1 What’s new with NX11.0.2

1.1 New Machine Kit Sim17
This machine tool is a dual channel vertical Turn-Mill machine tool supporting multiple head devices. Controller support Sinumerik only.

1.2 New Machine Kit Sim18
This example is a horizontal 5 axis table B/C configuration. Supported controllers are Fanuc, Heidenhain, Okuma and Sinumerik.

1.3 Support for Post configurator
The support of the OOTB machines will use post processors created with Post Configurator. In this release the following sample machines are added:

- Sim09
- Sim10
- Sim05 Okuma
- Sim17 Sinumerik 840D
- Sim18 horizontal mill

1.4 CAM setup with operations showing checking features
Based on the sim08 an additional CAM Setup is added, which includes operations with all possible checking features of ISV. This includes:

- LIMIT CHECK
- COLLISION IPW IN RAPID
- COLLISION TOOL / FIXTURE
- COLLISION BETWEEN MACHINE COMPONENTS
- COLLISION TOOLHOLDER / IPW
- GOUGE
- COLLISION IPW / INACTIVE_TOOL

The CAM setup part file will be located here:
$UGII_CAM_BASE_DIR\resource\library\machine\installed_machines\sim08_mill_5ax\cam_setup
2 Overview

This document explains the handling and usage of the simulation examples provided out-of-the-box (OOTB). The example data is mainly contained in two locations: one is for the library machine tool models in the

$UGII_CAM_BASE_DIR/resource/library/machine/installed_machines folder, the other for the CAM examples utilizing the library machine tools. These CAM examples can be found under $UGII_CAM_BASE_DIR/samples/n

x_simulation_samples. All of the machine tools in the library have preconfigured geometry, assembly and kinematics models as well as post processors and CSE controller models for the major controller types Siemens SINUMERIK 840D, Fanuc family and TNC Heidenhain Conversational; posts support metric and inch. For all machine tools in the library there is at least one CAM setup example available. The intention of these examples is to show best practice and to demonstrate the features of the NX CAM built-in machine simulation. Another intended use of the examples is as seed parts for customer specific simulation.

NOTE: The examples cannot contain or show every possible feature of NX CAM, NX Post and ISV. In certain cases such as complex or multi-function machine tools, and in order to achieve advanced capabilities, specific customization of the provided posts and/or controller models will be necessary. Especially in the case of complex Mill-Turn machine tool like sim15 or head change machine sim16 and sim17 cannot be simply reused for other complex machine tool. Here additional customization in most cases is needed.

3 Load Options

To ensure all related assembly component parts are loaded correctly it is recommended to use the "From Search Folder" load option with the following search paths. Be certain to include the three dots at the end of each path. Leave the “Use Partial Loading” - option unchecked'
4 CAM-Setup

When creating a new CAM setup with the provided set of machine tools, the following best practice is suggested. It is assumed that the CAD geometry of the part to be machined already exists.

- Open the CAD part file in NX
- Select “New” and pick an appropriate entry in the Manufacturing tab.

The system will automatically create a master-model-concept-part-file referencing your CAD geometry.

- Create a Wave link to the CAD geometry (Assembly Ribbon)

- Select the body of the CAD model for the Wave object and hide the CAD component in the assembly navigator

- To prepare for material removal simulation it is recommended to have the blank geometry pre-defined as well. In the example shown it is a simple cylinder added to the assembly.
5 List of special machine features – Overview

The following overview shows the available out-of-the-box examples with some key features. A detailed description and how they can be reused is documented separately. This documentation is located in the machines folder under documentation e.g. for sim01_mill_3ax

```plaintext
...\installed_machines\sim01_mill_3ax\documentation
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Picture</th>
<th>Key Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>sim01_mill_3ax</td>
<td></td>
<td>- 3-axis milling machine
- Controller Heidenhain, Sinumerik, Fanuc
- Simulated toolchanger
- Post Configurator postprocessor
- Post Builder postprocessor</td>
</tr>
<tr>
<td>sim02_mill_3ax</td>
<td></td>
<td>- 3-axis horizontal milling machine
- Controller Heidenhain, Sinumerik, Fanuc
- Post Configurator postprocessor
- Post Builder postprocessor</td>
</tr>
<tr>
<td>sim03_mill_4ax</td>
<td></td>
<td>- 4-axis horizontal mill with rotary B-axis table
- Controller Heidenhain, Sinumerik, Fanuc
- Post Configurator postprocessor
- Post Builder postprocessor</td>
</tr>
<tr>
<td>sim04_mill_4ax</td>
<td></td>
<td>- 4-axis vertical mill with rotary A-axis table
- Controller Heidenhain, Sinumerik, Fanuc
- Post Configurator postprocessor
- Post Builder postprocessor</td>
</tr>
<tr>
<td>Simulation Code</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td></td>
</tr>
</tbody>
</table>
| sim05_mill_5ax | 5-axis horizontal gantry mill with AC-dual head kinematic
- Controller **Okuma**, Heidenhain, Sinumerik, Fanuc
- Post Configurator postprocessor
- Post Builder postprocessor |
| sim06_mill_5ax | 5-axis mill with BC dual-table kinematic
- Controller Heidenhain, Sinumerik, Fanuc
- Post Configurator postprocessor
- Post Builder postprocessor |
| sim07_mill_5ax | 5-axis mill BC table-head kinematic
- Post Configurator postprocessor
- Post Builder postprocessor |
| sim08_mill_5ax | 5-axis mill AC dual-table kinematic
- (de-)activate soft limits during tool change
- Post Configurator postprocessor
- Post Builder postprocessor |
| sim09_mill_5ax | 5-axis mill-turn with 45 degree head
- Mill and turning capability for Sinumerik controller
- Changeable head “Adapter Head” for Sinumerik, Fanuc and Heidenhain controller
- Post Configurator postprocessor
- Post Builder postprocessor |

Working with OOTB MACH Simulation Examples
<table>
<thead>
<tr>
<th>Sim ID</th>
<th>Machine Type</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>sim10_millturn_5ax</td>
<td>5-axis millturn</td>
<td>- Fanuc controller</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Turret for tools</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Post Configurator postprocessor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Post Builder postprocessor</td>
</tr>
<tr>
<td>sim11_turn_2ax</td>
<td>2-axis turning</td>
<td>- Fanuc, Sinumerik controller</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Post Configurator postprocessor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Post Builder postprocessor</td>
</tr>
<tr>
<td>sim12_turn_2ax</td>
<td>2-axis turning</td>
<td>- Fanuc, Sinumerik controller</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Post Configurator postprocessor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Post Builder postprocessor</td>
</tr>
<tr>
<td>sim13_turn_4ax</td>
<td>4-axis horizontal lathe with 2 spindles</td>
<td>- Fanuc Controller</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Post Builder postprocessor</td>
</tr>
<tr>
<td>sim14_mill_5ax</td>
<td></td>
<td>- Fanuc, Sinumerik, Heidenhain and Millplus controller</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Post Configurator postprocessor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Post Builder postprocessor</td>
</tr>
<tr>
<td>Model</td>
<td>Description</td>
<td>Features</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| sim15_millturn_9ax | ![image](image1.png) 9-axis mill turn
Controller: Sinumerik
Part transfer, part clamping, moving sub spindle
B-axis milling and turning
Axis coupling
TRANSMIT/TRAORI support
Multiple chains
Post Builder postprocessor |
| sim16_mill_headchange | ![image](image2.png) 3 axis milling machine (base)
Controller: Sinumerik
Multiple chains including heads
TRAORI + CYCLE800 support
Post Builder postprocessor |
| sim17_vertical_turnmill_headchange | ![image](image3.png) 9 axis portal mill-turn machine
Controller: Sinumerik
Colinear W-Axis
Changeable heads
TRAORI + CYCLE800 support
Multiple chains including heads
Post Configurator postprocessor |
| sim18_mill_5ax | ![image](image4.png) 5 axis horizontal mill
Fanuc, Sinumerik, Heidenhain and Okuma
Post Configurator postprocessor |
6 Best practice rules for MCS using OOTB examples

In order to achieve a complete and reliable machine simulation, different modules need to play together. These are:

- CAM programming structure in the Operation Navigator (ONT),
- Internal Post Processor (MOM inside NX),
- TCL based post processor
- Simulation controller model.

A few rules need to be considered for NX CAM setup to support the assigned post processor creating a valid NC code which can be used at the physical machine tool as well as for simulation.

6.1 General settings and rules

- Each CAM setup example using one of our OOTB MACH machine tools must not include more than one single MCS with the purpose “Main”

- The “Main” MCS needs to be placed at the same location and orientation as the MACHINE_ZERO coordinate junction of the machine tool.
All other used MCS’s in the ONT need to be of purpose “Local”

If the “Special Output” of the local MCS is “Fixture Offset”, the post processor will output a fixture offset statement based on the number of the “Fixture Offset”. E.g. if Fixture Offset is 2:

G55 -> SINUMERIK
G55 -> Fanuc
CYCL DEF 7.0 -> TNC *(7.1/2/3 will include the offset values e.g. CYCLDEF 7.1 X 100)*

The Sinumerik Post will create an to_ini.ini file including the offset vector from the local MCS with fixture offset number to the Main MCS and output that like $P.UIFR[2]=CTRANS(…)

If the “Special Output” of the local MCS is “CSYS Rotation” the postprocessor will output a special statement to indicate a translation and/or a rotation. The fixture offset number must always inherit its value from the parent MCS object.

TRANS/ROT or CYCLE800 (based on UDE) -> SINUMERIK
G68 -> Fanuc
PLANE SPATIAL -> TNC

With these settings the example will look like:

<table>
<thead>
<tr>
<th>MCS Name</th>
<th>Purpose</th>
<th>Fixture Offset</th>
<th>Special Output</th>
<th>Post S840D</th>
<th>Post Fanuc</th>
<th>Post TNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCS_MAIN</td>
<td>Main</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-> MCS_G54</td>
<td>Local</td>
<td>1</td>
<td>Fixture Offset</td>
<td>G54</td>
<td>G54</td>
<td>CYCL DEFIN 7.0</td>
</tr>
<tr>
<td>-> MCS_G55</td>
<td>Local</td>
<td>2 (inherit)</td>
<td>Fixture Offset</td>
<td>G55</td>
<td>G55</td>
<td>CYCL DEFIN 7.0</td>
</tr>
<tr>
<td>-> ROT</td>
<td>Local</td>
<td>2 (inherit)</td>
<td>CSYS Rotation</td>
<td>CYCLE800</td>
<td>G68.2</td>
<td>PLANE SPATIAL</td>
</tr>
</tbody>
</table>

More details and example are shown in Appendix: “OOTB MCS Handling output details”

For the OOTB post, operations must not be placed under MCS objects with the special output “none” or “Use Main MCS”. In such cases the post will not identify the correct offset for the operation and the offset creation in the to_ini.ini files will fail.
6.2 **Special rules and settings for Mill-Turn machine tools.**

Working with Mill-Turn machines the work piece spindle object needs to be represented in the ONT. Therefore a MCS Spindle object is mandatory. That MCS object needs to be aligned with the work piece spindle and the X/Y or Z/X plane represents the lathe work plane. Also the Lathe axis needs to be aligned with the spindle axis. Working with multiple spindles e.g. Main and sub, each spindle needs to be defined by an MCS Spindle object in the ONT.

6.3 **Library machine tool specific handling**

- SIM15 post rule for local MCS object with special output “None”
 A local MCS with special purpose “None” located as child of a local MCS with special purpose “Fixture Offset number” will be used to output G59. See more in the chapter about sim15
7 About Post Processors

All the OOTB delivered post processors are created with Post Configurator library version 4.2. The existing post processors created with Post Builder still remain in the postprocessor folder. Some differences between pure template post and OOTB post are listed in the 5th subchapter.

This chapter describes the supported functions of the example posts of the MACH library machine tools. All post processors are available as inch and metric versions.

7.1 Unit handling OOTB Posts

Post Configurator posts are unit independent. Post Builder post exists with inch and metric unit. The name of the library entry in the machine tool lists indicate which post is connected:

- entries with xxx_in, xxx_mm are Post Builder based posts
- entries without an suffix are Post Configurator based posts.

Default behavior of Post Configurator post processors is “Part Unit”, which means system will chose the unit of the uses CAM part file while posting. To change the unit in a Post Configurator post open the post and switch the property as shown in the figure.
7.2 General supported features of the OOTB Posts

All three major controllers support the basic functionality for 2 axis drilling, 3 axis, 3+2 axis and 5 axis milling and also some advanced functionality.

7.2.1 Basic functionality
- Addresses (X, Y, Z, A, B, C)
- Program control (M30, M0...)
- Basic motion type: rapid, linear, circular (G0,G1, G2 and G3)
- Metric/Inch units
- Radius/diameter programming
- Fixture offset (G53-G59 /G505.../G54.1 P1... etc.)
 - Coordinate system rotation(support Local CSYS and Auto3D way) (G68, TRANS/AROT)
- Tool radius compensation (G40, G41 and G42)
- Tool length compensation (G43/G43.1 for Fanuc)
- Feed rate, feedrate unit
- Spindle mode and spindle speed (M03, M04, M05, S)
- Constant surface speed
- Tool change
- TCP (TRAORI, G43.4, M128)
- Standard drilling cycles supported by NX. (G80-G89/CYCLE81-CYCLE89)
- Coolant (M08, M09)

7.2.2 Advanced functionality:
- Swiveling function (G68.2, CYCLE800, PLANE SPATIAL)
- Variable axis drilling (fully support cycle plane change)
- Turning cycle (CYCLE95, G71)

7.2.3 Sim15 Mill-turn (S840D and Fanuc)
- One mill-turn post
- Part transfer
- Polar mode
- Drilling/ Milling XZC output

7.2.4 Sim18 Turn-mill (S840D)
- One turn-mill post
- Multiple chains
- Multiple heads
- Crossrail positioning

7.2.5 Specific OOTB post functions

Specific functions supported:
- ini file will be generated by post for SINUMERIK controller including fixture offset values and tool information.
- Remove the tool at end of program for milling machine: example: T0 M06
- For 4 or 5 axis machine, rotary axis limit setting in postprocessor should be same as the machine model.
- For SINUMERIK machine, tool offset value D depends on the adjust register number setting.
 Fixture offset registers range
SINUMERIK G54-G57 G505-G599
Fanuc G54-G59 G54.1 P1 G54.1 P2....
 Fixture offset number in CAM setup will decide fixture offset output.
 For SINUMERIK machine, if number is between 1 and 4, corresponding output is G54-G57, if number is 5 output will be G505 and so on.
 For Fanuc machines, if number is between 1 and 6, corresponding output is G54-G59, if number is greater than 6, G54.1 Px will be output. X = number -6.
 Tool tip control
 TRAORI and M128 are similar function in Sinumerik and Heidenhain T530. They are both kinematics independent, means mom_mcs_goto should be output instead of mom_pos for X Y Z position.
 But for OOTB Fanuc examples, G43.4 only has capability to compensate tool axis length in variable axes milling operations. G43.1 should be used in fixed axes milling with head rotation. G43 is used in all operations with Z orientation spindle.

7.3 Creating file with tool and offset data
The SINUMERIK 840D post processor creates a CAM setup specific initialization data file (to_ini.ini or to_ini_Channel.ini) for work offset values and the tool data. This file will be located in the cse_files/subprog subfolder of the CAM setup part:

```
...MACH/samples/nc_simulation_samples/cse_files/subprog
```

This to_ini.ini file is handled as a subprogram and in the ini files of the machine tool in the library this file gets called (executed and loaded). When working with CSE controller models, the different ini files are loaded and executed before the simulation starts. The format and syntax of the files is controller specific and their purpose is to initialize certain settings upfront. For more details about ini files please see Appendix.

Before the post creates a new to_ini.ini file it will back up the existing ini file by renaming it to “*.bck”.

With NX11.0.2 the array index number of the tool data written into the Sinumerik to_ini file use an ascending numbering to improve supporting the use case of NX CAM tool numbers higher than 32000. So the new format will look like:

```
$TC_TP1[1]=32001
$TC_TP2[1]="UGT0201_088"
```

Array index always starts at 1

7.3.1 Machine zero junction
The post query the kinematics model using the TCL query function MOM_ask_init_junction_xform and store the results in the variable mom_sim_result[9], mom_sim_result1[3] to get the data of the machine zero junction needed to calculate offset information for e.g. G54.

7.3.2 Call the post created TO_INI
The OOTB example machine tool ini files for Sinumerik (e.g. sim07_mill_5ax-Main.ini) have the entry TO_INI to call the post created file as a subprogram. If the creation of the file not work properly or the file gets deleted or the post does not have write access to create this file and the CSE Simulation starts it

Working with OOTB MACH Simulation Examples
will give you a warning in the details window, that the related TO_INI file could not be found. The simulation will not stop in that case.

7.3.3 To_ini file location

The location of ini file will be reset to directory which defined by UGII_CAM_CSE_USER_DIR, if this environment variable is already set up in system.

The values inside to_ini.ini are in the same unit as the ones inside the main program. Make sure Post processor and CSE driver are from the same NX version.

7.3.4 Create to_ini with Post Configurator

![Post Configurator Interface]

Created posts with Post Configurator have the option to switch on/off easily the creation of to_ini file.

7.3.5 Create to_ini with Postbuilder

![Postbuilder Interface]

This procedure is used with simulation_ini.tcl file which should be sourced.

- Following mov variables are used to set the options for ini files.
 - `$ncm_simnsrck_ini_create`
 - ini files will be created
 - `$ncm_simnsrck_ini_delete`
 - ini files will be deleted
 - `$ncm_simnsrck_ini_location`
 - ini files will be output to a subfolder `\$cse_file_location`.
 - `$ncm_simnsrck_ini_cse_layout`
 - ini files will be output to a `\cse_drivers` folder which
 located in same directory of postcommand or machine binder.
 - `$ncm_simnsrck_ini_env_layout`
 - ini files will be output to an environment variable defined
 folder.

- `$ncm_simnsrck_ini_existing`
 - `rename` Rename existing ini files in place where the one is created.
 - `keep` Keep ini files in place where the one is created.
 - `delete` Delete ini files in place where the one is created.

- `$ncm_simnsrck_ini_end_status`
 - `rename` Rename created ini file after post run.
 - `keep` Keep created ini files after post run.
 - `delete` Delete created ini files after post run.
7.4 MOM variable for MCS handling

For coordinate rotation NC codes output inside the post, the related coordinate matrix is changed. Reason for this is because the Main MCS is representing Machine zero and Local fixture offset representing machining coordinate G54, G55..., but mom_csys_origin and mom_csyz_matrix still map current local MCS to Main MCS. For CSYS rotation coordinate output, the value of linear offset (G68, CYCLE800 ...) should be the offset between current local MCS to parent local MCS(e.g. G54,G55). Therefore, mom_parent_csys_matrix replaced mom_csys_matrix in postprocessor.

```
MCS-Main (G53)
|----MCS-Local-for-G54
    |
|-----MCS-for CSYS rotation or other-purpose

mom_csys_matrix

mom_parent_csys_matrix
```

7.5 Differences between ‘pure’ template posts and OOTB posts (Sinumerik)

The OOTB posts are created based on the latest Sinumerik 840D basic template posts. Some settings and or features are slightly different, which are listed here.

7.5.1 Coolant

Coolant output is different.

<table>
<thead>
<tr>
<th>Posts of OOTB Examples</th>
<th>Post from template post</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coolant code always be M8, except “Deep Hole Drilling” operation.</td>
<td>Coolant code depends on coolant status</td>
</tr>
</tbody>
</table>

![Initial Move](image)

<table>
<thead>
<tr>
<th>Posts of OOTB Examples</th>
<th>Post from template post</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output T0 M6 at end of program</td>
<td>No T0 M6 at end of program</td>
</tr>
</tbody>
</table>

![End of Program](image)
7.6 About UDEs and OOTB
The post shipped with the OOTB machine tools in the library are coming with their own UDEs (CDL file), which provides a series of UDE which all are supported.

7.7 Post output for Coolant (Sinumerik, TNC, Fanuc)
OOTB post processors only support M8 (coolant on) and M9 (coolant off), to output other coolant codes, post processors need to be customized.

7.8 About Special handling for 5 axis motions with Fanuc for table machine tool configuration
The OOTB setting for Fanuc controller will not move the programming system together with the table when doing 5 axis motions like G43.X. The post takes care about that when outputting the X/Y/Z data. The CSE controller takes care about that by using a specific mode when activating the 5 axis transformation. This mode can be changed:

In Post do the following:

Change variable dpp_ge(sys_output_coord_mode) value to “TCP_FIX_MACHINE” in command PB_CMD_customize_output_mode

In Simulation do the following:
Change the setting of the variable #19696 in the INI file to =0 (default is 32 for non-rotating workpiece coordinate system)

7.9 Parameter Setting for new tap cycles
In the NX version, cycle type “Drill, Tap, Float”, “Drill, Tap, Deep”, and “Drill, Tap, Breakchip” are introduced. Please see the picture below. So accordingly, some enhancements are implemented in OOTB post processor. The detail will be showed in the content below.
The table below shows the tap cycle of three kinds of controller.

<table>
<thead>
<tr>
<th>Controller</th>
<th>Tap cycle</th>
<th>Tap Float</th>
<th>Tap Deep</th>
<th>Tap Breakchip</th>
</tr>
</thead>
<tbody>
<tr>
<td>S840D</td>
<td>CYCLE84(PTP,..VARI,...)</td>
<td>CYCLE840(xx,...)</td>
<td>CYCLE84(PTP,..VARI,...)</td>
<td>CYCLE84(PTP,..VARI,...)</td>
</tr>
<tr>
<td>Fanuc</td>
<td>M29 S G84.2/G84.3X Y Z R P F</td>
<td>G84/G74X Y Z R P F</td>
<td>M29 S G84.2/G84.3 X Y Z R P Q F</td>
<td>M29 S G84.2/G84.3 X Y Z R P F</td>
</tr>
<tr>
<td>ITNC</td>
<td>CYCL DEF 207 Q200 Q201 Q239 Q203 Q204</td>
<td>CYCL DEF 206 Q200 Q201 Q206 Q211 Q203 Q204</td>
<td>CYCL DEF 209 Q200 Q201 Q239 Q203 Q204 Q257 Q256 Q336</td>
<td>CYCL DEF 209 Q200 Q201 Q239 Q203 Q204 Q257 Q256 Q336</td>
</tr>
</tbody>
</table>

NOTE: In OOTB Fanuc post, it uses tap cycle of series15 format.

7.9.1 Set CYCLE84 parameter for S840D in UI

Take tap break chip UI as an example for Powerline CYCLE84. Please see the picture below.
NOTE: Except parameters mentioned above, other parameters information is showed in the table below.

<table>
<thead>
<tr>
<th>CYCLE84 Parameter</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTP</td>
<td>Retract plane</td>
</tr>
<tr>
<td>RFP</td>
<td>Reference plane</td>
</tr>
<tr>
<td>SDIS</td>
<td>Safety clearance</td>
</tr>
<tr>
<td>DP</td>
<td>Final drilling depth</td>
</tr>
<tr>
<td>DPR</td>
<td>Final drilling depth relative to the reference plane. It is always set to none in the OOTB.</td>
</tr>
<tr>
<td>_AXN</td>
<td>Tool axis. It is always set to none in the OOTB.</td>
</tr>
<tr>
<td>MPIT</td>
<td>If it is set, then PIT will not output.</td>
</tr>
<tr>
<td>_PITA(solutionline)</td>
<td>Its setting is the same as _PTAB.</td>
</tr>
<tr>
<td>PITM(solutionline)</td>
<td>It is set to 0 in the OOTB.</td>
</tr>
<tr>
<td>_PTABA(solutionline)</td>
<td>It is set to 0 in the OOTB.</td>
</tr>
<tr>
<td>_GMODE(solutionline)</td>
<td>It is set to none in the OOTB.</td>
</tr>
<tr>
<td>_DMODE(solutionline)</td>
<td>It is relative with spindle axis, the value may be 1, 2 or 3.</td>
</tr>
<tr>
<td>_AMODE(solutionline)</td>
<td>It is set to 0 in the OOTB.</td>
</tr>
</tbody>
</table>

Working with OOTB MACH Simulation Examples
7.9.2 Set CYCLE840 parameter for S840D in UI
Except parameter SDR and ENC, other parameter settings are the same as CYCLE84. Please see the SDR and ENC setting in the picture below.

![CYCLE840 parameter setting](image1.png)

7.9.3 Set CYCLE209 parameter for ITNC in UI
Take tap breakchip UI as an example for ITNC. Please see the picture below.

![CYCLE209 parameter setting](image2.png)

NOTE: Except parameters mentioned above, other parameters information is showed in the table below.
CAM/SIM MACH Content Version #1

Working with OOTB MACH Simulation Examples

<table>
<thead>
<tr>
<th>CYCLE 209 Parameter</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q200</td>
<td>Distance between tool tip (at starting position) and workpiece surface.</td>
</tr>
<tr>
<td>Q201</td>
<td>Distance between workpiece surface and end of thread.</td>
</tr>
<tr>
<td>Q203</td>
<td>Coordinate of the workpiece surface.</td>
</tr>
<tr>
<td>Q204</td>
<td>Coordinate in the tool axis at which no collision between tool and workpiece (clamping devices) can occur.</td>
</tr>
</tbody>
</table>

7.9.4 Set CYCLE207 parameter for ITNC in UI

CYCL DEF207 Q200=XX Q201=XX Q239=XX Q203=XX Q204=XX

CYCLE207 parameters are similar to CYCLE209, so the parameters setting are the same as CYCLE209.

7.9.5 Set CYCLE206 parameter for ITNC in UI

Except parameter Q206 and Q211 of CYCLE206, other parameters setting are the same as the CYCLE209. Please see the picture below.

"NOTE: Q206 is decided by pitch and spindle speed."
7.9.6 Set G84.2/84.3 parameter for Fanuc in UI

Take tap breakchip UI as an example for Fanuc. Please see the picture below.

NOTE: G84.2 and G84.3 are decided by “Rotation” value, if it is “Right-hand”, then it outputs G84.2, or it outputs G84.3. And parameter F is decided by pitch and spindle speed. Except parameters mentioned above, other parameters information is showed in the table below.

<table>
<thead>
<tr>
<th>G84.2/G84.3 Parameter</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>X Y</td>
<td>Hole position data.</td>
</tr>
<tr>
<td>Z</td>
<td>The distance from point R to the bottom of the hole and the position of the bottom of the hole.</td>
</tr>
<tr>
<td>R</td>
<td>The distance from the initial level to point R level.</td>
</tr>
</tbody>
</table>

NOTE: G84/G74 parameters are similar to G84.2/G84.3, so G84/74 parameters setting are the same as G84.2/84.3.
8 Using the library tools

The CAM setup simulation examples use as many as possible tools available from the OOTB tool library (ASCII in NX native) as delivered with the actual NX version. It is not suggested to adding part files with the existing tool library entry names. (e.g. ugt010101_003.prt). It may happen that the added 3D tool does not match the geometry created based on the parameters.

9 About CSE Simulation Drivers

9.1 Handling of Offsets:

Like any physical NC controller, CSE drivers can process offset information (activated e.g. through G55) only if the required data is provided, i.e. coordinate values between the actual chosen offset e.g. G55 and the machine tool zero position. There are two ways to achieve this with CSE and both are used in the OOTB examples.

9.1.1 Alternative 1 (used by Fanuc CSE controller)

In the case of Fanuc, the controller queries the information during simulation from the application (ISV NX). This is done internally by a command called “LoadOffset” during interpretation of an offset statement in the NC code like G55. The system searched in the ONT for an MCS object with the related fixture offset number.

Example: In the NC code a G55 (2nd offset) is used. In this case the system cycles through all MCS objects and compares the value use in “Fixture Offset” with the given offset in the NC code.

9.1.2 Alternative 2 (used by Sinumerik and TNC CSE controller)

The SINUMERIK 840D CSE and the TNC controller doesn’t use the “LoadOffset” mechanism as for the FANUC controller model, but follows an alternative implementation. On the physical controller in the shop floor, the offset values are typically measured by probing operations or are manually set in the controller. The controller stores these values in an offset table and in controller variables.
The SINUMERIK OOTB post processors create an initialization file for the actual CAM setup including information about the offsets and tool data. This initialization file is loaded before the simulation starts. So the offset definition is achieved by the definition of the variables in the initialization file.

Snapshot of the SINUMERIK ini file:

Later, when one of the offsets is activated in the NC code, the CSE controller uses these variables to define the offset transformation.

The TNC OOTB post processors outputs the offset data into the main program based on the actual CAM setup. The offset gets activated right away by parsing these NC code lines.

Example for TNC offset data:

```
... 
8 CYCL DEF 7.0
9 CYCL DEF 7.1 X -0.0000
10 CYCL DEF 7.2 Y -225.0000
11 CYCL DEF 7.3 Z -327.4470
...
```

Note: Working with CYCLE247 and/or is possible with CSE, but not part of the OOTB examples.

9.2 Handling of the tool change

Tool changes with CSE controller models in the existing examples are achieved by calling a tool change subprogram. This subprogram is located under the “subprog” folder for each CSE driver; it’s kept in the corresponding NC code syntax and basically positions the tool to the tool change location. Using one of these subprograms for a different machine tool will typically require an adjustment of the tool change position. Another section in the tool change subprogram is the Anycontroller (AC) part, which mimics the PLC portion of the tool change. This mainly takes care of the mounting and un-mounting the tool itself. Refer to NX Help for more details about the AC language. The OOTB examples demonstrate different kinds of tool change methods.

- The “standard” way is that one spindle is defined on the kinematics model of the milling machine tool and the tools are mounted ‘on the fly’ during simulation. This can be seen in sim02 to sim09 as well as sim14.
 sim08 is similar, but shows how an advanced tool change mechanism can be animated using the AC language to open and close doors.
In sim01, tools are already pre-mounted and visible in the CAM scenario on an eight pocket tool changer. During simulation, the system moves the spindle and the tool changer to mount and un-mount the tool.

The turning examples sim10 to sim13 don’t mount tools during simulation. Here, all tools are already pre-mounted on the turret in the CAM scenario. The tool change subprogram takes care of the rotation of the turret and the activation of the selected tool.

Note: The machine tool view in the ONT reflects the definition of turrets and pockets in the kinematics model. Each time the machine tool is retrieved from library, the ONT is updated based on the kinematics model. It is strongly recommended not to add or remove turrets and pockets in the ONT machine tool view when working with machine tools.

9.3 Handling the reference point (Fanuc)

In Fanuc NC code, the G command G28 is often used to move the reference point. The OOTB examples include this in the post and in the CSE controller models. This section describes how the position of the reference point is defined and stored to get correct simulation results.

On physical machine tools, the reference point is stored inside of the controller. To mimic this in the CSE simulation, the position of the reference point is defined in the *.ini file along with the machine tool. The NC code to define reference points in Fanuc syntax is shown in the sim01 example (sim01_mill_3ax_fanuc-Main.ini) as:

```plaintext
G54
G17
G90
G10L52
N1240P1R0000 —> X Position of the reference point related to machine zero
N1240P2R225.425 —> Y Position of the reference point related to machine zero
N1240P3R406.425 —> Z Position of the reference point related to machine zero
G11
```

If needed, the values of the reference point can easily be changed in the ini file. All coordinates are assumed to be metric.

9.4 Handling of tool correction data

Handling tool data CSE is able to get the data on different ways. One way is a direct connection to the application ISV and query the data through an API function during simulation e.g. when activating the tool correction e.g. Dxx or G43 Hxx).

An alternative way is to rely on data predefined in controller variables e.g. in an ini file. The behavior can be triggered in the OOTB CCF by setting the global variable GV_bUseSetToolCorrection in the CSEInitializeChannel. Most controller use the first described way and get the tool correction data via the API during simulation form ISV.
9.5 About Sinumerik Cycles in content

The OOTB library for Sinumerik supports list of cycles for simulation. The cycles are covered by an encrypted archive file (*.cyc) and placed in the subprog folder of the Sinumerik CSE simulation. The cycles of Operate Version 4.7 SP2 HF1 are in the file: SinumerikSL_Cycles_47_SP2_HF1.cyc

- The cycles of the Solutionline Version 4.4 are in the file: SinumerikSL_Cycles.cyc
 shipped since Version NX85
- The cycles of the Solutionline Version 2.6 are in the file: SinumerikSL_Cycles.cycV26
 shipped until Version NX85
- The cycles of the Powerline are in the file SinumerikPL_Cycles.cyc_powerline
 shipped until Version NX85

To use the cycle other than form the default rename the files so that the desired one has the extension *.cyc. The cyc archive file includes the following cycles:

Solutionline/Operate

- CYCLE71
- CYCLE81 – CYCLE90
- CYCLE801
- HOLES1, HOLES2
- LONGHOLE
- SLOT1, SLOT2
- POCKET3, POCKET4
- CYCLE95
- CYCLE97
- CYCLE800

As an example the file Demo_sinumerik_Cycles_Setup.prt can be simulated with the external NC code Demo_sinumerik_Cycles.MPF. These files are located at:
$UGII_CAM_BASE_DIR\mach\samples\nc_simulation_samples\Demo_sinumerik_Cycles
10 About swiveling cycles

This will give an overview about what are swiveling cycles and how they are used. The main target is to machine on a plane not perpendicular to an existing linear axis.

Working with swiveling cycles will make the life easier and let the controller do the work. In the following subchapters it is explained in detail how the swiveling Cycle PLANE SPATIAL/AXIAL and CYCLE19 on Heidenhain, CYCLE800 on S840D and G68.2 on Fanuc controllers work and how this is implemented in the CSE and the OOTB examples. In addition you will see a section how this is configured and can be reused for a different machine tool.

10.1 Swiveling on Heidenhain – PLANE SPATIAL

10.1.1 Settings in Operation Navigator (ONT) to achieve a proper Post output

To achieve an output of PLANE SPATIAL by the Post the following prerequisites needs to be fulfilled. (PLANE SPATIAL is supported by OOTB post; PLANE AXIAL and CYCLE19 are supported in the CCF for simulation only)

- milling operations and drilling operations needs to be 3+2 axis operation
- The MCS need to be set to “CSYS Rotation”

10.1.2 Settings in CSE driver to achieve correct simulation

The settings are valid for all supported modes which are PLANE SPATIAL, PLANE AXIAL and CYCLE19. Inside the MCF global variable in Internal variables tab must be set related to the type of the machine tool and the axis vector directions. Name of the variables are:

- GV_strMachineType (“T”, “M”, “P”)
 - “T” for Tool ‚ Head/Head
 - “P” for Part ‘ Table/Table
 - “M” for Mixed ‘ Head/Table
- GV_strSwivelingChainName
 The default name for the chain will be “default”
- GV_strFourthAxisName
- GV_strFifthAxisName
- GV_dFourthAxisX (x component of fourth axis)
- GV_dFourthAxisY (y component of fourth axis)
- GV_dFourthAxisZ (z component of fourth axis)
- GV_dFifthAxisX (x component of fifth axis)
- GV_dFifthAxisY (y component of fifth axis)
- GV_dFifthAxisZ (z component of fifth axis)

Working with OOTB MACH Simulation Examples
And the soft min/max limit of the rotary axes should be set if you wish rotary axis solution can be selected based on axes limit.

More details about the cycle and the way how it is implemented in CSE can be found in the Appendix

10.2 Swiveling on Sinumerik - CYCLE800

The Sinumerik Solutionline and Operate version is implemented in this approach. Much more details about the cycle itself and the way how it is implemented in CSE can be found in the Appendix

10.2.1 Example and parameter

10.2.2 Settings in Operation Navigator (ONT) to achieve a proper Post output

To achieve an output of CYCLE800 by the Post the following prerequisites needs to be fulfilled.

- milling operations and drilling operations needs to be 3+2 axis operation
- Sinumerik 840 UDE should be added on the operations, Transformation option should choose “Swiveling” as shown below:

Working with OOTB MACH Simulation Examples
10.2.3 Settings in CSE driver to achieve correct simulation

This is the list of variables defined for each machine tool in the machines ini file and others files to define data for the CYCEL800. These are the data, which need to match the related machine tool.

- **Content of the OOTB INI file for NCK4.4. cycles**

 SMAC; adopt the original DEF file from MC
 PGUD; need remove the line with REDEF
 TC_CARR; define tool holder data
 G40 D0
 $MM_MM_NUM_TOOL_CARRIER=1
 M17

- **Content of the OOTB INI file for NCK4.7. cycles**

 PMAC; adopt the original DEF file from MC
 PGUD; need remove the line with REDEF
 TC_CARR; define tool holder data
 CHAN_DATA
 G40 D0
 M17

- **Definition data of the TC variables:**

 The following $tc_carr variables are used from CSE for cycle800 calculation

  ```
  $TC_CARR7  ;x component of rotary axis v1
  $TC_CARR8  ;y component of rotary axis v1
  $TC_CARR9  ;z component of rotary axis v1
  $TC_CARR10 ;x component of rotary axis v2
  $TC_CARR11 ;y component of rotary axis v2
  $TC_CARR12 ;z component of rotary axis v2
  $TC_CARR23*;kinematic type
  $TC_CARR24 ;offset of rotary axis v1
  $TC_CARR25 ;offset of rotary axis v2
  $TC_CARR30*;software minimum limit of rotary axes v1
  $TC_CARR31*;software minimum limit of rotary axes v2
  $TC_CARR32*;software maximum limit of rotary axes v1
  $TC_CARR33*;software minimum limit of rotary axes v2
  $TC_CARR34 ;tool holder name
  $TC_CARR35*;Axis name 1
  $TC_CARR36*;Axis name 2
  $TC_CARR37 ;Identifier
  $TC_CARR40 ;Z axis retract value
  ```

With global variable “GV_bSetToolCarrierDataFromKim” the user can decide whether the local tool carrier dataset should be used or the information should be retrieved from the current active kinematic chain and axis information from kinematic model. Default value in CCF file is TRUE.
10.3 Swiveling in Fanuc - G68.2

10.3.1 Settings in Operation Navigator (ONT) to achieve a proper Post output
To achieve an output of G68.2 by the Post the following prerequisites needs to be fulfilled.

- Milling operations and drilling operations needs to be 3+2 axis operation
- The MCS need to be set to “CSYS Rotation”

10.3.2 Settings in CSE driver to achieve correct simulation
The requirement for G68.2 is the same to the requirement for PLANE SPATIAL. Please refer to previous chapter. More details about the cycle and the ay how it is implemented in CSE can be found in the Appendix
11 Appendix

A. Detailed information about ini files

A setup-specific INI file could contain, for example

- a list of setup-specific tools and tool count
- initial machine positions
- default fixture offset register
- inch or metric unit selection

The ISV CSE system will follow a strict search order to load ini files. Three different locations are supported. Here an overview of that:

<table>
<thead>
<tr>
<th>Search/Load Order</th>
<th>Machine Tool Library Folder with the MCF</th>
<th>Folder with CAM Part file</th>
<th>ENV UGII_CAM_CSE_USER_DIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>../CSE_files</td>
<td>../CSE_files</td>
<td>../CSE_files</td>
</tr>
<tr>
<td>2.</td>
<td>../CSE_files</td>
<td>../CSE_files/subprog</td>
<td>../subprog</td>
</tr>
<tr>
<td>3.</td>
<td>../CSE_files/subprog</td>
<td>../CSE_files/subprog</td>
<td>../subprog</td>
</tr>
</tbody>
</table>

Example

- sim07_mill_5ax-Main.ini
- to_ini-1.ini
- ../subprog

B. Swiveling Cycles

All three CCFs for TNC, Sinumerik and Fanuc include one swivel cycle implementation for the related NC code PLANE SPATIAL, TCARR/PAROT and G68.2. The way how that is implemented is consolidate over the different controllers and follow one general workflow. Here the details of that workflow:

- Initialize the system/global variables to define chain kinematics.
- Apply work piece coordinate rotation (and translation) to transformation (WPFRAME for Sinumerik, ROTATIONAL for Fanuc, PLANE for TNC).
- Calculate the tool vector after work piece coordinate rotation.
- Calculate tool angle and part rotating angle with rotated tool vector.
- Select the tool and part rotating angle based on the restriction (SEQ, limitation).
- Compensate the linear offset caused by tool and part rotating.
- Compensate the rotating offset caused by table rotating if applicable (for HeadTable and TableTable machine).
- Move and rotate head and/or table.
C. **PLANE SPATIAL**

Inside the used MCF global variable are set related to the type of the machine tool and the axis vector directions. Name of the variables are:

- GV_strMachineType ("T", "M","P")
- GV_strFourthAxisName (fourth axis name)
- GV_strFifthAxisName (fifth axis name – is dependent on forth axis for T and P; for M it is the one near to the part)
- GV_dFourthAxisX (x component of forth axis)
- GV_dFourthAxisY (y component of forth axis)
- GV_dFourthAxisZ (z component of forth axis)
- GV_dFifthAxisX (x component of fifth axis)
- GV_dFifthAxisY (y component of fifth axis)
- GV_dFifthAxisZ (z component of fifth axis)
- GV_dFourthAxisLimitMin (fourth axis limit min)
- GV_dFourthAxisLimitMax (fourth axis limit max)
- GV_dFifthAxisLimitMin (fifth axis limit min)
- GV_dFifthAxisLimitMax (fifth axis limit max)

Here an example how that will look like in the case of the complex DMU EVO machine tool

- GV_strMachineType: "p"
- GV_strFourthAxisName: "B"
- GV_strFifthAxisName: "C"
- GV_dFourthAxisX 0.584825
- GV_dFourthAxisY 0.573576
- GV_dFourthAxisZ 0.573576
- GV_dFifthAxisX 0.0
- GV_dFifthAxisY 0.0
- GV_dFifthAxisZ 1.0
- GV_dFourthAxisLimitMin 9999
- GV_dFourthAxisLimitMax 9999
- GV_dFifthAxisLimitMin 9999
- GV_dFifthAxisLimitMax 9999

About SEQ+- parameter in PLANE SPATIAL

Choose the shortest way as the preferred solutions. Implement this in the CCF file. First check if both solutions are achievable – due to limits of the axis. If neither solution is within traverse range, error message will be generated. This mechanism uses the axis limits set in the MCF file.

About TABLE ROT/COORD ROT in PLANE SPATIAL

Transformation mode is an optional parameter for Plane function and TABLE ROT. This takes effect only if the configuration is TABLE ROT, machine type head-head and SPC>0 (Q122=0)

- Workflow of internal PLANE SPATIAL implementation
- Apply SPA SPB SPC rotation to PLANE
- Calculate the tool vector with SPA SPB SPC rotation
Generate possible tool and part angle solution using calculateIKSAngles
Get valid tool and part angle solution via GMe_SwivelingGetRotateSolution
Set Q120 Q121 Q122 accordingly
Set linear compensation due to tool holder rotation via GMe_SwivelingCalculateLinears
Align WCS on table rotation via GMe_SwivelingCompTableRotation
Handle TABLE ROT exception
Move rotary axis with meta code MOVE/TURN/STAY and ABST.

D. CYCLE800

Basic about TCARR and PAROT

Cycle 800 using commands TCARR and PAROT. TCARR calculates rotational axis angle and calculates the translation compensation based on current kinematics, and apply it to the according transformation. The command PAROT rotates the transformation “PARTFRAME” for the table.

Depending on the mode of $P_{GG}[42]$ (TCOABS, TCOFR) the compensation is calculated in TCARR.

- With TCOABS
 Based on the angles defined in TC_CARR13 and TC_CARR14
- With TCOFR
 Reads the current orientation from WPFRAME and calculates (with IKS) 2 solutions per rotary axis

Basic Workflow

The CYCLE800.SPF consists of two subprograms, which are:

- On Powerline: TOOLCARR.SPF
- On Solutionline/Operate: CUST_800.SPF

In addition CYCLE800 makes use of lots of system-variables and machine data, e.g. TC_CARRxx[x] that holds the kinematic configuration and also needs some definition files like PGUD.DEF and SMAC.DEF so on Powerline even more.
Working with OOTB MACH Simulation Examples
Workflow of TCARR

Start TCARR

0 >= Value

YES

Reset transformation

NO

TCOFR

TCOABS or TCOFR

Assign TC_CARR13&14 to partAngle&toolAngle

Gme_GetRotateSolution

FALSE

TRUE

Set $P_TCSOL & $P_TCANG value

Assign TCANG1&2 to partAngle&toolAngle

CARR3==TC ANG3 AND CARR14==TC ANG4 AND CARR13=0 AND D CARR14!=0

Assign TCANG3&4 to partAngle&toolAngle

Gme_Caculatelinears

$P_TCSOL>0

End TCARR

$P_TCSOL & $P_TCANG value

Gme_Caculatelinears
Workflow of PAROT

1. Start PAROT
2. Get matrix from $SP_{PARTFRAME}$
3. Get translation vector from LV_Matrix
4. Create two unit matrices
 - LV_Matrix
 - OldTrans
5. RotateMatrix1, RotateMatrix2
6. IF dual head
 - Do nothing
7. IF head table
 - Vector Axis 5 Angle TC_CARR1
8. Rotate RotateMatrix1
9. Multiply LV_Matrix with RotateMatrix1
10. Axis 4 TC_CARR1 3
11. Rotate RotateMatrix1
12. Rotate RotateMatrix2
13. Multiply LV_Matrix with RotateMatrix1 and RotateMatrix2
14. NewTrans
15. Get translation vector from current LV_Matrix
16. OldTrans - NewTrans
17. Translate LV_Matrix
18. Set "PARTFRAME" by LV_Matrix
19. End PAROT

Working with OOTB MACH Simulation Examples
How to set TC_CARR37

The OOTB examples uses the Solutionline version 4.4/7 example: $TC_CARR37[1]=201003003$

Display variants of input screen forms CYCLE800

$TC_CARR37[n]$

(n = swivel data record)

If the following display variants are not set, the value will not be displayed in the input screen form (see Section “Programming via Screen Form”).

8 7 6 5 4 3 2 1 0 (decimal places)

- 0: Axis by axis
- 1: Axis by axis + projection angle
- 2: Axis by axis + projection angle + solid angle
- 3: Axis by axis + rotary axes direct
- 4: Axis by axis + projection angle + rotary axes direct
- 5: Axis by axis + projection angle + solid angle + rotary axes direct

Rotary axis 1
- 0: Automatic
- 1: Manual
- 2: Semi-automatic

Rotary axis 2
- 0: Automatic
- 1: Manual
- 2: Semi-automatic

Selection of preferred direction of axes
- 0: No
- 1: Reference to rotary axis 1
- 2: Reference to rotary axis 2
- 3: Reference to rotary axis 1 optimized
- 4: Reference to rotary axis 2 optimized

Correction of the tool tip
- 0: No
- 1: Yes
- 2: No correction of tool tip + B-axis kinematics turning technology
- 3: Correction of tool tip + B-axis kinematics turning technology

Reserved

Retraction mode
- 0: Z axis
- 1: Z axis or ZXY axis

Retraction in tool direction
- 0: Left
- 7: Z, X, Y
- Z + Z, X, Y

Swivel data record change / tool change
- 0: No
- 1: Manual
- 2: Automatic
- 3: No
- 4: Manual
- 5: Automatic

1) Only relevant for ShopMill/ShopTurn
2) If no swivel data record change is declared, the setting automatic/manual tool change setting is not relevant
3) Coding of retraction modes, see following table

Working with OOTB MACH Simulation Examples
E. G68.2

Workflow of internal G68.2 implementation

- Apply XYZ translation and IJK rotation to ROTATIONAL
- Calculate the tool vector with IJK rotation
- Generate possible tool and part angle solution using calculateIKSAngles
- Select the tool and part rotating angle based on the axis limitation by GMe_SwivelingGetRotateSolution.
- Set GV_dFourthAxisAngle and GV_dFifthAxisAngle accordingly
- Set linear compensation due to tool holder rotation using GMe_SwivelingCalculateLinears
- Align WCS on table rotation via GMe_SwivelingCompTableRotation

About G53.1

If G68.2 specifies the relationship between the feature coordinate system and the work piece coordinate system, G53.1 will automatically specifies the +Z direction of the feature coordinate system as the tool axis direction even if no angle is specified for the rotary axis.

G53.1 must be specified in a block after the block that contains G68.2

G53.1 must be specified in a block in which there is no other command.
F. Default controller settings inside the CCFs

This section lists the settings, which are taken place when a CSE simulation is initialized based on the OOTB CCF. Thus the method CSEInitializeChannel is called, which sets these defaults. Afterwards possible ini files get registered, which add additional defaults or can overwrite the ones already set.

Sinumerik:

Controller default set in the CCF:

- G0 G17 G54 G60 G601 G710 G90 G94 CFC NORM G450 BRISK ORIMKS DIAMOF TCOABS
- GV_bUseLoadOffset=FALSE to deactivate the LoadOffset functionality.
- GV_bUseSetToolCorrection=FALSE to not use SetToolCorrection in D-Metacode and use data from ini file instead.
- $MC_FRAME_ADD_COMPONENTS=1. This is used by G58 and G59. Also means that TRANS stores in $P_PFRAME[.., TR] and ATRANS stores in $P_PFRAME[.., FI]
- $MN_SCALING_SYSTEM_IS_METRIC=25.4
- $MC_DIAMETER_AX_DEF="X"
- $MN_INT_INCR_PER_MM=1000
- $AN_NCK_VERSION=75000
- $P_PROG[0]="_N_MAIN_MPF"
- $SCS_DRILL_TAPPING_SET_GG12[0]=1
- $SCS_DRILL_TAPPING_SET_GG12[1]=1
- $SCS_DRILL_TAPPING_SET_GG21[0]=1
- $SCS_DRILL_TAPPING_SET_GG12[1]=1
- $SCS_DRILL_TAPPING_SET_GG24[0]=1
- $SCS_DRILL_TAPPING_SET_GG24[1]=1
- $SCS_DRILL_TAPPING_SET_MC[0]=1
- $SCS_DRILL_TAPPING_SET_MC[1]=1
- $MC_MM_SYSTEM_FRAME_MASK=62

Controller defaults from the ini File:

- TO_INI ; load a to_ini file including tool and offset data produced by the OOTB post
 (the file TO_INI is handled like a subprogram. If this is not found the system will NOT raise an error message as usual)
- PMAC ; definition subprogram from Siemens SL
- PGUD ; definition subprogram from Siemens SL
- CHAN_DATA; Controller Variable Initialization
- TC_CARR ; Sets data for the CYCLE800 see TC_CARR.DEF
Fanuc:

Defaults set in the CCF:

- G21 G0 G17 G90 G94
- Default-Configuration for the controller:
 - #983=1: Serie M - machining centers.
- (Change in INI program to 0 for Serie T)
- #3401=1: calculator notation, G-Code System
- #983=1
- ABit 0: 1 = calculator notation; 0 = smallest increment notation
 - Bit 6+7: 0 = G-Code System A;
 - 64 = G-Code System B; 128 = G-Code System C
- The smallest increment multiplier can be specified in GMe_SetUnit (Default: 1000.0).
- #19696=0: rotating table coordinate system for G43.4/5. Change in INI program to 32 for non-rotating
- workpiece coordinate system
- GV_bUseLoadOffset=TRUE to activate the LoadOffset functionality

Defaults from the ini File:

- (#19696=0: rotating table coordinate system for G43.4/5. Change in INI program to 32 for non-rotating workpiece coordinate system)
- #19696=32
- G54
- (Implement the setting of the reference point G28 unit dependent)
- G10L52
- N1240P1R0
- N1240P2R0
- N1240P3R-200.000
- G11

TNC Heidenhain:

Defaults set in the CCF:

- GV_bUseLoadOffset=TRUE (used for CYCLE_DEF_7)
- GV_bUseLoadOffset247=FALSE (used for CYCLE_DEF_247)
- Systemdata: 7680[6]=0
- Systemdata: 7682[4]=1;1 when GV_strFourthAxisName is available, 0 if not
- Systemdata: 7682[5]=1;1 when GV_strFifthAxisName is available, 0 if not

Defaults from the ini File:

- No ini File
G. OOTB MCS Handling output details

Offsets and Transformations – SINUMERIK
Offsets and Transformations – Fanuc

Offsets and Transformations – Heidenhain

Working with OOTB MACH Simulation Examples
Global Technical Access Center

Installation assistance

For additional installation assistance, or to report any problems, contact the Global Technical Access Center (GTAC).

Website:
http://support.industrysoftware.automation.siemens.com/gtac.shtml

Phone:
United States and Canada: 800-955-0000 or 714-952-5444

Outside the United States and Canada: Contact your local support office.