specific to an object and its state. For example, the choices for

an Assigned To property might be the list of all Users in a Project. Or, the list of Assigned To
choices might depend on a Status property. As objects move through their life cycle, the list of
people the work might be assigned to would move from designers to engineers to QA to production.
Architect/Requirements supports both cases.

The Choice Property’s Pass Owner to Tcl Context indicates which behavior applies; No when the
property always has the same list of choices, or Yes when the choices may vary depending on the
object. Setting this value to No allows Architect/Requirements to operate more efficiently by caching
choice lists. Setting it to Yes requires the activator to be run every time a choice list is needed.

When Pass Owner to Tcl Context is set to Yes, the currentobject Tc1 global variable is set to the
object of interest whenever the choice activator is called.

6-14 API Reference REQ00006 R

Using Activators

When A Pick List Activator Gets Called

This section presents the different actions that cause the activator to be called, and the currentobject
value for each case; either an object that has the property, the Property Definition, or the Project. In
the latter two cases, the activator author must return a choice list that’s suitable for all objects.

On a Dynamic Choice Property (e.g. Assign To) when you select a Pick List activator in the
Update Choice list Dynamically field, Pick List activator is called, and the result gets populated
in the Choice List field.

currentObject = Choice Definition

In the User module, when a Dynamic Choice property is opened for edit (the choice selection
dialog is launched) the Pick list activator for the Dynamic Choice property is executed.

currentObject = Selected Object in the User Module

In the User module when you try to set the value on the Object for this Dynamic Choice property:

currentObject = Selected object in the User Module

In the Search module, selecting the Dynamic Choice Property itself:

currentObject = Current Project

If a Dynamic choice property is used in a macro’s Form Values, and that macro got executed,
when user double clicks the Value, the Pick List Activator is executed

currentObject = Current Project

In a Visio diagram when you edit Systems Architect/Requirements Management properties, when
the Dynamic Choice property is edited for setting values, the Pick List Activator is executed.

currentObject = Object in Systems Architect/Requirements Management User module for
which property is edited in the Visio diagram
On exporting the Systems Architect/Requirements Management object(s) which has the Dynamic
Choice Property to Excel Live:
currentObject = Current Project
® Choice lists are not dynamic in live Excel. The Choice List activator is run once at

the time of Excel export to generate one list of choices that is used for all objects
with a value for that property.

REQ00006 R API Reference 6-15

Chapter 6: Using Activators

* When value is set for Dynamic Choice Property on Systems Architect/Requirements Management
object in Excel Live:

currentObject = Current Object for which value is set

* In XML Import and Excel Import, the Pick List activator is called once for each imported object
that has a value to be set for a Dynamic Choice Property.

It is clear that Pick List activators can be called in many situations. It is the activator author's
responsibility to insure that the activator will return a choice list that's valid for the currentObject in
each case.

Pick List Activators and Performance

Activator authors must be aware that Pick List activators can have a significant negative impact

on system performance. Unless the pick list activator author takes responsibility for testing the
performance impact, it becomes a hidden burden on the system as a whole. The pick list overhead
can impact many operations, but there is no way for a user to know the cause of the slow performance.

The degree of pick list impact on performance is influenced by:
* How often the activator is invoked

o The number of object types that use the pick list property
o How often instances of those types are encountered during user sessions
0 Whether the property definition has Pass Owner to Tcl Context set or not

+ The work that the activator does to generate its list

o Whether it just follows existing relationships, or uses search
o How many objects it handles while generating its result list
o Whether it uses transaction or session caching strategies

o The overall quality and efficiency of the Tcl logic

The easiest way for activator developers to find out how often a pick list activator is being called is
to add a displayMessage call in the activator. It must be commented out for production use, but
this can be a very useful diagnostic tool during pick list activator development. In addition to testing
normal user browsing and object actions, also test multi-object cases such as copying a structure,
and document, Excel and XML import.

The number of types and objects using pick list activators depends on the business needs. In
planning the schema for a project, avoid using pick list properties unless there is a legitimate need
for them. Also, avoid using them on a base type, if the property is really only needed on a limited
set of subtypes.

If Pass Owner to Tcl Context can be set to No, the system can avoid running the pick list activator
in some cases. This helps performance, but is not a cure-all. The other techniques listed here
must also be considered.

6-16 API Reference REQ00006 R

Using Activators

If at all possible, search must be avoided in collecting the list of objects in pick list activators. Caching
of the list is especially beneficial when it's necessary to use search to generate the list. If search

is truly necessary, the search must be developed using the search module, and timed with actual
production data. Different approaches for achieving the same search results can have dramatically
different execution times.

Whether search is used or not, several different caching strategies can be beneficial. The appropriate
caching approach depends on how dynamic the pick list choices are.

If the set of objects in a pick list seldom changes, then the best performance comes from calculating
the list the first time it is needed in a session, and then caching it for the duration of the user session.
The list can be saved using the SaveData option of the setEnvironment API. Each time the pick
list activator is called, attempt to retrieve the list by making a setEnvironment SaveData call. If a
list is returned, use it. Otherwise, calculate the list, save it for later reuse with a setEnvironment
SaveData call, and return it for this use.

Often a pick list is based on some relatively static set of objects, but the exact subset returned by the
activator may need to vary, depending on the state of the object the property applies to. In that case,
use the setEnvironment SaveData approach to save the basic list. Then, each call to the activator
would just filter that list down to the proper subset for that case.

If a pick list must be more dynamic, and always be sensitive to recent database changes, there is
still some benefit to caching the choice list even within a single transaction. That’s especially true if
there is more than one choice property that uses the same dynamic list, or a closely related dynamic
list based on the same underlying set of objects. For these cases, cache the list in a Tcl global
variable, rather than using setEnvironment SaveData. Given that difference, the other comments in
the two paragraphs above still apply.

REQ00006 R API Reference 6-17

Chapter 6: Using Activators

Implementing Transaction Control

Both Before and After activators run within the same database transaction as the operation that
triggered the event. If an uncaught error occurs in the Tcl, the transaction is rolled back and an
error message is generated. To prevent the operation from occurring, you can throw a Tcl using
the Tcl error command or set a global variable indicating the transaction should be aborted: set

actionContinue stop.

The difference between these two methods is that the error command generates an error message
while setting the global variable does not.

#* Setting actionContinue to stop does not immediately abort the Tcl execution. The flow of
that activator continues. When the Tcl ends or returns, the Architect/Requirements server
notices that the actionContinue flag is set. At that point, the current action is stopped and
the transaction is aborted.

6-18 API Reference REQ00006 R

Using Activators

Creating a Tcl Where Clause

You can create a Tcl where clause to reference an activator to determine if an object meets the
specified criteria or not. A Tcl Where clause can be used anywhere a where clause can be used.

Creating a Where Clause

To create the where clause:

1.

Add a row to search criteria and indicate the command is a Tcl where clause.

Systems Architect/Requirements Management presents a list of activators. The activator must
return a Boolean value. Only activators of subtype Where Clause appear in the list. Activators
are gathered from both the currect project and the administration project. Where clause activators
in the administration project are available for use in all projects.

Select the activator to use.

Systems Architect/Requirements Management displays usage description. The description is a
text property on activator.

Optionally, enter parameters to pass into activator.

Systems Architect/Requirements Management adds Tcl where clause to query.

Searching With a Tcl Where Clause

To run search with a Tcl where clause:

1.

2.

Click the Search button.

Systems Architect/Requirements Management runs search query and displays result.

Tcl where clauses are processed like other where clauses. The activator is run with the current
object set as the object being evaluated. User-entered parameters are passed in as a global
variable name parameter.

REQ00006 R API Reference 6-19

Chapter 6: Using Activators

Tcl Where Clause Example

To verify that all functional requirements are met, you must ensure that all functional requirements are
linked to a design element in the functional decomposition. This is done by creating a search called
Unallocated Requirements that selects functional requirements that do not have complying objects.
The result is a list of functional requirements that still need to be linked to the design. This search is
inadequate to verify that the requirements are linked to elements in the functional decomposition

as the Complying Objects Count property displays only complying objects. A Tcl where clause is
required to examine the complying objects and verify that at least one functional design element (a

building block with a Functional Design subtype) is included.

Unallocated requirement report script does not verify if the allocation is to the functional design.

For example,

SELECT Functional Requirement
WHERE Complying Objects Count = 0

Unallocated requirement report script with Tcl where clause verifies if the allocation is to a specific

type. For example,

SELECT Functional Requirement
WHERE hasComplying Functional Design

Tcl script for the hasComplying where clause activator. For example,

proc hasComplying {type} {

foreach obj [getList $currentObject COMPLYING OBJECT LIST] {

if {[getValue $obj Subtype] == S$type}

return true
}
}
return false

}

hasComplying Sparameter

{

This activator can be used in a where clause to prevent an object from being added to the results

more than once in a FOREACH ADD DEEP command.

initialize list to keep track of objects already in result

global visitedList
if { ! [array exists wvisitedList] } {
set visitedList (0) O
}
check if the the current object is already in the list
set loid $currentObject
set newObject 1
catch {
if { $visitedList($loid) == 1 } {
Found object in the list
set newObject O
}
}
add current object to visited list
set visitedList ($loid) 1

return result, 0 if this object was already in the visited list,

#not in the visited list
set newObject

6-20 API Reference

1 if the object wa

REQ00006 R

Using Activators

Tcl Global Variables in Where Clause Activators

When a where clause activator is run during a search, the following Tcl global variables are set:

+ currentObject is the object that is examined by the where clause for possible inclusion in the
search result.

* superior is the object that the current object is indented under in the search result.

* relation names the relation that caused the superior object to be in the search results. For
example, if the superior was added to the search results by an ADD Members statement, the
relation value is MEMBER_LIST.

+ level is the indention level of the superior object, where the left-most or top-level objects are at
level 0. If the current object is added to the report, it is added one level above the level specified

by level.

+ parameter is a string holding the text that is entered in the Parameters field when adding the
activator reference to the search script.

If a script's initial SELECT statement has a where clause with an activator, there is no superior object
in this case; hence the values of superior, relation, and level are as listed here:

* superior has the same value as currentObject
* relation is empty
+ levelis 0

As is customary with Tcl global variables, if referenced from within a Tcl procedure, these variables
must be declared as global:

global currentObject superior relation level parameter

REQO00006 R API Reference 6-21

Chapter 6: Using Activators

Writing Activators When Objects are Deleted, Restored, or Discarded

Writing activators that behave correctly can be difficult when objects are deleted to the Recycle Bin,
restored from the Recycle Bin, or discarded from the Recycle Bin.

When an object is initially deleted, the possible activator events are:

+ Before Delete on the specific object(s) being deleted
+ After Delete on that object, plus all descendents and attachments deep

+ After Relation (defining/complying) on any of the objects that had trace links to objects that
weren't deleted

If an object is restored from the Recycle Bin, possible activator events are:

+ After Relation (modify owner) on the one object that was restored
+ After Relation (defining/complying) on any of the objects that had trace links to be restored

When an object is discarded from the Recycle Bin, either individually or by emptying the Recycle Bin,
there are no possible events.

You are not allowed to modify objects in the Recycle Bin. So, other than the restore action, there
should not be modification events on objects once they are in the Recycle Bin.

It is the responsibility of the activator author to monitor all cases where the activator may fire. Or, at
least catch errors when they occur. Pay close attention to your After Relation events, since they can
fire as objects go into the Recycle Bin and when they are restored from it.

The easiest way to tell if an object is in the Recycle Bin is to test the Date Deleted property:

if {[getValue Sobj "Date Deleted"] == "" } {
...not deleted...} else {...1is deleted...}

The test works for objects visible in the Recycle Bin, and all their descendents and attachments
as well.

6-22 API Reference REQ00006 R

Using Activators

TC_XML Export Activator

When you export data to TC_XML, an activator is triggered. The activator configures the data being
exported. The activator is triggered regardless of how you initiate the export. You can initiate the
export in one of the following methods:

* Using the Architect/Requirements client
* Using the command prompt
» Using the Tcl exportDocument command

You can locate the activator by its name. Typically, the name of activator is TcXmlIConfig.
Architect/Requirements first searches for the activator in the current project. If a TcXmlIConfig
activator is not found then Architect/Requirements searches the administration project. This activator
is for configuring TC_XML export. You can configure the activator to:

* Exclude unwanted data from the export
* Adjust type and property names

* Assign Teamcenter item IDs

» Specify the versions to export

The following sections provides information on the variables used in configuring the activator.

Assigning Teamcenter Item IDs

Item ID is the unique identifier assigned to Teamcenter objects. It is similar to a ROIN in
Architect/Requirements. Teamcenter requires item IDs to be specified for TC_XML imports. You can
specify the item ID in different methods. The method used is specified in the itemldRule variable.
You can use one of the following values for the itemldRule variable to specify the method to be used:

 File
Counter
« ROIN

Item IDs can be generated by Teamcenter and written to a file. Siemens PLM Software recommends
using this method as it guarantees that the item IDs are unique and comply with Teamcenter naming
conventions. To use the item IDs from a file, set the itemldRule variable to File and specify the name
of the file to use for which object type is specified in the ItemldFiles map. Following is an example of
assigning Teamcenter Item IDs using the file method:

set itemIdRule File

set ItemIdFiles {
Requirement {C:/temp/reglds.txt}
Paragraph {C:/temp/paralds.txt}
Note {C:/temp/notelds.txt}
Folder {C:/temp/folderIds.txt}

REQ00006 R API Reference 6-23

Chapter 6: Using Activators

The concept of inheritance applies when assigning Teamcenter Item IDs. If a requirement subtype
name is not found in the map, Architect/Requirements searches the parent type.

Architect/Requirements can also generate item IDs. To do so, specify the item ID prefixes in the
itemldPrefixes list. Additionally, specify the counter format and starting number using the itemldStart
variable. Following is an example of assigning Teamcenter Item IDs using the Counter method:

set itemIdRule Counter

set itemIdPrefixes {
Requirement "REQ-"
Paragraph "REQ-"
Note "CSTMNOTE-"
Folder "REQSPEC-"

}
set itemIdStart 000100

You can also use the Architect/Requirements ROIN as the item ID in Teamcenter. To use the
Architect/Requirements ROIN as the item ID, set itemldRule to ROIN. If the ROIN is not available,
the LOID of the type is used. You must ensure that the naming rules for your types in Teamcenter
allow the Architect/Requirements ROIN format. Following is an example of assigning Teamcenter
Item IDs using the ROIN method:

set itemIdRule ROIN

set itemIdPrefixes ({

Note "CSTMNOTE-"

Folder "REQSPEC-"
}

Excluding data from export

Removing unwanted information from the export can simplify mapping and make the migration
process faster. You can specify the object types and properties that are not required, using the
following variables:

+ excludeTypes

Specifies the object types to be excluded. Unsupported types are automatically excluded.

* excludeSysProps

By default, system properties that are unlikely to be useful in Teamcenter are excluded. Setting
this variable replaces the default list. Hence, you have complete control over the system
properties that are exported.

+ excludeProps

Additional list of user defined or system properties to be excluded.

Following is an example of removing unwanted information from the export:

set excludeTypes [list {Change Log} ImageNote DataDictionary]
set excludeProps [list {Change Time} {Change User} {My Property}]

6-24 API Reference REQ00006 R

Using Activators

Adjusting type and property names

It is likely that the type and property names in Architect/Requirements are not an exact match of the
corresponding names in Teamcenter. Teamcenter requires prefixes for custom type and property
names while Architect/Requirements does not have such requirements. A mapping step is provided
in the migration process to handle such mismatch. However, you can perform some of the mapping
during the export process. You can add prefixes to type and property names which simplifies the
mapping process. You can also set up maps to specify the names to use in the export. You can use
the following variables to set up the mapping:

+ typePrefix

Specifies the prefix for all object types.

» sysPropPrefix and userPropPrefix

Specifies the prefix for system and user defined property names.

+ typeMap
Establishes a map for the name to use for a given object type.

By default, typeMap maps the out of the box Architect/Requirements types to the corresponding
out of the box Teamcenter type.

* propMap

Establishes a map for the name to use for a given property. If a type or property name is included
in a map, no prefix is added to it.

Following is an example of mapping the type and property names:

set typePrefix "Tcr4"
set sysPropPrefix "Sys4"
set userPropPrefix "Tcr4"

set typeMap {
Requirement "Tcr5S5MyReqType"
DerivedRequirement "Tcré4DerivedReq"

}

set propMap (Project) "Tcr4TcSEProject"

Specifying the versions to export

You can control the requirement versions that are exported using the versionRule variable. Following
are the valid values for versionRule:

« Effective

Exports the currently effective version.

« Baseline

Exports the current version and all baselined versions.

Al

REQ00006 R API Reference 6-25

Chapter 6: Using Activators

Exports all versions.

By default, only the currently effective version is exported. If multiple versions are exported, only the
current version is configured into a requirement specification during the import. For baseline exports,
snapshot objects named after the baseline are created to assist in configuration of the baselines.

Following is an example of specifying the version to export:

set versionRule Baseline

LOID Property

LOID is the unique database identifier for Architect/Requirements objects. Mapping LOID to

a property in Teamcenter is useful for connecting Teamcenter objects to the corresponding
Architect/Requirements object. The mapping is required for setting rich text content. The
loidProperty variable contains the name of the Teamcenter property that stores the LOID value.

Following is an example of setting the LOID property:

set loidProperty Tcr4LOID

Activator Examples

This section provides examples of activators. You can copy and paste the examples in this section and
use them directly. This is possible because the examples here are dependent on the currentObject.

Determining Requirements With The Same Name

The following example (figure 6-1) shows how many requirements have the same name in the
present project- Activator Name Same Name Requirements. You set the Events property of the
activator to After Modify. Then, enter this program in an activator and set the activator property of
the Requirement Type Definition to Same Name Requirements.

proc Iterator { x name} {
global item
set members [getList $x MEMBER LIST]
foreach z Smembers {
set KK [getValue $z "Type Name"]
if {SKK == "Requirement" } {
if { [getValue $z Name] == S$name} {
set item [expr S$Sitem+1]
}
}

Iterator $z Sname

}

return $item

set item O
set strName [getValue S$currentObject Name]
set subMembers [Iterator S$currentProject $strName]

6-26 API Reference REQ00006 R

Using Activators

‘displayMessage " $item Requirements have the same name."

Figure 6-1. Activator Name, Same Name Requirements

Creating a Note

The following example (figure 6-2) creates a note before a requirement is opened for editing and
copies its text property to the note.

set strTypeName [getValue S$currentObject "Type Name"]
if {$strTypeName == "Requirement" } {
#Creates a note
set noteLOID [createObject oldText ScurrentObject "Note"]
#Gets Text property of current object
set strText [getValue S$currentObject "Text"]
#set text property of the note.
setValue $noteLOID Text S$strText

Figure 6-2. Creating a Note

REQ00006 R API Reference 6-27

Chapter 6: Using Activators

Creating An After Delete Activator Event

The following activator example (figure 6-3), when set to activate After Delete for a requirement,
moves the deleted requirement to a folder named DeletedRequirements if this folder exists or
creates this folder if it does not exist.

locate or create the deleted requirements folder
proc getDeletedFolder {} {
global currentProject
set folders [getList ScurrentProject MEMBER LIST]
foreach folder S$folders {
if {[getValue S$folder Name] == "Deleted Requirements"} {
return $folder
}
}

set folder [createObject "Deleted Requirements" ScurrentProject Folder
return $folder

}

do not move children of the deleted requirement
if {[getValue [getValue S$currentObject Owner] "Type Name"] == "TrashCan"} {

locate or create a folder for deleted requirements
set folder [getDeletedFolder]

Undelete the requirement and place in folder
restoreFromTrashcan S$currentObject $folder

Change to deleted subtype so it can be filtered from search
setValue $currentObject Subtype Deleted

displayMessage "'[getValue S$currentObject Name]' has been
move to deleted objects folder"

Figure 6-3. After Delete Activator Event

6-28 API Reference REQ00006 R

Using Activators

Using createAction FileDownload

This section provides several examples using createAction FileDownload to download a file from
the server to the Systems Architect/Requirements Management client workstation, and optionally
open it in an application.

Producing an HTML File

The following example (figure 6-4) shows how to produce an HTML file from a report and launch a
Web browser to view the report results.

set serverFile [runReport S$report Stemplate $startingObject $live]
#run the report using parameters

set application Default #set IE as output application

createAction FileDownload [list $serverFile S$application]
#download the exported file from server and open using IE

Figure 6-4. Producing an HTML File

This example cannot be copied and pasted directly because it depends on the parameters, reportiD,
templatelD, startingObjectlD and Boolean live flag.

E-mailing Requirements or Producing PowerPoint Project from Requirements

The following example (figure 6-5) can be used to produce a PowerPoint project, one slide per
Requirement from a selected folder. It can also be used to select a set of Requirements and E-mail
them using Microsoft Outlook.

The output is determined by the application you select in the chooser. If you select PowerPoint,
the downloaded file is opened in PowerPoint. If you select Outlook, a new E-mail window opens,
and the downloaded file is attached.

set objectlList S$currentObject #take current object
set serverFile [exportDocument SobjectList MS WORD] #export this object to wprd
set application Chooser #choose the application
createAction FileDownload [list $serverFile Sapplication]
#download the exported file from server and open using selected applicatipn

Figure 6-5. E-mailing Requirements or Producing PowerPoint Project from Requirements

REQ00006 R API Reference 6-29

Chapter 6: Using Activators

Using createAction RunJava

You can create custom Tcl code and custom Java code that run on the client JVM. You can use the
custom code to interface with other applications or create custom interfaces such as a Java form for
user input. createAction RunJava allows external programs to interface with Architect/Requirements
using the C# interface. It allows the external Java code to be run from within Architect/Requirements
through the Tcl code. It also allows identification of Java classes and execution of methods in the
classes from the Tcl code of activators, macros, or custom menu items.

Setting up to run Java code in Architect/Requirements client

The location of the .jar file must be set by the administrator using the Package.Location Web
Application Configuration parameter. The jar file must contain a method named connectTcSE
with the prescribed method signature.

To prepare the Java code to run in the Architect/Requirements client:

1. Create a file named TestRunJavaClass.java containing the source code.

2. Compile the Java file. The class path must contain the three jar files from the
Architect/Requirements client installation directory:

+ tcrPackages
+ tcrShared
* rcf

The following code is an example of the steps required to compile the Java file:
set TCSE DIR=C:\Program Files\SiemensPLM\Teamcenter\SystemsEngineering\Release 9.1
set CP=%TCSE DIR%\tcrPackages.jar;%TCSE DIR%\tcrShared.jar;%TCSE DIR%\rcf.jar

javac -cp %CP% TestRunJavaClass.java

3. Add the compiled class to a jar file.

jar -cf test.jar TestRunJavaClass.class

4. Update the Package.Location Web Application Parameter to reference the jar file path.
Example:

C:\test\test.jar

The ClientJavaAPI class

The ClientJavaAPI class is the beginning of a client interface.

To call an Architect/Requirements macro from the external Java code, the class file must import the
ClientJavaAPI class found in the tcrPackages.jar file. The tcrPackages.jar file can be added to the
classpath variable. You can also unzip it and use the ClientJavaAPI class file in the development
area.

runMacro() Method

6-30 API Reference REQ00006 R

Using Activators

The runMacro() method of the ClientJavaAPI class is used to call a macro from the external Java
code.

A basic method calls the macro by name by passing a space delimited string of LOIDs for the
macro. For example:

public String runMacro (String macroName, String objectIDs)

Another method uses the macro name and the macro LOID along with the object IDs. In this case, if
the macrolD is passed and is not null, the macroName is not used. For example:

public String runMacro (String macroName, String macroID, String objectIDs)

Another extensively used method uses values passed into the macro from the form mechanism,
passing in the form properties and the associated values. If the macrolD is passed and is not null,
then the macroName is not used. For example:

public String runMacro (String macroName, String macroID, String objectIDs, Stringl]

formProps, String[] formValues)

getTempDir() Method

If required, you can get a temporary directory from Architect/Requirements. The getTempDir()
method returns a string containing the system temporary directory used by Architect/Requirements.

The ClientJavaAPI class must be available to the custom package. The ClientJavaAPI class
must be imported with the following statement:

import com.edsplm.tc.reqg.client.shared.api.ClientJavaAPI;
It must be instantiated with the following statement:
protected ClientJavaAPI javaAPI = new ClientJavaAPI();

After instantiating the ClientJavaAPI class, you can use it through the following code:

result = javaAPI.runMacro (macroName, objectIDs);
OR
result = javaAPI.runMacro (macroName, null, macroParameters, formProps, formValues):;

Java Development Environment

It is important to set up everything correctly, extract the files to the proper location, get the compiler
setup to compile correctly and have it compile in the right location so that Architect/Requirements
can find it.

Siemens PLM Software recommends creating subclasses of the delivered classes so that any
potential changes made are not overwritten when a new Architect/Requirements deployment is made.

Complete the following tasks before you begin the customization:

» Set up the development environment, preferably with an IDE. You can use the Eclipse IDE
from www.eclipse.org.

+ Setup Classpath correctly.

» Set up packages correctly.

REQ00006 R API Reference 6-31

Chapter 6: Using Activators

* Prepare to package the code in a jar file for distribution.
* Understand how to extend the delivered class to create new customized behavior.

The goal is to create a jar file for distribution or to replace the tcrPackages.jar file. You can start with
unzipping the tcrPackages.zip file that contains the two external Java files in the working directory.

Here are additional recommendations to create the jar file.

* The new custom Java code must be in its own package.
+ The Java package does not require a main() method; it is a collection of methods.

+ The methods must be called from Architect/Requirements to be an extension of the
Architect/Requirements client.

Unzip the tcrPackages.zip file and become familiar with the Java source code for the
TcSECMInterface.java. It is the best example of the customization toolkit.

6-32 API Reference REQ00006 R

Using Activators

Code example

This section shows the source code for a complete Java program related to the examples in
createAction RunJava in chapter **Unsatisfied xref reference**, **Unsatisfied xref title**.

2
* This software and related documentation are proprietary to
* UGS Corp.
* (c) 2007 UGS Corp. All rights reserved.
*/
import javax.swing.*;
import com.edsplm.tc.reg.client.shared.api.ClientJavaAPI;

/**
* This i1s a test class, to be used to test and understand the RunJava createlAc
*/

public class TestRunJavaClass

{

ClientJavaAPI javaAPI = new ClientJavaAPI();

// Can be called via RunJava - main method is not required, but may be used
public static void main (String argsl[]) {
printHelloWorld (args) ;
printArgs (args) ;
}
// Can be called via RunJava - Run a macro on the server
public void runTestMacro (String[] theArgs) {

// specify macro name
String macroName = "HelloWorldMacro";

// run the macro and capture its return value, pass it the first
// argument from the CreateAction RunJava call
String result = javaAPI.runMacro (macroName, theArgs[0]);

// display the return value
showDialog (result) ;

// Can be called via RunJava - static method can be called
public static void printHelloWorld(String someArgs[]) {

// nothing is done with someArgs|]

printIt ("printHelloWorld") ;

// popup dialog for user to click

showDialog ("Hello World!");
}

public void printAllArgs (String[] theArgs) {
// this is the public method to show all arguments
// it calls the private method that does the work
printArgs (theArgs) ;

}

// Can be called via RunJava - no return, no parameters

rion.

public void doNothing () {

REQ00006 R API Reference 6-33

Chapter 6: Using Activators

printIt ("doNothing") ;
// popup dialog for user to click
showDialog ("doNothing") ;

6-34

// Can be called via RunJava - prints first parameter sent, returns nothing
public void doNothing (String[] someArgs) {

printIt ("doNothing (Stringl[])");

System.out.println (" > someArgs[0] is " + someArgs[0]);
}

// Can be called via RunJava -

public String doNothingString() {
printIt ("doNothingString");
// prints this line to the log
return "prints this line to the log";

}

// Can be called via RunJava -

public String[] doReturnStringArray() {
printIt ("doReturnStringArray");
// prints these values to the log

String[] returnValues = new String[]{"returnMsgl", "returnMsg2", "returnMsg3"};

return returnValues;

// Cannot be called directly via RunJava - must have this method!

// This method is called "automatically" every time another method is called.

// The intent and purpose of this method is to provide the necessary parameters need
// in order for the external application to connect back with TcSE. To conng¢ct back

// the TcSE client, the first three parameters may be used; to connect back
// TcSE server, the last may be used.

to the

public String connectTcSE (String controllerPath, String serverIP, String sogketServi

String sessionID) {

System.out.println ("here in connectTcSE, values are: " + controllerPath|+ ", "
+ serverIP + ", " + socketServicePort + ", " + sessionID);
return "Finished connectTcSE";
}
// Cannot directly call this method, it&€™s private. Method to call must be|public.

private void thisIsPrivateMethod (String[] someArgs) {

System.out.println ("TestRunJavaClass.thisIsPrivateMethod: cannot call this");

}

// Cannot directly call this method, it&€™s private. Method to call must be
private static void printArgs (String[] someArgs) {
printIt ("printArgs");
if (someArgs == null) {
System.out.println (" > args is null");
} else if (someArgs.length < 1) {
System.out.println (" > args length is zero");
} else {
int idx = someArgs.length;
for (int i=0; i<idx; 1i++) {

API Reference REQ00006 R

public.

- n

System.out.println (" > arg[" + 1 + "]

}

// Cannot call this method, wrong return type. Must return void,

public int returnInt() {

System.out.println ("TestRundavaClass.returnInt: cannot get here,

return 41;

}

// Cannot call this method, wrong number of parameters.

// or one String[] parameter.

Using Activators

+ someArgs([i]);

public void doSomething (String[] someArgs, String twoParams) {

System.out.println ("TestRunJavaClass.doSomething:
wrong number of parameters");

cannot get here,

String or

wrong

Must have no parame

stringl[].

return ty

Lers

// Cannot call this method, wrong type of parameter.
// one String[] parameter
public void doSomething (int someArgs) {
System.out.println ("TestRunJdavaClass.doSomething:
wrong type of parameter");

}

// Cannot call this method, i1td€™s private

private static void printIt(String methodName) {
String msg = "inside method TestRunJavaClass." +
System.out.println (msgqg) ;

}

// Cannot call this method, it&€™s private

private static void showDialog(String text) {
JOptionPane.showMessageDialog (null, text);

}

Must have no parameter

cannot get here,

methodName;

REQ00006 R

API Reference

6-35

Chapter 6: Using Activators

Running an Activator From the Command Line With the tcradmin Script

You can enter the teradmin script on the command line to run an Architect/Requirements activator.

The following example shows the tcradmin syntax:

tcradmin -action runActivator -script <ActivatorID> -selected
<listOfParameters> —-user <username> -password <password> [-key
<installationKey>]

Table 6-1 describes the tcradmin arguments.

Table 6-1. tcradmin Arguments for Running an Activator From the Command Line

Argument Description
-script LOID of the activator to run.
—selected Comma-separated list of database object LOIDs or other information.

% This information is passed to the activator as the global variable selected.

—user Architect/Requirements user name under which you want to log in to the server.

-password Architect/Requirements password for the user name under which you want to
log in to the server.

—key Web server installation identifier used to look up Web application parameters such
as ImportExportDir.

% This argument defaults to machinename + “1~, which is correct in most
circumstances. This argument may be needed if there are no or more
than one Architect/Requirements Web servers installed on this machine.

6-36 API Reference REQ00006 R

Using Activators

Using Macros

A macro is a type of activator that is run from a menu command rather than being triggered by an
event. A macro specifies what input values, if any, it requires and the user interface will prompt for
those values when the macro runs. The objects selected in the user interface are also passed
into the macro.

Creating a Macro

% See Access Privileges for an Activator for information about access privileges required to
create, edit, or view an activator, which are also applicable to a macro.

1. Select the activator folder in the administration module and then choose New then Activator
from the File menu.

2. Edit the activator's Subtype property by setting it to Macro.

3. If the macro requires user input, edit the activator's Form Values property, and select the values
for which to prompt the user.

4. Open the activator and enter the Tcl script.

Form Values

The Form Values property on a macro allows you to specify the values to prompt the user for when
the macro runs. Form Values is a multichoice property whose choices are the names of all the
properties in the project. If the Form Value property is not empty, the user interface displays a
dialog window to accept user input when the macro runs. Each property specified in Form Values
has an entry field in the dialog window. The entry fields accept values based on the property type,
text, choice, numeric, or date. The values entered by the user are passed into the Tcl environment
using a global array name tcrProperties. If none of the existing properties is appropriate for the
macro, you can create new properties.

Tcl Environment

Information from the user is passed into the Tcl interpreter as global variables. In addition to the
normal variables passed into activators, there are two extra variables for macros:

+ selected: List of objects selected in the user interface.

+ tcrProperties: Array of values entered by the user. The array index is the property name. The
value is what the user entered for the property. There is an entry for each property specified
in the Form Values.

Event related variables that are passed into activators are not available in macros; these are the
currentObject, event and changelList.

REQ00006 R API Reference 6-37

Chapter 6: Using Activators

Running a Macro

Macros are run from the requirements module as follows:

% For additional information, see the Systems Architect/Requirements Management User's
Manual.

1. Choose Run Macro from the Tools menu.

The command displays a list of all the macros in the project.
2. Select the desired macro and click OK.

3. If the macro requires user input a dialog box appears. Enter values for each property in the
macros Form Values.

Macro Examples

This section provides examples of macros.

Setting a Property on Several Objects at the Same Time

Figure 6-6 demonstrates setting the AssignedTo property on several objects at once. The example
assumes an AssignedTo property exists in the project and that the macro’s Form Values is set
to AssignedTo.

get the value the user entered for AssignedTo
set assigned S$tcrProperties (AssignedTo)

iterate over the objects selected in the user interface
foreach object S$selected {
set the AssignedTo property to the user entered value
setValue S$object AssignedTo S$assigned

Figure 6-6. Setting a Property on Several Objects at the Same Time

Setting Several Properties on Multiple Objects

Figure 6-7 demonstrates setting any number of user entered properties on the selected objects. The
properties are specified in the macro's Form Values.

iterate over the objects selected in the user interface
foreach object $selected {
foreach property [array names tcrProperties] {
set the assignedTo property to the user entered value
setValue S$object S$property S$tcrProperties ($property)

Figure 6-7. Setting Several Properties on Multiple Objects

6-38 API Reference REQ00006 R

Using Activators

Creating a Derived Requirement

Figure 6-8 demonstrates how to create a derived requirement for the selected source requirement.
The derived requirement has a trace link to the source and some property values are set
automatically. The example assumes a Derived Requirement subtype exists in the project.

set sourceReq S$selected ; # assumes 1 requirement is selected

create a derived requirement owned by the selected requirement
set derived [createObject “” S$sourceReqg “Derived Requirement”]

copy property values from the source to the derived requirement
setValue $derived Name [getValue $sourceReq Name]
setValue S$derived MHTML [getValue S$sourceReq MHTML FULL] ; # sets the

set the assignedTo property to the current user
setValue $derived assignedTo [getValue S$tcrUser Name]

create a trace link to the derived requirement
createlLinks $sourceReqg S$derived “Complying”

body text

Figure 6-8. Creating a Derived Requirement

Collecting Metrics on Requirements

Figure 6-9 iterates over requirements, beneath the selected object, and gather statistics. The
example assumes a status property is assigned to requirements in this project.

get the requirements in the selected project or folder
set regs [search $selected "*" "" {RequirementDB}]

iterate over the requirements and check their status
set complete 0
set total [llength $regs]

foreach req $regs {
if {[getValue Sreqg Status] == "Completed"} {

incr complete
}
}

displayMessage "Status of requirements in [getValue S$selected Name]"
displayMessage "Total requirements: S$total"

displayMessage "Completed requirements: Scomplete”

displayMessage "Percent complete: [expr Scomplete * 100.0 / S$total]™

Figure 6-9. Collecting Metrics on Requirements

REQ00006 R API Reference 6-39

Chapter 6: Using Activators

Working with Shortcut Objects

Shortcuts act as a separate occurrence of an object in a different location. When processing objects
using the Systems Architect/Requirements Management API methods, you may encounter shortcuts.
For example, the getnist MevBER L1sT call on a folder or other parent object returns shortcut
members along with the rest of the true objects.

Shortcuts act in many ways like the actual object. The API forwards most getValue, setValue, and
getList methods to the actual object. In some cases, it may be necessary to determine that you are
working with shortcuts and handle them specially.

For this special handling, shortcuts support several properties, such as:

» Shortcut indicates whether this object is a shortcut ("true™) or is not ("").
+ Original Object is the LOID of the actual object.

» Shortcut Options is a property with flags to choose the behavior of shortcuts, such as whether
to allow the shortcut to be expanded to show the actual objects children.

The following code recognizes that an object is a shortcut and gets the actual object:

if {[getValue $obj Shortcut] == "true"} {
set actualObj [getValue $obj "Original Object"] }

There are some properties that are retrieved directly from the shortcut, instead of being forwarded to
the actual object in the getValue and setValue methods. A shortcut's local properties are:

« Owner is the LOID of the shortcut's owner.
« Owner Name is the name of the shortcut's owner.
+ Security Profile is the profile on the shortcut itself, if any.

* WhereUsed Object Count is the number of objects that reference the object. For shortcuts,
this count is typically zero.

+ Used Object Count is the number of objects that the object references. For shortcuts, this
count is always one.

* Cross Project Link is true if the shortcut references an object in a different project and is false if
the referenced object is in the same project.

* Project is the name of the project that owns the shortcut.

* Full Name is the full name of the shortcut, including the object that owns it.

* Number is the hierarchy number of the shortcut. For example, 2.3.7.

* Local Number is the last portion of the hierarchy number of the shortcut. For example, 7.
Some getList keywords are processed directly by the shortcut. All other getList keywords are

retrieved from the original object.

6-40 API Reference REQ00006 R

Using Activators

« MEMBER_LIST is empty if the shortcut does not inherit children. Otherwise, the getList method
is forwarded to the primary object to retrieve its members.

%= A shortcut never has children of its own. It can (optionally) inherit the children of the
primary object that it references. In that case, there are no extra shortcut objects for
those children. The actual children of the primary object are displayed below the shortcut
in the Systems Architect/Requirements Management client. The small red-arrow icon
indicates they were reached via a shortcut. If a shortcut inherits the primary object's
children, the getList method with MEMBER_LIST keyword on a shortcut returns the
exact same objects as the getList method on the primary object.

+ WHERE_USED_LINK_LIST is a list of where-used links to the object. This list is typically
empty for shortcuts.

+ WHERE_USED_OBJECT_LIST is a list of objects from following the where-used links from the
object. This list is typically empty for shortcuts.

+ USES_LINK_LIST is a list of reference links from the object. This list always has one entry for
shortcuts, that is the link to its primary object.

+ USES_OBJECT_LIST is a list of objects referenced by the object. This list always has one entry
for shortcuts, that references its primary object.

Activators are not triggered on shortcut objects because there is no type definition for the shortcut
type. However, many actions on a shortcut are applied to the original object. These actions trigger
events on the original object, not the shortcut.

Shortcuts cannot handle the Create, Before Delete, and After Delete events because shortcuts
cannot have their own activators. However, when shortcuts are created and deleted, there are some
observable events on other objects. They are:

* When a shortcut is created, the After Relation (Add Member) event on the shortcut's owner and
the After Relation (Add Where Used) event on the object the shortcut references.

* When a shortcut is deleted, the After Relation (Remove Member) event on the shortcut's owner.

There is no event on the referenced object when a shortcut is deleted. There is also no event on the
shortcut's owner if it is restored from the recycle bin.

REQ00006 R API Reference 6-41

Chapter 6: Using Activators

Working with Reference Links

When a reference is inserted into the text of a requirement or note using the Copy Reference Link
command, a symbolic reference link object is created. This section describes how to access and
manipulate these references.

The getList keywords related to references are (see pataBean.n1ST):
+ WHERE_REFERENCED_LIST is the list of the requirements and notes that have references to
the input (this) object.

+ WHERE_REFERENCED_LINKS_LIST is the list of symbolic links that reference the input (this)
object.

+ REFERENCING_LIST is the list of objects the input (this) note or requirement references.

* REFERENCING_LINKS_LIST is the list of symbolic reference links from the input (this) note
or requirement.

The getValue keywords related to symbolic link objects are (see pataBean.PROPERTY):

+ START_OBJECT is the requirement or note containing the reference.
« END_OBJECT is the referenced object.

*+ PROPERTY is the name of the referenced property.

References to Versioned Objects

When a reference is made to a versioned object, Systems Architect/Requirements Management
decides which version of the object to use. There are two modes of behavior. If the Promote
References option is selected in the project’'s Project Settings property, then references use the
effective version. Otherwise, references use a specific version. In either case, there is one symbolic
link object that points to a specific version. When Promote References is enabled, the reference
is shifted to the effective version dynamically.

The getValue and setValue keywords that apply to symbolic links when versions are involved are:

+ USED_OBJECTS: Gets the referenced object (like END_OBJECT). END_OBJECT returns the
specifically referenced version. USED_OBJECTS returns the effective version of the referenced
object if Promote References is enabled.

USED_OBJECTS is also supported in setValue which allows adjusting which version is
specifically referenced.

+ REFERENCE_SETTINGS: By default, reference links use the behavior specified in the Project
Settings property. The default behavior can be overridden for a specific symbolic link by setting
the REFERENCE_SETTINGS property with Promote References or Fixed References as
value. A blank value indicates the default project behavior.

The getList keywords that apply when versions are involved are:

+ WHERE_REFERENCED_REAL: Returns the requirements and notes that reference the input
(this) object (like WHERE_REFERENCED_LIST). WHERE_REFERENCED_LIST takes the

6-42 API Reference REQ00006 R

Using Activators

Promote References option into account where as WHERE_REFERENCED_REAL returns
specific references.

+ WHERE_REFERENCED_LINKS_REAL: Returns symbolic links that
reference the input (this) object (like WHERE_REFERENCED_LINKS_LIST).
WHERE_REFERENCED_LINKS_LIST takes the Promote References option into account
where as WHERE_REFERENCED_LINKS_REAL returns specific references.

* REFERENCING_REAL: Returns the objects the input (this) note or requirement references

(like REFERENCING_LIST). REFERENCING_LIST takes the Promote references option into
account where as REFERENCING_REAL only returns specific references.

REQ00006 R API Reference 6-43

Chapter 7: Using Icon Overlay

REQ00006 R API Reference

Chapter 7: Using Icon Overlay

Icon overlay functionality provides a mechanism to add custom overlays to icons. You can use the
functionality to overlay an existing icon or completely change an icon.

Container objects such as folders, building blocks, requirements, and projects have a new hidden
property.

If there is a value on this property, and if it is the LOID of a type definition, then the icon that is set
for that type definition will be used as an overlay to the current icon. The custom overlay is the first
overlay, followed by any possible out of the box overlays such as subtypes, variants, or frozen.

A new icon type definition has been added. You can create subtypes of the icon type definition for
your icons.

Following is a sample code for Icon Overlay using Tcl:

get the LOID of the icon overlay

set name "BigRedEx"

find type def by iterating over all type defs

foreach def [getList ScurrentProject OBJECT TYPE LIST] ({
if {[getValue $def Name] == $name} {

set iconOverlay $def

break

}

}

the code must ensure that icon was found before continuing

setValue $selected "Icon Overlay" $iconOverlay

You can create activators (after modifying) that can set the Ilcon Overlay property based on the
criteria that you determine.

For example:

+ Ifitis assigned to Jerry and it is complete then make it a big green J.
* Ifitis overdue, then mark it with a big red exclamation mark.

A sample icon overlay is given in Figure 7-1.

REQ00006 R API Reference 71

Chapter 7: Using Icon Overlay

Before:
l LR LN I@IE
| =D Folder
ﬁ Eig Red & Overlay
ﬂ Total Replacement

After:

l LR =L~ II.EE

I Big Red % Overlay
>< Total Replacement

Figure 7-1. Icon Overlay sample

In Figure 7-1, the first requirement has a red X overlayed on the requirement. The second

requirement is completely replaced with a red X.

%= Any overlay change is always a change on the actual object. The overlay is saved in the

database and shared with all users in the Architect/Requirements project.

7-2 API Reference

REQ00006 R

Chapter 8: Using Generic Links

Introduction e 8-1
Support for Generic Links e 8-1
Examples of API Methods e e 8-1

REQ00006 R API Reference

Chapter 8: Using Generic Links

This chapter describes generic links, and explains how to use them.

Introduction

The Systems Architect/Requirements Management links have built-in behavior that cannot be
customized for new applications. New interfaces that require novel link behavior need a link type
whose behavior can be completely controlled. Generic links provide the ability to control and
customize the behavior of links between the Systems Architect/Requirements Management objects.

Generic link is a new database object type that can be subtyped to support application-specific
linking needs. The default behavior and supported operations are similar to that of the trace links.
For more information about the generic links, see the Systems Architect/Requirements Management
User's Manual.

Support for Generic Links

Generic links are supported by attributes similar to those of the trace links. Table 8-1 lists the attributes
supported for generic links and their equivalent trace link attributes. For more information about the
trace links and their attributes, see the Systems Architect/Requirements Management User's Manual.

Table 8-1. Attributes Supported for Generic Links

Generic Links Trace Links

Incoming Objects Complying Objects
Incoming Link List Complying Link List
Incoming Object Count Complying Objects Count
Generic Link Count Trace Link Count
Outgoing Objects Defining Objects
Outgoing Link List Defining Link List
Outgoing Objects Count Defining Objects Count

Examples of APl Methods

You can use the application-specific APl methods to create, delete, modify, and navigate generic
links. Generic links are supported in the createLinks, deleteLinks, setValue, getValue, and getList API
methods.

REQ00006 R API Reference 8-1

Chapter 8: Using Generic Links

+ To create a generic link between two objects:
createlLinks $start $end "Outgoing Generic Link"

You can also use "1ncoming Generic Link", however, the direction of the link is reversed.

+ To create a subtype of a generic link:

createlLinks $start $end "Outgoing Generic Link" "mysubtype"

+ To get the list of incoming objects:
getList[$obj "INCOMING OBJECT LIST"]

This command is similar to the getnist[sobj "coMPLYING OBJECT LIsT"] trace link command.

+ To get the outgoing link list:
getList[Sobj "OUTGOING LINK LIST"]

This command is similar to the getnist [sobj "DEFINING LINK LIsT"] trace link command.

%= When used with the getList APl method:

* 1INK TO LIsT and nINK FrRoM LIST get the IncomInGg oBJECT LIsT and
OUTGOING OBJECT LIST Objects, respectively.

* 710 1INKs and FroM LINKs get the 1ncomIng 1IN L1sT and outcoing LINK LIST objects,
respectively.

8-2 API Reference REQ00006 R

Chapter 9: Cross-Product Messaging

PrOXYACHON . . . o 9-1
Setting Up proxyAction in Systems Architect/Requirements Management 9-1
Incoming proxyAction Requests e 9-1
Sending proxyAction Requests 9-2
Setting Up proxyAction in Teamcenter Engineering, 9-2
Remote Proxy Objects and Tcl APl e 9-2
Get Remote Proxy Properties 9-2

REQ00006 R API Reference

Chapter 9: Cross-Product Messaging

This chapter describes the new proxyaction service which has been added to the set of SOAP
services implemented for proxy objects in both Systems Architect/Requirements Management and
Teamcenter Engineering. It uses the same URL, SOAP message format, authentication, session
management and infrastructure as the existing set of services.

proxyAction

Each proxyaction request sends a single string argument to a foreign application. Based on the
URL found in Application Registry for an Application ID, the string argument is sent to the foreign
application. The response is a single string result, and a success/error indicator.

The applications must not place any restrictions on the content of the message or response strings,
but they must be encoded properly to pass across the SOAP transport.

The proxyaction request message is of this form:

operationID — proxyAction

inparaml, ‘key” STRING — authentication key

inraram2, “appGuid” STRING — the sending application’s GUID
inparam3, “inputMsg” STRING — the action input string

The proxyaction response is of this form:

outParaml, “€rrMsg”, string — expected value Success
outparam2, ‘outputMsg”, string — the formatted output string

Systems Architect/Requirements Management and Teamcenter Engineering must each be able to
send and receive proxyaction requests.

Setting Up proxyAction in Systems Architect/Requirements
Management
Incoming proxyAction Requests

Incoming proxyaction requests are handled by first performing the usual authentication steps, and
then connecting to an entry from the Systems Architect/Requirements Management session pool, as
with any incoming Proxy SOAP request.

REQ00006 R API Reference 9-1

Chapter 9: Cross-Product Messaging

The incoming proxyaction string is sent to the Tcl interpreter to be evaluated. That Tcl may ultimately
call any of the Tcl API functions, although it most often simply runs an existing Activator. The Tcl
string result is returned to the originator of the proxyAction request, along with a success indication. If
the Tcl interpreter exits with an unhandled error, the Tcl error string is returned as the string result,
along with an error indication.

Sending proxyAction Requests

Sending proxyaction requests must be supported through a new Tcl API call:
proxyAction applD message

Where:

app1D — A valid WOLF Application ID, likely found by reading the value from a Remote Proxy
object within Systems Architect/Requirements Management.

message — The string to be sent to the remote application.

If the app1D is not registered with WOLF, or if the remote application returns an error, a Tcl error
should be thrown, with the Tcl error string set with the result from the remote application. If the
call succeeds, the result string from this procedure should be the response string returned from
the remote application.

Setting Up proxyAction in Teamcenter Engineering

Refer to Teamcenter Engineering documentation for details.

Remote Proxy Objects and Tcl API

Get Remote Proxy Properties

Tcl API callers must be able to get the Remote Proxy list of ApplicationlDs and ObjectIDs for any
Systems Architect/Requirements Management object.

getValue object REMOTE PROXY

The result is a list of lists of strings. The outer list has an entry for each Remote Proxy for the target
object, or an empty list if it has none. Each inner list has two string elements, an ApplicationlD
and an ObjectID.

9-2 API Reference REQ00006 R

Appendix A: Word Content Activators

Word Edit Pre-ProCessor A-1
Word Edit Post-Processor A-2
Word EXport Pre-Processor A-2
Word Export Post-Processor e A-2

REQ00006 R API Reference

Appendix A: Word Content Activators

The text content of requirements and notes is processed using Microsoft Word's single file web page
(mhtml) format. A fragment of the mhtml file, containing only the content of the requirement or
note, is stored in the database with each object. When Word export is run, mhtml fragments from
the exported objects are concatenated together, along with other data such as the style sheet, to
form the mhtml file. An mhtml fragment can have references to objects outside the fragment. For
example, cross references, which point to information in another Architect/Requirements object, and
style names, which reference a style definition in the stylesheet.

As the export file is built, some of these references may require adjustments to function correctly. For
example, the internal names used for graphic references. The graphic names include a sequential
number to keep them unique. For example, image001.gif. The same graphic name can be used

for different graphics in different Architect/Requirements objects. The graphic names are modified
during export to ensure uniqueness.

In certain cases, it is not possible to resolve the external references. For example, a cross reference
is not functional if the target for the reference is not included in the export. A custom style name does
not work if that style is not defined in the style sheet used for the export.

Architect/Requirements does not correct external reference for numbered and bulleted lists. This is
due to the unusual way in which numbered and bulleted list styles are defined in MS Word mhtml
format. List types are arbitrarily assigned a list number and the mapping from list number to list
style is not always clear. This causes the wrong list type to be used with numbered and bulleted
lists in exports.

As a work around, activator events are defined to enable customized MS Word content correction.
Activators can fire both during and after mhtml file generation. For specific use cases it is possible to
correct list styles or MS Word content issues.

The new activator events are:

+ Word Edit Pre-Processor

* Word Edit Post-Processor

*+ Word Export Pre-Processor
*+ Word Export Post-Processor

Unlike the other activators, these activators trigger based on the names. If an activator with the
event name exists in a project, it triggers at the appropriate time during mhtml file generation for
exports and edits in that project.

Word Edit Pre-Processor

This activator triggers when a requirement or note is opened for edit in MS Word. This allows
modifying the mhtml file content that is displayed in MS Word.

REQ00006 R API Reference A1

Appendix A: Word Content Activators

The following information passed to the activator:
currentObject — Object ID of the requirement or note being opened for edit.
selected[0] — the mhtml file content.

The activator return value is used as the object’s mhtml file content. If an error occurs in the activator
or the return value is blank then the activator result is ignored.

Word Edit Post-Processor

This activator triggers after a requirement or note is saved in MS Word and before the content is
saved in the database. This allows modifying the HTML content that gets saved in the database.

The following information passed to the activator:

currentObject — Object ID of the requirement or note being saved.
selected[0] — the HTML content being saved.

selected[1] — the full mhtml file that was edited.

The activators return value is stored as the object's HTML content. If an error occurs in the activator
or the return value is blank then the activator result is ignored.

The mhtml file is provided so that you can examine the stylesheet information.

Word Export Pre-Processor

This activator triggers for each database object before it is added to the exported MS Word document.
This allow modifying object content in the document.

The following information passed to the activator:
currentObject — ID of the object being exported.
selected[0] — HTML content of the object.
selected[1] — ID of the style sheet used for the export.

The returned value is added to the export document instead of the original content. If an error occurs
in the activator or the return value is blank then the activator result is ignored.

The HTML content passed has already been processed using the object template and includes
the heading.

This activator can trigger for all objects types and not for requirements and notes only.

Word Export Post-Processor

This activator triggers once for an exported MS Word document. This allows modifying document file
content before it is downloaded to the client and opened.

The following information passed to the activator:

A-2 API Reference REQ00006 R

Word Content Activators

currentObject — ID of the object being exported. If multiple objects are exported then the first
object is used.

selected[0] — Path name of the exported MS Word document.
The exported file name is provided so that you can examine and modify the mhtml file.

The activator return value is not used. Errors in the activator are logged and ignored.

REQ00006 R API Reference A-3

Appendix B:

Accessing Using VBA

Accessing Using C#

REQ00006 R

Examples for using C# API's

API Reference

Appendix B: Examples for using C# API's

This chapter contains examples of using the Architect/Requirements API's. You can use the API
using VBA and C#.

Accessing Using VBA

An example of using API's to access Architect/Requirements using VBA is provided with the kit. The
example uses API's to perform the following functions:

Connection to Architect/Requirements

Get a list of projects

Create folder in the selected project

Create building block in a folder

Modify an object

Delete an object from Architect/Requirements

Searching for requirements

To view the example:

1.

Extract the <DVD Root>\ ClientAPIExample\ClientAPIExample.zip file from the product DVD to
a temporary folder on the machine where you are running the client.

Double click the ClientAPIExample.xlsm to open it in Microsoft Excel.
If you get a security warning, click Enable Content to enable the macros in the project.
Click the Launch Example button.

Enter the port number on which the client can be accessed and click OK.

You can also accept the default port 4002.

Enter the name of the machine on which the Architect/Requirements server is running and
click OK.

Enter the Architect/Requirements user name to access the application and click OK.

Enter the password for the account and click OK.

If you have entered the correct logon credentials, a connection successful message is displayed.

REQ00006 R API Reference B-1

Appendix B: Examples for using C# API's

10.

11.

12.

13.

Click OK.

The Select Project dialog box displays a list of projects in Architect/Requirements. From the
drop down list, select the project in which you want to create the objects and click OK.

Various Architect/Requirements objects are created and corresponding success or failure
messages are displayed.

Architect/Requirements is searched and the requirements are displayed.

The example launches automatically and connects the Architect/Requirements application,
creates a project, creates a requirement.

To view the VBA code, enable the Developer ribbon.

1.

2.

3.

4.

Click File—Options—Customize Ribbon, select the Developer check box, and click OK.
Click the Developer ribbon and click Visual Basic.
Double-click ThisWorkbook under the Microsoft Excel Objects in the left pane.

To close the example, exit Excel.

Following functions are defined in the example to perform various operations:

L=

B-2

You must provide the parameters corresponding to your setup for the functions to work
correctly.

connectToTcR()

Function to connect to Architect/Requirements. This function runs once when the
example is launched. The following parameters are collected from the user to connect to
Architect/Requirements:

o Port on which the client/server is running

The connectionService.tcr_client_socket_port = socketNum paramter is used to set
the port number.

o Name of the server machine
The connectionService.tcr_client_socket_url = machineNum paramter is used to set the
name of the Architect/Requirements server.

o Valid Architect/Requirements username and password

The connectionService.user_name = uName paramter is used to set the username of
the Architect/Requirements user.

The connectionService.user_password = pass paramter is used to set the password for
the user.

The function attempts to connect to the Architect/Requirements client. If the client is not running,
it connects to the server.

API Reference REQ00006 R

Examples for using C# API's

getProjects()

Function to get a list of projects from Architect/Requirements.

getSelectedProjectld(projectName As String)

Function to get the ID of the selected project. This function accepts the project name and gets
the project ID.

createObjectinTcR(owner As String, typeName As String)

Function to create any Architect/Requirements object. This function accepts the ID of the object
that you want to create and the type of the object.

modifyObjectinTcR(modiftObject() As TcR.dataBean)

Function to modify objects in Architect/Requirements. This function accepts the object to be
modified. It modifies the name and text of the requirement, however, this function can be used to
modify any object created in Architect/Requirements.

deleteObjectinTcR(objectld() As String)

Function to delete objects in Architect/Requirements. This function accepts the ID of the object
that you want to delete.

Accessing Using C#

An example of using API's to access Architect/Requirements using C# is provided with the kit. The
example uses API's to perform the following functions:

Connection to Architect/Requirements

Get a list of projects

Create folder in the selected project

Create building block in a folder

Modify an object

Delete an object from Architect/Requirements

Searching for requirements

You must have Microsoft Visual Studio 2010 installed to view the example.

To view the example:

1.

Extract the DVD Roof\ClientAPIExample\ClientAPIExample.zip file from the product DVD to a
temporary folder on the machine where you are running the client.

Navigate to Example in c# folder.

Double click APl Reference Solution.sIn.

REQ00006 R API Reference B-3

Appendix B: Examples for using C# API's

4. In the Solution Explorer, click the MainClass.cs.

5. Modify the following paramters to match your installation:

* connectionService.tcr_client_socket_port
+ connectionService.tcr_client_socket_url
* connectionService.tcr_server_controller_url
* connectionService.user_name
» connectionService.user_password
6. Click the Start button on the toolbar to view the functions of the example.

7. To close the example, exit Visual Studio.

B-4 API Reference REQ00006 R

Index

A
Access Privileges for an Activator 6-1
Activator
Login 6-7
Logout 6-7
Picklist 6-14
Activators 6-1
Creating 6-3
DefiningEvents 6-5
Deleting 5-55
Deleting Objects 6-22
Discarding Objects 6-22
Examples 6-26
After Delete Activator Event 6-28
createAction FileDownload 6-29
createAction Rundava 6-30
CreatingaNote 6-27
Running from command line, tcradmin
script 6-36
SameName 6-26
Release reservation 6-3
Transaction Management 5-3
Activators Objects 6-2
Actual Name
Schema Object 2-6
Adding referenceto TcR.tlb 4-2
API
Changelist 3-3
Database Transactions 3-3
DataBeans 3-7
Describing APl Functions 3-2
ErrorHandling 3-2
Introduction 1-1
Loggingin 3-1
Messagelist 3-2
ResultBeans 3-2
Schemalist 3-3
Using 3-1
C
CHAPI 4-1

REQ00006 R

calculateProperties 5-4
Changeflags 6-12
Changelist 3-3
changeApproval 5-5
Codeconventions 8
Command line

Running an activator 6-36
Command line entry conventions 8
Configuring COM Client 4-2

VBA ... 4-2
Connectingto TcSE 4-2
Conventions

Code 8

Command lineentries 8

Filecontents 8

Names 7

Values 7
copyObjects 5-6
createAction 5-7
createAction FileDownload 5-10
createActonRundava 5-12
createBaseline 5-15
createExternalLink 5-16
createLinks 5-17
createLinksCOM 4-10
createObject 5-18
createObjectCOM 4-7
createProject 5-19
createUser 5-21
createVariant 5-22
createVersion 5-23
D
Database Transactions 3-3
DataBeans 3-7
deleteLinks 5-24
deleteObjects 5-25
Deleting activators 5-55
Display Name

SchemaObject 2-6
displayMessage 5-25

API Reference Index-1

Index

E

emptyTrashcan
Error handling
Events
After import
Before import
Change Approval Routing
Change List
Import
Object Modify Events
Session Modify Events
Storing Event Context
export2Excel
exportDocument
exportXML

F

File contents conventions
Flags
Create flags
Delete flags
Modify flags
Relation flags
Form Value
Freezing object, Static property,
setValue

G

Generic links
Attributes oL
Examples of API methods
Introduction
Support

getDataBeansCOM

getEnvironment
getList
getObject
getObjectCOM
getProjects
getPropertiesCOM
getPropertiesWithFormula
getPropertyDefinition
getPropertyDefinitions
getRemoteObjectTraceReport
getResultCOM
getValue

Index-2 API Reference

|
lconOverlay 7-1
importDocument 5-43
Introduction 6-1
J
Java APlexamples 3-8
Java APl methods 3-7
L
Loggingintothe APl 3-1
Login activator 6-7
Logout activator 6-7
LOID
Passing
setObject 5-57
LOID of a Pick list
obtaining
getObject 5-35
getvValue 5-41
M
Macro
Creating 6-37
Examples 6-38
FormValues 6-37
Running 6-38
Tcl environment 6-37
Using 6-37
Messagelist 3-2
moveObjects 5-45
N
Name conventions 7
o
Overlay
lcon 7-1
P
Pick listactivator 6-14
Prerequisites 4-2
proxyAction, 9-1

REQ00006 R

Incomingrequests 9-1
Sendingrequests 9-2
R
Reference Links
Properties 6-42
restoreFromTrashcan 5-46
ResultBeans 3-2
runActivator 5-47
Running activator from command line, tcradmin
script 6-36
runReport 5-48
S
Schemalist 3-3
search 5-49-5-50
sendEmail 5-51
setEnvironment 5-52
setObject 5-20, 5-57
setObjectsCOM 4-9
setPassword 5-58
setUserPreferences 5-59
setValue 5-60
Shortcut Objects
Children 6-41
Keywords 6-40
Properties 6-40
Standard input parameters 2-1
Static property, setValue 5-61

REQ00006 R

Index

T
Tcel
Defined 5-2
Resources 5-2
Tcl Scripts
Errors 5-3
Executing 5-3
Methods 5-3
tcradmin script
Activator, running from command
line 6-36
Transaction Control 6-18
U
Unfreezing object, Static property,
setValue 5-61
Using APl B-1
\"/
Value conventions 7
VBAExamples 4-5
W
Working with Reference Links 6-42
Working with Shortcut Objects 6-40
writeLog 5-64-5-65
API| Reference Index-3

About Siemens PLM Software

Siemens PLM Software, a business unit of the Siemens
Industry Automation Division, is a leading global provider
of product lifecycle management (PLM) software and
services with 7 million licensed seats and 71,000 customers
worldwide. Headquartered in Plano, Texas, Siemens

PLM Software works collaboratively with companies

to deliver open solutions that help them turn more

ideas into successful products. For more information

on Siemens PLM Software products and services, visit
www.siemens.com/plm.

© 2016 Siemens Product Lifecycle Management
Software Inc. Siemens and the Siemens logo are
registered trademarks of Siemens AG. D-Cubed,
Femap, Geolus, GO PLM, I-deas, Insight, JT, NX,
Parasolid, Solid Edge, Teamcenter, Tecnomatix and
Velocity Series are trademarks or registered trademarks
of Siemens Product Lifecycle Management Software
Inc. or its subsidiaries in the United States and in other
countries. All other trademarks, registered trademarks
or service marks belong to their respective holders.

	Contents
	Manual History
	Contents
	Preface
	Audience
	Conventions
	Names and Values
	Command Line Entries, File Contents, and Code

	Submitting Comments
	Proprietary and Restricted Rights Notice

	1. Introduction
	2. API Overview
	Standard Input Parameters
	Listing of API Methods
	Schema Object Display Name and their Actual Name

	3. Using the Java API Client Library to Access the API
	Using the API
	Logging In to the API
	Describing the API Functions
	Describing ResultBeans
	Message List and Error Handling
	Change List
	Schema List
	Database Transactions

	Internal vs External Java API
	Describing DataBeans

	Java API Methods
	Java API Examples

	4. Using C# API from COM (VBA)
	Introduction
	Configuring COM Client (VBA)
	Prerequisites
	Adding Reference to TcR.tlb
	Connecting to Systems Architect/Requirements Management

	VBA Examples for Calling C# API Methods
	createObjectCOM
	getObjectCOM
	setObjectsCOM
	createLinksCOM
	getResultCOM
	getPropertiesCOM
	getDataBeansCOM
	runActivatorCOM

	5. Using the Tcl Scripting API to Access the API
	Introduction
	Executing Tcl Scripts
	Transaction Management
	Parameter Types
	Listing of Tcl Methods
	calculateProperties
	changeApproval
	copyObjects
	createAction
	createAction FileDownload
	createAction RunJava
	createBaseline
	createExternalLink
	createLinks
	createObject
	createProject
	createShortcuts
	createUser
	createVariant
	createVersion
	deleteLinks
	deleteObjects
	displayMessage
	emptyTrashcan
	export2Excel
	exportDocument
	exportXML
	getEnvironment
	getList
	getObject
	getProjects
	getPropertiesWithFormula
	getPropertyDefinition
	getPropertyDefinitions
	getRemoteObjectTraceReport
	getValue
	importDocument
	moveObjects
	restoreFromTrashcan
	runActivator
	runReport
	search
	search
	sendEmail
	setEnvironment
	setObject
	setPassword
	setUserPreferences
	setValue
	uncoupleShortcuts
	writeLog

	6. Using Activators
	Introduction
	Access Privileges for an Activator
	Describing Activator Objects
	Creating Activators
	Using Activators in Excel and Object Templates

	Defining Events
	Defining Object Modify Events
	Defining Session Modify Events
	Using A Login/Logout Activator

	Change Approval Routing Events
	Import Events
	Storing Event Context
	Defining the Change List

	Defining Flags
	Defining Relation Flags
	Defining Modify Flags
	Defining Delete and Create Flags

	Using A Pick List Activator
	Pass Owner to Tcl Context
	When A Pick List Activator Gets Called
	Pick List Activators and Performance

	Implementing Transaction Control
	Creating a Tcl Where Clause
	Creating a Where Clause
	Searching With a Tcl Where Clause
	Tcl Where Clause Example
	Tcl Global Variables in Where Clause Activators

	Writing Activators When Objects are Deleted, Restored, or Discarded
	TC_XML Export Activator
	Assigning Teamcenter Item IDs
	Excluding data from export
	Adjusting type and property names
	Specifying the versions to export
	LOID Property

	Activator Examples
	Determining Requirements With The Same Name
	Creating a Note
	Creating An After Delete Activator Event
	Using createAction FileDownload
	Producing an HTML File
	E-mailing Requirements or Producing PowerPoint Project from Requirements

	Using createAction RunJava
	Setting up to run Java code in Architect/Requirements client
	The ClientJavaAPI class

	Java Development Environment
	Code example

	Running an Activator From the Command Line With the tcradmin Script

	Using Macros
	Creating a Macro
	Form Values
	Tcl Environment

	Running a Macro
	Macro Examples
	Setting a Property on Several Objects at the Same Time
	Setting Several Properties on Multiple Objects
	Creating a Derived Requirement
	Collecting Metrics on Requirements

	Working with Shortcut Objects
	Working with Reference Links
	References to Versioned Objects

	7. Using Icon Overlay
	8. Using Generic Links
	Introduction
	Support for Generic Links
	Examples of API Methods

	9. Cross-Product Messaging
	proxyAction
	Setting Up proxyAction in Systems Architect/Requirements Management
	Incoming proxyAction Requests
	Sending proxyAction Requests

	Setting Up proxyAction in Teamcenter Engineering
	Remote Proxy Objects and Tcl API
	Get Remote Proxy Properties

	A. Word Content Activators
	Word Edit Pre-Processor
	Word Edit Post-Processor
	Word Export Pre-Processor
	Word Export Post-Processor

	B. Examples for using C# API's
	Accessing Using VBA
	Accessing Using C#

	Index

