
NX Nastran

Numerical Methods User’s Guide

Proprietary & Restricted Rights Notice

© 2017 Siemens Product Lifecycle Management Software Inc. All Rights Reserved. This software and related
documentation are proprietary to Siemens Product Lifecycle Management Software Inc.

NASTRAN is a registered trademark of the National Aeronautics and Space Administration. NX Nastran is
an enhanced proprietary version developed and maintained by Siemens Product Lifecycle Management
Software Inc.

MSC is a registered trademark of MSC.Software Corporation. MSC.Nastran and MSC.Patran are trademarks
of MSC.Software Corporation.

All other trademarks are the property of their respective owners.

TAUCS Copyright and License

TAUCS Version 2.0, November 29, 2001. Copyright (c) 2001, 2002, 2003 by Sivan Toledo, Tel-Aviv University,
stoledo@tau.ac.il. All Rights Reserved.

TAUCS License:

Your use or distribution of TAUCS or any derivative code implies that you agree to this License.

THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED OR IMPLIED.
ANY USE IS AT YOUR OWN RISK.

Permission is hereby granted to use or copy this program, provided that the Copyright, this License, and the
Availability of the original version is retained on all copies. User documentation of any code that uses this
code or any derivative code must cite the Copyright, this License, the Availability note, and "Used by
permission." If this code or any derivative code is accessible from within MATLAB, then typing "help taucs"
must cite the Copyright, and "type taucs" must also cite this License and the Availability note. Permission to
modify the code and to distribute modified code is granted, provided the Copyright, this License, and the
Availability note are retained, and a notice that the code was modified is included. This software is provided
to you free of charge.

Availability

As of version 2.1, we distribute the code in 4 formats: zip and tarred-gzipped (tgz), with or without binaries
for external libraries. The bundled external libraries should allow you to build the test programs on Linux,
Windows, and MacOS X without installing additional software. We recommend that you download the full
distributions, and then perhaps replace the bundled libraries by higher performance ones (e.g., with a BLAS
library that is specifically optimized for your machine). If you want to conserve bandwidth and you want to
install the required libraries yourself, download the lean distributions. The zip and tgz files are identical,
except that on Linux, Unix, and MacOS, unpacking the tgz file ensures that the configure script is marked as
executable (unpack with tar zxvpf), otherwise you will have to change its permissions manually.

C O N T E N T S
NX Nastran Numerical Methods User’s Guide

NX Nastran Numerical Methods
User’s Guide
Preface ■ About this Book, 10

1
Utility Tools and
Functions

■ Utility Tools, 2

■ System Cells, 3

■ Diagnostic (DIAG) Flags, 7

■ Matrix Trailers, 8
❑ Indexed Matrix File Structure, 10

■ Kernel Functions, 11

■ Timing Constants, 13

■ Time Estimates, 16

■ Storage Requirements, 18

■ Performance Analysis, 19

■ Parallel Processing, 20

2
Matrix Multiply-
Add Module

■ Multiply-Add Equation, 22

■ Theory of Matrix Multiplication, 23
❑ Method One (Dense x Dense), 24
❑ Method Two (Sparse x Dense), 28
❑ Method Three (Sparse x Sparse), 28
❑ Method Four (Dense x Sparse), 29
❑ Sparse Method, 30
❑ Triple Multiply Method, 31
❑ Parallel Multiply Method, 34

■ MPYAD Methods, 36

■ DMAP User Interface, 38

■ Method Selection/Deselection, 39
❑ Automatic Selection, 39
❑ Automatic Deselection, 39
❑ User-Specified Deselection, 40

❑ User-Specified Selection, 41

■ Option Selection, 43

■ Diagnostics, 44
❑ Performance Diagnostics, 44
❑ Submethod Diagnostics, 44
❑ Error Diagnostics, 45

■ MPYAD Estimates and Requirements, 47

3
Matrix
Decomposition

■ Decomposition Process, 50

■ Theory of Decomposition, 51
❑ Symmetric Decomposition Method, 51
❑ Mathematical Algorithm, 51
❑ Symbolic Phase, 52
❑ Numeric Phase, 53
❑ Numerical Reliability of Symmetric Decomposition, 54
❑ Unsymmetric Decomposition, 54
❑ Partial Decomposition, 55
❑ Distributed Decomposition, 56
❑ Diagonal Scaling Option, 56

■ User Interface, 58

■ Method Selection, 61

■ Option Selection, 62
❑ Minimum Front Option, 62
❑ Reordering Options, 62
❑ Compression Options, 62
❑ Non-Sparse SDCOMP Options, 63
❑ Non-Sparse UDCOMP Option, 63
❑ Perturbation Options, 63
❑ High Rank Options, 64
❑ Diagnostic Options, 64

■ Diagnostics, 66
❑ Numerical Diagnostics, 66
❑ Performance Diagnostics, 67
❑ Statistical Diagnostics, 68
❑ Error Diagnostics, 69

■ Decomposition Estimates and Requirements, 71

■ References, 73

4
Direct Solution of
Linear Systems

■ Solution Process, 76

■ Theory of Forward-Backward Substitution, 78
❑ Right-Handed Method, 78
❑ Left-Handed Method, 78
❑ Sparse Method, 78

❑ Parallel Method, 79

■ User Interface, 80

■ Method Selection, 82
❑ FBS Method Selection, 82

■ Option Selection, 83
❑ Right-handed FBS Options, 83
❑ Left-handed FBS Option, 83
❑ Parallel FBS Solution, 84

■ Diagnostics, 85
❑ Numerical Diagnostics, 85
❑ Performance Messages, 85
❑ Error Diagnostics, 85

■ FBS Estimates and Requirements, 87
❑ Sparse FBS Estimates, 87

■ References, 88

5
Iterative Solution
of Systems of
Linear Equations

■ Iterative Solutions, 90
❑ Methods, 90

■ Theory of the Conjugate Gradient Method, 92
❑ Convergence Control, 92
❑ Block Conjugate Gradient Method (BIC), 93
❑ Real and Complex BIC, 95

■ Preconditioning Methods, 98
❑ Scaling, 99
❑ Numerical Reliability of Equation Solutions, 99

■ User Interface, 101

■ Iterative Method Selection, 107

■ Option Selection, 108
❑ Preconditioner Options, 108
❑ Convergence Criterion Options, 109
❑ Diagnostic Output Options, 110
❑ Element Iterative Solver Options, 110
❑ In-core Frequency Response Options, 111
❑ Incomplete Cholesky Density Options, 111
❑ Extraction Level Options for Incomplete Cholesky, 112
❑ Recommendations, 112

■ Global Iterative Solution Diagnostics, 114
❑ Accuracy Diagnostics, 114
❑ Performance Diagnostics, 116

■ Global Iterative Solver Estimates and Requirements, 118

■ Element Iterative Solver Memory Requirements, 120

■ References, 121

6
Real Symmetric
Eigenvalue
Analysis

■ Real Eigenvalue Problems, 124

■ Theory of Real Eigenvalue Analysis, 125
❑ Reduction (Tridiagonal) Method, 126
❑ Real Symmetric Lanczos Method, 144

■ Solution Method Characteristics, 169

■ DMAP User Interface, 170

■ Method Selection, 174

■ Option Selection, 176
❑ Normalization Options, 176
❑ Frequency and Mode Options, 176
❑ Performance Options, 177
❑ Miscellaneous Options, 180
❑ Mass Matrix Analysis Options, 181

■ Real Symmetric Eigenvalue Diagnostics, 184
❑ Execution Diagnostics, 184
❑ Table of Shifts, 184
❑ Numerical Diagnostics, 185
❑ Performance Diagnostics, 187
❑ Lanczos Diagnostics, 188

■ Real Lanczos Estimates and Requirements, 191

■ References, 192

7
Complex
Eigenvalue
Analysis

■ Damped Models, 194

■ Theory of Complex Eigenvalue Analysis, 195
❑ Canonical Transformation to Mathematical Form, 195
❑ Dynamic Matrix Multiplication, 200
❑ Physical Solution Diagnosis, 202
❑ Hessenberg Method, 203
❑ QR Iteration Using the Householder Matrices, 207
❑ Eigenvector Computation, 210
❑ The Complex Lanczos Method, 214
❑ The Single Vector Method, 214
❑ The Adaptive Block Lanczos Method, 225
❑ Singular Value Decomposition (SVD), 233
❑ The Iterative Schur-Rayleigh-Ritz Method (ISRR), 234

■ Solution Method Characteristics, 236

■ User Interface, 237

■ Method Selection, 239

■ Option Selection, 245
❑ Damping Options, 245
❑ Normalization Options, 245
❑ Hessenberg and Lanczos Options, 245
❑ Alternative Methods, 247

■ Complex Eigenvalue Diagnostics, 249
❑ Hessenberg Diagnostics, 249
❑ Complex Lanczos Internal Diagnostics, 249
❑ Performance Diagnostics, 254

■ Complex Lanczos Estimates and Requirements, 256

■ References, 257

Glossary of Terms

Bibliography

NX Nastran Numerical Methods User’s Guide

Preface

■ About this Book

 NX Nastran Numerical Methods User’s Guide

10
About this Book

NX Nastran is a general-purpose finite element program which solves a wide variety
of engineering problems. This book is intended to help you choose among the
different numerical methods and to tune these methods for optimal performance.
This guide also provides information about the accuracy, time, and space
requirements of these methods.

This edition covers the major numerical methods available in NX Nastran Version
5, including parallel eigenvalue analysis for use in high-performance normal modes
analysis, frequency response, and optimization. Further details about configuring
and running such jobs can be found in the NX Nastran Parallel Processing Guide.

Introduction
This guide is designed to assist you with method selection and time estimation for
the most important numerical modules in NX Nastran. The guide is separated into
seven chapters:

• “Utility Tools and Functions” on page 1

• “Matrix Multiply-Add Module” on page 21

• “Matrix Decomposition” on page 49

• “Direct Solution of Linear Systems” on page 75

• “Iterative Solution of Systems of Linear Equations” on page 89

• “Real Symmetric Eigenvalue Analysis” on page 123

• “Complex Eigenvalue Analysis” on page 193

These topics are selected because they have the biggest impact on the performance
of the software. To obtain the most accurate solutions, you should read this guide
carefully. Some of the numerical solutions exhibit different characteristics with
different problems. This guide provides you with tools and recommendations for
how to select the best solution.

Using This Guide
This guide assumes that you are familiar with the basic structure of NX Nastran, as
well as with methods of linear statics and normal modes. A first-time reader of this
guide should read Chapter 1 to become familiar with the utility tools and functions.
After that, you can move directly to the chapters containing the topic you’re trying
to apply and tune (see Chapters 2 through 7). Each chapter contains general time
estimates and performance analysis information as well as resource estimation
formulae for some of the methods described in the chapter.

11Preface
Since this guide also discusses the theory of numerical methods, it is intended as a
stand-alone document except for a few references to the NX Nastran Quick Reference
Guide.

 NX Nastran Numerical Methods User’s Guide

12

NX Nastran Numerical Methods User’s Guide

CHAPTER

1 Utility Tools and Functions

■ Utility Tools

■ System Cells

■ Diagnostic (DIAG) Flags

■ Matrix Trailers

■ Kernel Functions

■ Timing Constants

■ Time Estimates

■ Storage Requirements

■ Performance Analysis

■ Parallel Processing

 NX Nastran Numerical Methods User’s Guide

2

1.1 Utility Tools
In this chapter the following utility tools are described:

• System cells

• DIAG flags

• Matrix trailers

• Kernel functions

• Timing constants

Since these utilities are of a general nature, they are used in the same way on
different computers and solution sequences. They are also used to select certain
numerical methods and request diagnostics information and timing data. For
these reasons, the utility tools are overviewed here before any specific numerical
method is discussed.

3CHAPTER 1
Utility Tools and Functions
1.2 System Cells
One of the most important communication utilities in NX Nastran is the SYSTEM
common block. Elements of this common block are called system cells. Some of the
system cells have names associated with them. In those cases, the system cell can be
referred to by this name (commonly called a keyword).

Performance Cells. Some of the system cells related to general performance and
timing issues are

Method Cells. System cells directly related to some numerical methods are

Execution Cells. System cells related to execution types are

The binary system cells are organized so that the options are selected by the decimal
values of the powers of 2. This organization makes the selection of multiple options
possible by adding up the specific option values. The decimal cells use integer
numbers. The mixed cells use both decimal and binary values.

The following several system cells are related to machine and solution accuracy:

where MCHEPSS and MCHEPD are the machine epsilons for single- and double-
precision, respectively, MCHINF is the exponent of the machine infinity, and
MCHUFL is the exponent of machine underflow.

BUFFSIZE = SYSTEM(1)

HICORE = SYSTEM(57)

REAL = SYSTEM(81)

IORATE = SYSTEM(84)

BUFFPOOL = SYSTEM(119)

SOLVE = SYSTEM(69) – mixed
MPYAD = SYSTEM(66) – binary
FBSOPT = SYSTEM(70) – decimal

SHARED PARALLEL = SYSTEM(107) – mixed
SPARSE = SYSTEM(126) – mixed
DISTRIBUTED PARALLEL = SYSTEM(231) – decimal
USPARSE = SYSTEM(209) – decimal

MCHEPSS = SYSTEM(102)
MCHEPSD = SYSTEM(103)
MCHINF = SYSTEM(100) on LP-64, SYSTEM(98) on ILP-64
MCHUFL = SYSTEM(99) on LP-64, SYSTEM(97) on ILP-64

 NX Nastran Numerical Methods User’s Guide

4

Note that these system cells are crucial to proper numerical behavior; their values
should never be changed by the user without a specific recommendation from
UGS support.

Setting System Cells

The following are several ways a user can set a system cell to a certain value:

The first pair of techniques is used on the NASTRAN entry, and the effect of these
techniques is global to the run. The second pair of techniques is used for local
settings and can be used anywhere in the DMAP program; PUTSYS is the
recommended way.

To read the value of a system cell, use:

VARIABLE = GETSYS (TYPE, CELL)
or

VARIABLE = GETSYS (VARIABLE, CELL)

SPARSE and USPARSE Keywords. The setting of the SPARSE keyword
(SYSTEM(126)) is detailed below:

Combinations of values are valid. For example, SPARSE = 24 invokes a sparse
run, except for SPMPYAD.

Value Meaning

1 Enable SPMPYAD T and NT

2 Deselect SPMPYAD NT

3 Force SPMPYAD NT

4 Deselect SPMPYAD T

5 Force SPMPYAD T

6 Deselect SMPMYAD T and NT

7 Force SPMPYAD T and NT

8 Force SPDCMP

16 Force SPFBS

NASTRAN SYSTEM (CELL) = value
NASTRAN KEYWORD = value

PUTSYS (value, CELL)
PARAM //’STSR’/value/ − CELL

NASTRAN Entry

DMAP Program

5CHAPTER 1
Utility Tools and Functions
In the table below, the following naming conventions are used:

The default value for SPARSE is 25.

Another keyword (USPARSE = SYSTEM(209)) is used to control the unsymmetric
sparse decomposition and FBS. By setting USPARSE = 0 (the default is 1, meaning
on), the user can deselect sparse operation in the unsymmetric decomposition and
forward-backward substitution (FBS).

Shared Memory Parallel Keyword. The SMP (or PARALLEL) keyword controls
the shared memory (low level) parallel options of various numerical modules.

The setting of the SMP keyword (SYSTEM(107)) is as follows:

Combinations are valid. For example, PARALLEL = 525314 means a parallel run
with two CPUs, except with FBS methods.

Module Naming Conventions. In the table above, the following naming
conventions are used:

SPMPYAD SPARSE matrix multiply

SPDCMP SPARSE decomposition (symmetric)

Value Meaning

1 − 1023 No. of Processors

1024 Deselect FBS

2048 Deselect PDCOMP

4096 Deselect MPYAD

8192 Deselect MHOUS

16384 Unused

32768 Deselect READ

262144 Deselect SPDCMP

524288 Deselect SPFBS

FBS Forward-backward substitution

PDCOMP Parallel symmetric decomposition

MHOUS Parallel modified Householder method

READ Real eigenvalue module

SPFBS Sparse FBS

 NX Nastran Numerical Methods User’s Guide

6

Distributed Parallel Keyword. For distributed memory (high level) parallel
processing, the DISTRIBUTED PARALLEL or DMP (SYSTEM (231)) keyword is
used. In general, this keyword describes the number of subdivisions or
subdomains (in geometry or frequency) used in the solution. Since the value of
DMP in the distributed memory parallel execution of NX Nastran defines the
number of parallel Nastran jobs spawned on the computer or over the network, its
value may not be modified locally in some numerical modules.

MPYAD Multiply-Add

SPDCMP Sparse decomposition

7CHAPTER 1
Utility Tools and Functions
1.3 Diagnostic (DIAG) Flags
To request internal diagnostics information from NX Nastran, you can use DIAG
flags. The DIAG statement is an Executive Control statement.

DIAG Flags for Numerical Methods. The DIAG flags used in the numerical and
performance areas are:

For other DIAG flags and solution sequence numbers, see the "Executive Control
Statements" in the NX Nastran Quick Reference Guide.

Always use DIAG 8, as it helps to trace the evolution of the matrices throughout the
NX Nastran run, culminating in the final matrices given to the numerical solution
modules.

The module-related DIAGs 12, 16, 19 are useful depending on the particular
solution sequence; for example, DIAG 12 for SOL 107 and 111, DIAG 16 for SOL 103,
and DIAG 19 for SOL 200 jobs.

DIAG 58 is to be used only at the time of installation and it helps the performance
timing of large jobs.

DIAG 8 Print matrix trailers

12 Diagnostics from complex eigenvalue
analysis

13 Open core length

16 Diagnostics from real eigenvalue
analysis

19 FBS and Multiply-Add time estimates

58 Print timing data

 NX Nastran Numerical Methods User’s Guide

8

1.4 Matrix Trailers
The matrix trailer is an information record following (i.e., trailing) a matrix
containing the main characteristics of the matrix.

Matrix Trailer Content. The matrix trailer of every matrix created during an NX
Nastran run is printed by requesting DIAG 8. The format of the basic trailer is as
follows:

• Name of matrix

• Number of columns: (COLS)

• Number of rows: (ROWS)

• Matrix form (F)

= 1 square matrix

= 2 rectangular

= 3 diagonal

= 4 lower triangular

= 5 upper triangular

= 6 symmetric

= 8 identity matrix

= 10 Cholesky factor

= 11 partial lower triangular factor

= 13 sparse symmetric factor

= 14 sparse Cholesky factor

= 15 sparse unsymmetric factor

• Matrix type (T)

= 1 for real, single precision

= 2 for real, double precision

= 3 for for complex, single precision

= 4 for complex, double precision

• Number of nonzero words in the densest column: (NZWDS)

• Density (DENS)

Calculated as:

number of terms
COLS ROWS•

-- 10,000•

9CHAPTER 1
Utility Tools and Functions
Trailer Extension. In addition, an extension of the trailer is available that contains
the following information:

• Number of blocks needed to store the matrix (BLOCKS)

• Average string length (STRL)

• Number of strings in the matrix (NBRSTR)

• Three unused entries (BNDL, NBRBND, ROW1)

• Average bandwidth (BNDAVG)

• Maximum bandwidth (BNDMAX)

• Number of null columns (NULCOL)

This information is useful in making resource estimates. The terms in parentheses
match the notation used in the DIAG8 printout of the .f04 file.

The matrices of NX Nastran were previously stored as follows:

The matrix header record was followed by column records and concluded with a
trailer record. The columns contained a series of string headers, numerical terms of
the string and optionally a string trailer. The strings are consecutive nonzero terms.
While this format was not storing zero terms, a must in finite element analysis, it
had the disadvantage of storing topological integer information together with
numerical real data.

Currently, the following indexed matrix storage scheme is used on most matrices:

Indexed Matrix Structure. An Indexed Matrix is made of three files, the Column,
String and Numeric files.

Each file consists of only two GINO Logical Records:

• HEADER RECORD. For the Column file, it contains the Hollerith name of
the data block (NAME) plus application defined words. For the String file,
it contains the combined data block NAME and the Hollerith word
STRING. For the Numeric file, it contains the combined data block NAME
and the Hollerith word NUMERIC.

• DATA RECORD. It contains the Column data (see Indexed Matrix
Column data Descriptions) for the Column file, the String data for the
String file and the numerical terms following each other for the Numeric
file.

 NX Nastran Numerical Methods User’s Guide

10
Indexed Matrix File Structure

Column File String File Numeric File

Header

Record 0 as written by
application (Data block NAME
+ application defined words)

Data block NAME +
“STRING”

Data block
NAME +
“NUMERIC”

Data Record

*6\3 words per Column Entry

Word 1\first 1/2 of 1:

Column Number, negative if the
column is null

Word 2\second 1/2 of 1:

Number of Strings in Column

Word 3 and 4\2:

String Relative
Pointer to the first String of
Column

Word 5 and 6\3:

Relative Pointer to the first Term
of Column

Note: If null column, then
word(s) 3 to 4\2 points to the
last non null column

String Pointer, word(s) 5 to 6\3
points to the last non-null
column Numeric Pointer

*2\1 word(s) per String
Entry

Word 1\first 1/2 of 1:

Row number of first term in
String

Word 2\second 1/2 of 1:

Number of terms in String

All matrix
numerical
terms following
each
other in one Logical
GINO Record

*n1\n2 words, where

• n1 is the number of words on short word machines

• n2 is the number of words on long words machines

11CHAPTER 1
Utility Tools and Functions
1.5 Kernel Functions
The kernel functions are internal numerical and I/O routines commonly used by the
functional modules.

Numerical Kernel Functions. To ensure good performance on a variety of
computers, the numerical kernels used in NX Nastran are coded into regular and
sparse kernels as well as single-level and double-level kernels. The regular (or
vector) kernels execute basic linear algebraic operations in a dense vector mode.
The sparse kernels deal with vectors described via indices. Double-level kernels are
block (or multicolumn) versions of the regular or sparse kernels.

The AXPY kernel executes the following loop:

where:

The sparse version (called AXPl) of this loop is

where

In these kernels, and are vectors. INDEX is an array of indices describing the

sparsity pattern of the vector. A specific NX Nastran kernel used on many
occasions is the block AXPY (called XPY2 in NX Nastran).

where:

Here , are blocks of vectors (rectangular matrices), is an array of scalar
multipliers, and is the number of vectors in the block.

Similar kernels are created by executing a DOT product loop as follows:

=

= a scalar

= the vector length

=

=

Y i() s= X i()• Y i()+

i 1 2 … n, , ,

s

n

Y INDEX i()() s= X i()• Y INDEX i()()+

i 1 2 … n, , ,=

X Y
Y

Y i j,() S j()= X i j,()• Y i j,()+

i 1 2 … n, , ,

j 1 2 … b, , ,

X Y S
b

DOT: Sum X i()

i 1=

n

∑= Y i()•

 NX Nastran Numerical Methods User’s Guide

12
where:

Indexed versions of the XPY2 and DOT2 kernels also exist.

To increase computational granularity and performance on hierarchic (cache)
memory architectures, the heavily used triangular matrix update kernels are
organized in a triple loop fashion.

The DFMQ kernel executes the following mathematics:

where is a triangular or trapezoidal matrix (a portion of the factor matrix) and
 are vectors.

The DFMR kernel executes a high rank update of the form

where now and are rectangular matrices. All real, complex, symmetric, and
unsymmetric variations of these kernels exist, but their description requires
details beyond the scope of this document.

Triple Loop Kernels. Additional triple loop kernels are the triple DOT (DOT3)
and SAXPY (XPY3) routines. They are essentially executing matrix-matrix
operations. They are also very efficient on cache-machines as well as very
amenable to parallel execution.

I/O Kernel Functions. Another category of kernels contains the I/O kernels. The
routines in this category are invoked when a data move is requested from the
memory to the I/O buffers.

Support Kernels. Additional support kernels frequently used in numerical
modules are ZEROC, which zeroes out a vector; MOVEW, which moves one
vector into another; and SORTC, which sorts the elements of a vector into the user-
requested (ascending or descending) order.

= the block size

=

DOT1: Sum X i()

i 1=

n

∑ Y i()•=

DOT2: Sum j() X i j,()

i 1=

n

∑= Y i j,()•

b

j 1 2 … b, , ,

A A= uvT+

A
u v,

A A= UVT+

U V

13CHAPTER 1
Utility Tools and Functions
1.6 Timing Constants

Single Loop Kernel Performance. Timing constants are unit (per term) execution
times of numerical and I/O kernels. A typical numerical kernel vector performance
curve shows unit time T as a function of the loop length. A loop is a structure that
executes a series of similar operations. The number of repetitions is called the loop
length.

Figure 1-1 Single-Level Kernel Performance Curve

The kernel performance curve can be described mathematically as

Eq. 1-1

where the constant is characteristic of the asymptotic performance of the curve
since

Eq. 1-2

The constant represents the startup overhead of the loop as

Eq. 1-3

These constants for all the NX Nastran numerical kernels can be printed by using
DIAG 58.

Loop (vector)
Length s

Unit
Time: T

1 2 . . . 1024

T A= B
s
---+

A

T s ∞→() A→

B

T s 1=() A= B+

 NX Nastran Numerical Methods User’s Guide

14
Sometimes it is impossible to have a good fit for the datapoints given by only one
curve. In these cases, two or more segments are provided up to a certain break
point in the following format:

where X is the number of segments and Y is the name of the particular kernel.

Double Loop Kernel Performance. In the case of the double loop kernels, the
unit time is a function of both the inner loop length and the number of columns,
which is the outer loop length. The unit time is described by a surface as shown
in Figure 1-2.

Figure 1-2 Double-Level Kernel Performance Surface

The surface on Figure 1-2 is built from curves obtained by fixing a certain outer
loop length and varying the inner loop length. Intermediate values are found by
interpolation. Another set of curves is obtained by fixing the inner loop length and
varying the outer loop length.

X Segments for Kernel Y

Segment 1 Segment 2

Break Point Break Point

A1 A2

B1 B2

Unit Time: T

Outer Loop Length

Inner Loop Curves

Outer Loop Curves

1

2

1024

Inner Loop Length

. .
.

15CHAPTER 1
Utility Tools and Functions
I/O Kernels. There are also many I/O kernels in NX Nastran.

The unit time for these kernels for string or term operations is

Eq. 1-4

For column operations (PACK, UNPACK),

Eq. 1-5

and the two values are given for real and complex and values.

Triple Loop Kernels. The triple loop kernels are now included in the time estimate
(GENTIM) process of NX Nastran.

While difficult to show diagramatically, the timing model for the triple loop kernels
can be thought of as families of double loop surfaces as shown in Figure 1-2. A
family is generated for specified lengths of the outermost loop. Values intermediate
to these specified lengths are determined by interpolation.

Many of the numerical kernels are standard BLAS/LAPACK library routines, such
as the AXPY kernels (described earlier) and the generalized matrix-multiply GEMM
kernels. On certain platforms, vendor specific non-BLAS library routines are used
as well. The speed and accuracy of these kernels has a large effect on numerical
performance and stability. Therefore, NX Nastran may be linked against external
libraries for best performance. Which external libraries are required will vary across
hardware platforms, operating systems, and NX Nastran versions. The correct
versions of all external libraries must be installed as part of the NX Nastran
installation procedure.

Ts number of strings= A• number of nonzeroes+ B•

Tc Ts= rows+ columns• A•

A B

 NX Nastran Numerical Methods User’s Guide

16
1.7 Time Estimates
Calculating time estimates for a numerical operation in NX Nastran is based on
analytical and empirical data. The analytical data is an operation count that is
typically the number of multiply (add) operations required to execute the
operation. In some cases the number of data movements is counted also.

The empirical data is the unit time for a specific kernel function, which is taken
from the timing tables obtained by DIAG 58 and explained in “Timing Constants”
on page 13. These tables are generated on the particular computer on which the
program is installed and stored in the database.

The operation count and the execution kernel length are calculated using
information contained in the matrix trailers. Sometimes trailer information from
the output matrix generated by the particular operation is required in advance.
This information is impossible to obtain without executing the operation. The
parameters are then estimated in such cases, resulting in less reliable time
estimates.

Available Time. Time estimates in most numerical modules are also compared
with the available time (TIME entry). Operations are not started or continued if
insufficient time is available.

I/O time estimates are based on the amount of data moved (an analytical data
item) divided by the IORATE and multiplied by the I/O kernel time. Since the
user can overwrite the default value of the IORATE parameter, it is possible to
increase or decrease the I/O time calculated, which also results in varying the
method selection.

In most numerical modules, NX Nastran offers more than one solution method.
You can select the method used. The method automatically selected by NX
Nastran is based on time estimates. The estimated (CPU) execution time is
calculated by multiplying the number of numerical operations by the unit
execution time of the numerical kernel executing the particular operation. In
addition, an estimation is given for the (I/O) time required to move information
between the memory and secondary storage. After the estimates for the CPU
execution time and the I/O time are added together, NX Nastran selects the
method that uses the least time.

Matrix Methods. Several methods are offered because each of them is best suited
to certain types of matrices. The difference in cost among the methods for specific
cases can be an order of magnitude or more. As each matrix is generated, the
parameters describing its size and the distribution of nonzero terms are stored in
a matrix trailer. (The parameters that define the properties of the matrices were
described in “Matrix Trailers” on page 8.) For each matrix, these parameters
include the number of rows and columns, the form (for example, square or

17CHAPTER 1
Utility Tools and Functions
symmetric), the type (for example, real or complex), the largest number of nonzero
words in any column, and the density. Some of the newer methods also record the
number of strings in the matrix. Other descriptive parameters may be added in the
future.

The only empirical data used in deriving the timing equations is the measurement
of the time per operation for the kernels. These measurements are computed at the
time of installation on each computer and are stored in the delivery database for
later use. After the system is installed, the measurements may be updated if faster
hardware options are installed on the computer. The remaining terms in the
equations are derived from careful operation counts, which account for both
arithmetic and data storage operations.

Timing Equations. Timing equations are derived for all major numerical modules.
Conservative upper bounds are the best estimates that can be calculated. At
present, these estimates are not used for method selection. Instead, the user is
required to input the total amount of available CPU time to solve the total run. The
amount of time remaining at the start of the numerical solution modules is
compared with the estimate. The run is terminated before the numerical module
starts execution if the amount of time remaining is less than the estimate. The goal
is to minimize wasted computer resources by terminating expensive operations
before they start, rather than terminating them midway before any output is
available.

The many types of machine architecture which NX Nastran supports and the great
differences in operation between scalar, vector, and parallel computing operations
result in a challenge to the numerical method developers to provide correct
estimation and method selection. There are a number of diagnostic tools which can
be used to print out the estimates and the other parameters affecting computation
cost. These tools are generally activated by the DIAG flags described earlier.

 NX Nastran Numerical Methods User’s Guide

18
1.8 Storage Requirements
Main storage in NX Nastran is composed of the space used for the code, the space
used for the Executive System, and the actual working space used for numerical
operations.

Working Space. The actual working space available for a numerical operation
can be obtained using DIAG 13.

Disk storage is needed during the execution of an NX Nastran job to store
temporary (scratch) files as well as the permanent files containing the solution.

Memory Sections. The Executive System provides the tools needed to optimize
the execution using a trade-off between memory and disk usage. The main
memory is organized as follows:

RAM, MEM, BUFFPOOL. The RAM area holds database files, while the MEM
area holds scratch files. The BUFFPOOL area can act as a buffer memory. The
user-selectable sizes of these areas have an effect on the size of the working storage
and provide a tool for tuning the performance of an NX Nastran job by finding the
best ratios.

A general (module-independent) user fatal message associated with storage
requirements is:

UFM 3008:
INSUFFICIENT CORE FOR MODULE XXXX

This message is self explanatory and is typically supported by messages from the
module prior to message 3008.

Working Storage

Executive

RAM

MEM

BUFFPOOL

Printed on DIAG 13

User-Controllable

19CHAPTER 1
Utility Tools and Functions
1.9 Performance Analysis

.f04 Event Statistics. The analysis of the performance of an NX Nastran run is
performed using the .f04 file.

Disk Usage. The final segment of the .f04 file is the database usage statistics. The
part of this output most relevant to numerical modules is the scratch space usage
(the numerical modules are large consumers of scratch space). SCR300 is the
internal scratch space used during a numerical operation and is released after its
completion. The specific SCR300 table shows the largest consumer of internal
scratch space, which is usually one of the numerical modules. The output
HIWATER BLOCK shows the maximum secondary storage requirement during the
execution of that module.

Memory Usage. Another table in this final segment shows the largest memory
usage in the run. The output HIWATER MEMORY shows the maximum memory
requirement combining working storage and executive system areas, described in
“Storage Requirements” on page 18.

 NX Nastran Numerical Methods User’s Guide

20
1.10 Parallel Processing
Parallel processing in NX Nastran numerical modules is a very specific tool. It is
very important in enhancing performance, although its possibilities in NX Nastran
and in specific numerical modules are theoretically limited.

The parallelization possibilities in NX Nastran consist of three different categories:

• High level

Frequency domain

• Medium level

Geometry domain

• Low level

Block kernels (high rank updates)

The currently available methods of parallel processing in NX Nastran numerical
modules are:

• Shared memory parallel

Medium, low level

MPYAD, DCMP, FBS modules

• Distributed memory parallel

High, medium level

SOLVIT, DCMP, FBS, READ modules

Details of the various parallel methods are shown in the appropriate Modules’
sections throughout.

NX Nastran Numerical Methods User’s Guide

CHAPTER

2 Matrix Multiply-Add Module

■ Multiply-Add Equation

■ Theory of Matrix Multiplication

■ MPYAD Methods

■ DMAP User Interface

■ Method Selection/Deselection

■ Option Selection

■ Diagnostics

■ MPYAD Estimates and Requirements

 NX Nastran Numerical Methods User’s Guide

22
2.1 Multiply-Add Equation
The matrix multiply-add operation is conceptually simple. However, the wide
variety of matrix characteristics and type combinations require a multitude of
methods.

The matrix multiply-add modules (MPYAD and SMPYAD) evaluate the
following matrix equations:

(MPYAD)

Eq. 2-1

or

(SMPYAD)

Eq. 2-2

The matrices must be compatible with respect to the rules of matrix
multiplication. The stands for (optional) transpose. The signs of the matrices
are also user parameters. In Eq. 2-2, any number (between 2 and 5) of input
matrices can be present.

The detailed theory of matrix multiply-add operation is described in “Theory of
Matrix Multiplication” on page 23. Subsequent sections provide
comprehensive discussions regarding the selection and use of the various
methods.

D[] A[] T() B[] C[]±±=

G[] A[] T() B[] T() C[]T D[]TE F±=

T()

23CHAPTER 2
Matrix Multiply-Add Module
2.2 Theory of Matrix Multiplication
The matrix multiplication module in NX Nastran evaluates the following matrix
equations:

Eq. 2-3

or

where , , , and are compatible matrices. The calculation of Eq. 2-3 is
carried out by the following summation:

Eq. 2-4

where the elements , , , and are the elements of the corresponding matrices,
and is the column order of matrix and the row order of matrix . The sign of
the matrices and the transpose flag are assigned by user-defined parameters.

NX Nastran has four major ways to execute Eq. 2-3 and performs the selection
among the different methods automatically. The selection is based on the density
pattern of matrices and and the estimated time required for the different
kernels.

These methods are able to handle any kind of input matrices (real, complex, single,
or double precision) and provide the appropriate result type. Mixed cases are also
allowed and are handled properly.

The effective execution of multiplication is accomplished by invoking the NX
Nastran kernel functions.

The four methods are summarized in the following table and explained in more
detail below.

Method Combination

1 Dense × Dense

2 Sparse × Dense

3 Sparse × Sparse

4 Dense × Sparse

D A[] B[] C[]±±=

D A[]T B[] C[]±±=

A B C D

dij aikbkj cij±

k 1=

n

∑±=

a b c d
n A B

A B

 NX Nastran Numerical Methods User’s Guide

24
Method One (Dense x Dense)
Method one consists of several submethods. The submethod designated as
method one storage 1 is also known as basic method one.

In basic method one, enough storage is allocated to hold as many non-null
columns of matrices and as memory allows. The columns of matrix
corresponding to the non-null columns of are initially read into the location of
matrix (the result). Matrix is processed on a string-by-string basis. The
complete multiplication operation may require more than one pass when all the
non-null columns of matrices and cannot fit into memory. The number of
passes can be calculated as follows:

Eq. 2-5

where:

The basic procedure of method one (storage 1) can be viewed as follows:

Figure 2-1 Method One

= order of problem

= number of passes

= number of non-null columns of in memory

Note: The underlined quantities in Figure 2-1 represent vectors.

B D C
B

D A

B D

Np
N

NB
-------=

N

Np

NB B

bNB

bj

ail

BA

NB

ali

j

b1

D C=
j

i

NB

ail bj•

or
ali bj•

In Memory In Memory

25CHAPTER 2
Matrix Multiply-Add Module
For each nonzero element of , all corresponding terms of currently in memory
are multiplied and accumulated in . columns of matrix are calculated at
the end of one complete pass of matrix through the processor. Next, the
completed columns of are packed out, along with any non-null columns of
that correspond to null columns of skipped in this pass (as they are columns of

). This part is saved, non-null columns of and the corresponding columns
of are loaded, and the process continues. The effective execution of the
multiplication depends on whether or not the transpose flag is set.

Nontranspose:

Eq. 2-6

Transpose:

Eq. 2-7

The other submethods provide for different handling of matrix and for carrying
out the multiplication operations. The main features of the submethods vary
depending on the different ways of handling the strings (series of consecutive
nonzero terms in a matrix column). A comparison of the main method and the
submethods is shown as follows:

Table 2-1 Nontranspose Cases

Storage A: Unpacked columns of and
Processing string by string

 is in the inner loop

Storage B: Unpacked columns of and
Processing string by string

 is in the outer loop

Storage C: Unpacked partial rows of
Processing string by string

 is in the inner loop

Storage D: Partial rows of in string format
Processing string by string

 is in the outer loop

Storage E: Unpacked columns of and
Unpacked columns of (band only)

 is in the outer loop

Storage F: Partial rows of in string format
Unpacked columns of

 is in the outer loop

A B
D NB D

A
D C

B
D NB B

C

dij ail blj← dij+

dij ali← blj d+ i j

A

B D
A

A

B D
A

A

B
A

A

B
A

A

B D
A

A

B
A

A

 NX Nastran Numerical Methods User’s Guide

26
Storage 2: Unpacked non-null columns of and
Unpacked columns of
Loops are the same as in storage 1, except
that the outermost loop is pulled inside
the kernel (triple loop kernel)

Storage 3: Unpacked non-null columns of and
Unpacked columns of
Loops are the same as in storage 1, except
that the outermost loop is pulled inside
the kernel (BLAS level 3)

B D
A

B D
A

27CHAPTER 2
Matrix Multiply-Add Module
Table 2-2 Transpose Cases

The effective execution of the multiplication operation in method one subcases
(and other methods with the exception of method three) is accomplished by
involving the NX Nastran kernel functions. In method one submethods, except
for storage 2, the double loop kernels of DOT2 and XPY2 are used. In storage 2, the
triple loop kernels of DOT3 are used.

Depending on whether the length of the current string of is or , the string
is in the inner loop or in the outer loop. This explains the comments: " is in the
inner loop" or " is in the outer loop" in Table 2-1. The selection between the
previous two possible usages of the kernel functions depends on the density of
matrices and . If is sparse, it is in the inner loop; otherwise, is in the outer
loop.

Storage A: Unpacked columns of and
Processing string by string

 is in the inner loop

Storage B: Unpacked columns of
Partial rows of
Processing string by string

 is in the outer loop

Storage C: Unpacked columns of and
Unpacked rows of (band only)

 is in the outer loop

Storage D: Unpacked columns of
Partial rows of
Unpacked rows of

 is in the outer loop

Storage 2: Unpacked non-null columns of and
Unpacked columns of
Loops are the same as in storage 1,
except that the outermost loop pulled
inside the kernel (triple loop kernel)

Storage 3: Unpacked non-null columns of and
Unpacked columns of
Loops are the same as in storage 1,
except that the outermost loop pulled
inside the kernel (BLAS level 3)

B D
A

A

B
D

A
A

B D
A

A

B
D

A
A

B D
A

B D
A

A N M A
A

A

A B A A

 NX Nastran Numerical Methods User’s Guide

28
Method Two (Sparse x Dense)
In the nontranspose case of this method, a single term of and one full column
of the partially formed are in the main memory. The remaining main memory
is filled with as many columns of as possible. These columns of matrix are
in string format. This method is effective when is large and sparse; otherwise,
too many passes of are required. The number of passes in is calculated from
Eq. 2-5.

The method can be graphically represented as follows:

Figure 2-2 Method Two

When is in memory, the k-th column of is processed against it and the
result is accumulated into the k-th column of . In the transpose case, one
column of is held in memory while holds only a single term at a time. This
method provides an alternative means of transposing matrix by using the
identity matrix and the zero matrix when the transpose module of NX
Nastran is inefficient.

Method Three (Sparse x Sparse)
In method three, the transpose and nontranspose cases are essentially the same
except for the initial transpose of matrix in the transpose case. In both cases,
matrix is stored in the same way as in method two, i.e., in string format.
Matrix is processed on an element-by-element basis, and the products of each

 term are calculated using the corresponding terms of in memory.
However, in method three, the results and storage are different from method
two. In method three, “storage bins” are established for the columns of matrix

. The number of these bins is based on the anticipated density of matrix and
is calculated as follows:

B
D

A A
A

B B

BA

NB

D C=

bkj aj
bkj

NA

j

bkj In Memory k-th Column In MemoryIn Memory

bkj A
D

B D
A

B C

A
A
B

bkj A

D D

29CHAPTER 2
Matrix Multiply-Add Module
Eq. 2-8

where:

The size of the bins is calculated as follows:

Eq. 2-9

This manner of storing the results takes advantage of the sparsity of matrix .
However, it requires sorting in the bins before packing out the columns of .

Method Four (Dense x Sparse)
This method has two distinct branches depending on the transpose flag.

Nontranspose Case

First, matrix is transposed and written into the results file. This operation is
performed with the assumption that is sparse. As many columns of as
possible are unpacked into memory and the columns of (rows of) are
interpreted on a term-by-term basis.

Figure 2-3 Nontranspose Method Four

For each nonzero term of , the scalar product with the columns of is formed
and written into the scratch file. When all columns of and rows of are
processed, the scratch file contains one column for each nonzero term in .
Therefore, a final pass must be made to generate matrix .

= order of the problem

= density of (estimated)

Number of bins Nρ=

N

ρ D

S ize of bins N
Number of bins
------------------------------------- 1

ρ
---= =

B
D

B
B A

BT B

BTA

NA

bkj

NA

j

bkj In MemoryIn Memory

ak

bkj aj

In Memory In Scratch

BT A
A B

B
D

 NX Nastran Numerical Methods User’s Guide

30
Transpose Case

In this case, a set of rows of (columns of) are stored in unpacked form.
These rows build a segment. Matrix is processed on a string-by-string basis,
providing the dot products of the strings and the columns of the segments.

Figure 2-4 Transpose Method Four

The results are sequentially written into the scratch file continuously. The
structure of this file is as follows:

The number of segments is (see Figure 2-4):

Eq. 2-10

Finally, the product matrix must be assembled from the scratch file, and matrix
, if present, must be added.

Sparse Method
The sparse multiply method is similar to regular method three. When the
transpose case is requested, matrix is transposed prior to the numerical
operations. This step is typically not very expensive since is sparse when this
method is selected.

The significance of this method is that matrix is stored in a new sparse form.
Specifically, all nonzero terms of a column are stored in a contiguous real
memory region, and the row indices are in a separate integer array. The sparse
kernel AXPI is used for the numerical work. The scheme of this method is shown
on the following figure.

AT A
B

AT B
a1

ar

b1 bn

a1 b1• a1 bn•

ar b1• ar bn•

CoI 1 CoI 2 ... CoI n CoI 1 ... CoI n EOF
Seg 1 Seg 1 Seg 1 Seg 2 Seg n

k n
r
---=

C

A
A

A

31CHAPTER 2
Matrix Multiply-Add Module
Figure 2-5 Sparse Method

From the figure, it is clear that matrix is processed on an element-by-element
basis. When all the nonzero terms of do not fit into memory at once, multiple
passes are executed on matrix , and only partial results are obtained in each pass.
These results are summed up in a final pass.

The sparse method is advantageous when both matrices are sparse.

Triple Multiply Method
In NX Nastran a triple multiplication operation involving only two matrices
occurs in several places. The most common is the modal mass matrix calculation
of . Note that in this multiplication operation the matrix in the middle is
symmetric. Therefore, the result is also symmetric. No symmetry or squareness
is required for the matrices on the sides. Historically, this operation was
performed by two consecutive matrix multiplications which did not take
advantage of the symmetry or the fact that the first and third matrices are the
same.

The operation in matrix form is

Eq. 2-11

A AT,

In Memory

j

DB

 C+iki

j

Bkj aij dij dijpartial
=+•

B
A

B

φTMφ

C A[]T B[] A[] D±=

 NX Nastran Numerical Methods User’s Guide

32
where:

Any element of matrix can be calculated as follows:

Eq. 2-12

where:

It can be proven by symmetry that

Eq. 2-13

Based on the equality in Eq. 2-13, a significant amount of work can be saved by
calculating only one-half of matrix .

When designing the storage requirements, advantage is taken of the fact that
matrix is only needed once to calculate the internal sums. Based on this
observation, it is not necessary to have this matrix in the main memory. Matrix

 can be transferred through the main memory using only one string at a time.

The main memory is equally distributed among , , and three vector
buffers. One of the vector buffers must be a full column in length. Therefore, the
structure of the main memory is as follows:

= order of

= symmetric matrix

= symmetric matrix

= symmetric matrix

= the row index,

= the column index,

A n m× n rows m columns×()

B n n×

C m m×

D m m×

clk C

clk ajk ail bij
i 1=

n

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

dlk+
j 1=

n

∑=

l 1 l m≤ ≤

k 1 k m≤ ≤

ajl aik bij
i 1=

n

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

ajk ail bij
i 1=

n

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

j 1=

n

∑=
j 1=

n

∑

C

B

B

AT ATB

33CHAPTER 2
Matrix Multiply-Add Module
Figure 2-6 Memory Distribution for Triple Multiply

Three I/O buffers must be reserved for the three simultaneously open files of ,
, and the scratch file containing partial results. Therefore, the final main memory

size is

Eq. 2-14

From Eq. 2-14, the number of columns fitting into memory can be calculated as
follows:

Eq. 2-15

The number of passes is calculated as follows:

Eq. 2-16

which is equal to the number of times the triple multiply operation reads through
the matrix .

The number of times the triple multiply operation reads through the matrix can
be approximated as follows:

One Column
Long

 Columns of k A Rows of k ATB

Vector
Buffer

Area 1 Area 2

-Length
Buffers
k

I/O Buffers

A
B

nz 2k n n 3 BUFFSIZE• 2k+ + +•=

A

k
nz 3 BUFFSIZE•– n–

2n 2+
--=

p

m
k
---- if m

k
---- integer=

int m
k
---- 1+⎝ ⎠
⎛ ⎞ if mk

---- integer≠
⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

B

A

 NX Nastran Numerical Methods User’s Guide

34
Eq. 2-17

The triple multiply method is implemented with a block spill logic where the
result of the matrix is generated in blocks.

The above triple multiply is called the triple multiply with sparse middle matrix.
The triple multiply with dense middle matrix is introduced below.

When both matrices and are dense, it is more efficient to apply dense
multiply with BLAS, which is applied in the triple multiply with dense middle
matrix. For the triple multiply with dense middle matrix, the main memory is
equally distributed among , , , two vector buffers and three (or four if
matrix D exists) I/O buffers. The stucture of main memory is similar to Figure 2-
6, except that the vector buffer for is replaced by columns of . The final
main memory size is

Eq. 2-18

and the number of columns fitting into memory can be calculated as follows:

Eq. 2-19

The estimation of the numbers of passes with the triple multiply with dense
middle matrix operation through the matrices and is the same as that of
the triple multiply with sparse middle matrix.

Parallel Multiply Method
The parallel multiply method, which is only used when parallel processing is
requested, is basically a parallel version of method one designed to solve the
CPU-intensive multiplication of dense matrices.

The storage structure of this method is the same as that of method one.
However, the columns of matrix are distributed among the processors.
Consequently, although is stored in the main (shared) memory, the processors
access different portions of it.

At the beginning of each pass, subtasks are created. These subtasks wait for the
columns of matrix to be brought into memory. Once a column of is in the
main memory, all subtasks process this column with their portion of matrix .
When all of the subtasks are finished, the main processor brings in a new column
of and the process continues. The parallel method is advantageous when
matrix is very dense and multiple processors are available.

pA
p
2
---=

C k k×

A B

A B ATB

B k B

nz 3k n 3 BUFFSIZE• 2k+ +•=

A

k
nz 3 BUFFSIZE•–

3n 2+
--=

A B

B
B

A A
B

A
B

35CHAPTER 2
Matrix Multiply-Add Module
Algorithms 1TC and 1NTE (see “MPYAD Methods” on page 36) are executed in
parallel when parallel MPYAD is requested. The parallel methods are represented
in Figure 2-7.

Figure 2-7 Parallel Multiply Method

The triple loop kernels used in Method 1 Storage 2 are also parallelized by some
machine vendors providing another way to execute parallel MPYAD.

In Memory In Memory

A C D,B

1 2 3 1 2 3
NT

T CPU CPU

 NX Nastran Numerical Methods User’s Guide

36
2.3 MPYAD Methods
The methods in the MPYAD module are divided into six main categories: four
methods for different density combinations, one method for parallel execution,
and one method for sparse operations. These methods are summarized in the
following table:

There are no fixed density boundaries set for these methods. Method selection
is a complex topic. Within method one, there are also ten submethods for the
special handling of the matrices.

Methods two and three are only selected in special cases. In most cases, the
sparse method replaces both methods two and three.

The parallel multiply method is aimed at shared memory parallel computers. It
does not run on distributed memory parallel computers.

The method 1 submethods (A-F) are automatically deselected in some cases. One
example is when the and matrices are the same; another is when any of the
matrices are non-machine precision.

MPYAD Method Identifiers. For selection and deselection purposes, identifiers
are assigned to certain methods. However, these identifiers are bit oriented, and
in some cases their decimal equivalents are used:

Method Combination

1

2

3

4

P

S

Method Bit Decimal

1NT 0 1

1T 1 2

2NT 2 4

2T 3 8

3NT 4 16

Dense Dense×

Sparse Dense×

Sparse Sparse×

Dense Sparse×

Dense Dense×

Sparse Sparse×

A B

37CHAPTER 2
Matrix Multiply-Add Module
In the above table, T represents transpose, NT indicates nontranspose, and A, B,
C, D, E, F, 2 are submethod names when they appear as the last character. For
example, 1NTD is a method one, nontranspose case, D submethod operation.

Bit 21 (with the corresponding decimal value of 2097152) is reserved for
submethod diagnostics.

3T 5 32

4NT 6 64

4T 7 128

1NTA 8 256

1NTB 9 512

1NTC 10 1024

1NTD 11 2048

1NTE 12 4096

1NTF 13 8192

1TA 14 16384

1TB 15 32768

1TC 16 65536

1TD 17 131072

Deselect 20 1048576

DIAG 21 2097152

22 4194304

1NT2 23 8388608

1T2 24 16777216

AutoS2 25 33554432

1NT3 26 67108864

1T3 27 134217728

Method Bit Decimal

 NX Nastran Numerical Methods User’s Guide

38
2.4 DMAP User Interface
The DMAP call for the MPYAD module executing the operation in Eq. 2-1 is

where:

An alternative MPYAD call is to use the SMPYAD module as follows
:

where:

This module executes the operation in Eq. 2-2.

MPYAD A,B,C/D/T/SIGNAB/SIGNC/PREC/FORM

T = 0,1: Non-transpose or transpose (see “Multiply-Add Equation” on
page 22)

PREC = 0,1,2: Machine, single, double, etc. (see “Matrix Trailers” on page 8)

FORM = 0,1,2: Auto, square, rectangular, etc. (see “Matrix Trailers” on page 8)

SMPYAD A,B,C,D,E,F/G/N/SIGNG/SIGNF/PREC/TA/TB/TC/TD/FORM

N = number of matrices given

TA,TB,TC,T
D

= transpose flags

FORM = as above

39CHAPTER 2
Matrix Multiply-Add Module
2.5 Method Selection/Deselection
MPYAD automatically selects the method with the lowest estimate of combined
cpu and I/O time from a subset of the available methods. Also, those methods that
are inappropriate for the user’s specific problem are automatically deselected. The
user can override the automatic selection and deselection process by manual
selection, subject to certain limitations. The details of both automatic and user
selection and deselection criteria are described below.

Automatic Selection
By default, methods 1 (all submethods), 3, 4, and Sparse are available for
automatic selection. Methods 2 and P are excluded from automatic selection
unless bit 25 of System Cell 66 has been set (decimal value 33554432) or all of the
default methods have been deselected. Also, if all of the default methods have
been deselected, method 2 will be used, provided it was not deselected. If all
methods have been deselected, a fatal error occurs.

Automatic Deselection
If a method is determined to be inappropriate for the user’s problem, it will be
automatically deselected. Except in those cases noted below, an automatically
deselected method will be unavailable for either automatic selection or manual
user selection. Note that any method that has insufficient memory to execute the
user’s problem will be deselected. The other automatic deselection criteria are
described below for each method. In this discussion "mpassI" stands for the
number of passes required by method I. and represent the densities of the

 matrix and matrix, respectively. Also, unless the method name is qualified by
NT (non-transpose) or T (transpose), the criteria applies to both.

Method 1 – All Submethods If method S is not deselected and mpass1 is greater
than 5 × mpass3 and and are less than 10%.

If MPYAD was called by the transpose module.

Method 1 – Storage A-F If the type of matrix is real and either or is
complex.

If the type of matrix is complex and both and
 are real.

Method 1NT – Storage A, D,
and F

Unless explicitly user selected.

Method 1T – Storage B
and C

1TB unless 1TA deselected.
1TD unless 1TC is deselected.

Method 2 If method S is not deselected, unless user selected.

ρA ρB
A B

ρA ρB

A B C

A B
C

 NX Nastran Numerical Methods User’s Guide

40
User-Specified Deselection
For method deselection, the following is required:

Main Methods – Deselection

SYSTEM(66) = decimal value of method

If the matrix is non-null and the type of is not
machine precision or the , , and matrices are
not all real or all complex.

If MPYAD was called by the transpose module.

Method 3 If method S is not deselected, unless user selected.

If matrix is real and the and/or matrix is
complex.

Method 3NT If the requested type of the matrix is real and
any of the input matrices are complex, or if the
requested type of is complex and all of the input
matrices are real.

Method 4 If methods 1, 2, 3, and S are not deselected and
greater than 10%, unless method 4 has been user
selected.

If matrix is non-null and its type is not equal to
machine precision or the and matrices are not
both real or not both complex.

Method 4T If more than 100 "front-end" (R4) passes or more
than 10 "back-end" (S4) passes.

Method Sparse If the type of matrix is not machine precision.

If matrix is non-null and and are not both
real or both complex.

If matrix is complex and matrix is real.

Method Parallel NT Unless 1NTE is not deselected.

If the number of columns per pass for 1NTE is less
than the number of available processors.

Method Parallel T Unless 1TC is available.

If the number of columns per pass for 1TC is less
than the number of available processors.

C C
A B C

A B C

D

D

ρA

C
B C

B

C A C

A B

41CHAPTER 2
Matrix Multiply-Add Module
Submethods – Deselection

SYSTEM(66) = decimal value of submethod

Sparse Method – Deselection

where SYSTEM (126) is equivalent to the SPARSE keyword.

Parallel Method – Deselection

where ncpu = number of CPUs and SYSTEM (107) is equivalent to the PARALLEL.
keyword.

The philosophy of method selection is to deselect all the methods except for the
one being selected.

Triple Loop Method – Deselection

SYSTEM(252) = 0 or > 100: Do not use triple loops in 1T,1NT

User-Specified Selection
For method selection, the following is required:

Main Methods – Selection

SYSTEM(66) = 255 – decimal value of method identifier

Main or Submethods – Selection

SYSTEM(66) = 1048576 + bit value of method or submethod identifier

Triple Multiply Method – Selection

SYSTEM(129) = 0 : Default, automatic selection

SYSTEM(129) = 1 : Two Multiply, i.e. pre-MSC.Nastran Version 67 method

SYSTEM(129) = 2 : Triple multiply for sparse middle matrix

SYSTEM(129) = 3 : Triple multiply for dense middle matrix

SYSTEM(126) = 0: Deselect all sparse methods
SYSTEM(126) = 2: Deselect sparse NT only
SYSTEM(126) = 4: Deselect sparse T only

SYSTEM(107) = 0: Deselect all parallel modules
SYSTEM(107) = 4096 + ncpu: Deselect parallel MPYAD only

 NX Nastran Numerical Methods User’s Guide

42
Sparse Method – Selection

Parallel Method – Selection

SYSTEM(126) = 1: Auto selection (This is the default.)
SYSTEM(126) = 3: Force sparse NT method
SYSTEM(126) = 5: Force sparse T method
SYSTEM(126) = 7: Force either T or NT sparse

SYSTEM(107) > 0 and
SYSTEM(66) = 1048592(T) or 1048588(NT)

43CHAPTER 2
Matrix Multiply-Add Module
2.6 Option Selection
The following table shows the type combination options that are supported (R
stands for real, C for complex). These options are automatically selected based on
matrix trailer information. When the user selects one particular method with an
option not supported with that method, an alternate method is chosen by MPYAD
unless all of them are deselected.

Method R • R + R C • C + C R • C + R R • C + C

1T YES YES YES YES

1NT YES YES YES YES

2T YES YES YES YES

2NT YES YES NO NO

3T YES YES NO NO

3NT YES YES NO NO

4T YES YES NO YES

4NT YES YES NO NO

S YES YES NO NO

P YES YES NO NO

 NX Nastran Numerical Methods User’s Guide

44
2.7 Diagnostics
The MPYAD module outputs diagnostic information in two categories:
performance diagnostics and error diagnostics.

Performance Diagnostics

DIAG 19 Output. The following performance diagnostics is received by setting
DIAG 19.

Figure 2-8 Excerpt from the DIAG19 Output

In the above figure, “passes” means the number of partitions needed to create
the result matrix.

To prevent creating huge .f04 files when many MPYAD operations are executed,
NX Nastran has a machine-dependent time limit stored in SYSTEM(20). When
a time estimate is below this value, it is not printed. To print all time estimates,
the user should set SYSTEM(20) = 0.

Most of the diagnostics information mentioned in the above table is self
explanatory. Notice the presence of the MPYAD keyword (SYSTEM(66)) used
to verify the method selection/deselection operation.

Whenever a method is deselected, its time estimate is set to 999999.

Submethod Diagnostics
For special diagnostics on the submethods, the user must add 2097152 to the
value of SYSTEM(66) (i.e. turn on bit 21). The format of this diagnostic is shown
in Table 2-3. The first column heading indicates the selected submethod, the
DESELECT column contains either YES or NO for each submethod, and the last
four columns contain the appropriate times.

M MATRIX A Trailer(COLS ROWS FORM TYPE NZ DENS) METHOD 1 Passes = XX CPU = XX I/O = XX Total = XX

P MATRIX B Trailer(COLS ROWS FORM TYPE NZ DENS) METHOD 2 Passes = XX CPU = XX I/O = XX Total = XX

Y MATRIX C Trailer(COLS ROWS FORM TYPE NZ DENS) METHOD 3 Passes = XX CPU = XX I/O = XX Total = XX

A Working Memory = XX SYSTEM (66) = XX METHOD 4 Passes = XX CPU = XX I/O = XX Total = XX

D Transpose Flag = XX SYSTEM (126) = XX METHOD S Passes = XX CPU = XX I/O = XX Total = XX

Table 2-3 Method One Submethods

NEW1 = B DESELECT NCPP PASSES KERNEL CPU I/O TOTAL

A YES x x x x x x
B NO x x x x x x
C NO x x x x x x
D YES x x x x x x

45CHAPTER 2
Matrix Multiply-Add Module
where:

Error Diagnostics
Error messages are abbreviated as follows:

The following error-related messages may be received from MPYAD:

UFM 3055:
AN ATTEMPT TO MULTIPLY NONCONFORMABLE MATRICES.

The message is given if the number of columns of A is not equal to the number of
rows in B, the number of rows of C is not equal to the number of rows of A, or the
number of columns of C is not equal to the number of columns of B. This message
is also given when MPYAD is called from another module.

SFM 5423:
ATTEMPT TO MULTIPLY INCOMPATIBLEMATRICES.

The cause for this message is the same as for UFM 3055. However, this message is
more elaborate and prints the trailers for all matrices involved. This message
comes from the MPYAD module.

UFM 6199:
INSUFFICIENT CORE AVAILABLE FOR MATRIX MULTIPLY.

E YES x x x x x x
F YES x x x x x x
1 YES x x x x x x
2 YES x x x x x x

Table 2-3 Method One Submethods (continued)

NEW1 = B DESELECT NCPP PASSES KERNEL CPU I/O TOTAL

NCPP = number of columns per pass

NEW1 = B indicates that submethod B is chosen

UFM User Fatal Message

SFM System Fatal Message

UWM User Warning Messages

SWM System Warning Messages

UIM User Information Messages

SIM System Information Messages

 NX Nastran Numerical Methods User’s Guide

46
This message results while using the sparse multiply method when the storage
estimate based on the trailer information is exceeded during the actual execution
of the operation.

47CHAPTER 2
Matrix Multiply-Add Module
2.8 MPYAD Estimates and Requirements
The CPU time estimate for the sparse multiply-add method is based on the
following input matrix characteristics:

Eq. 2-20

Computation time (sec):

Eq. 2-21

Data move time (sec):

Eq. 2-22

The minimum storage requirements are as follows:

= density of matrix

= one of either , , or depending on the particular methods used

=

= workspace available in words

= machine precision (1 for short-word machines, 2 for long-word
machines)

Note: are defined in the Glossary of Terms.

Disk:

Memory:

A[] : m n B[],• : n p C[] : m p• ρA,,•

m n p ρA M••••

n p• ρp• P• npass m n• ρA• P*• 2()m p ρC D(), P*•••+ +•

ρ* *

P* Ps P Pi

npass
m n• ρA•

W IPREC 1+()⁄
--

W

IPREC

M P and P*, ,

m n ρA• n p ρB• 2()m p ρD••+•+•

2 n m+() IPREC•

 NX Nastran Numerical Methods User’s Guide

48

NX Nastran Numerical Methods User’s Guide

CHAPTER

3 Matrix Decomposition

■ Decomposition Process

■ Theory of Decomposition

■ User Interface

■ Method Selection

■ Option Selection

■ Diagnostics

■ Decomposition Estimates and Requirements

■ References

 NX Nastran Numerical Methods User’s Guide

50
3.1 Decomposition Process
The decomposition operation is the first step in solving large linear systems of
equations.

For symmetric matrices:

 Eq. 3-1

where:

or

Eq. 3-2

where:

For unsymmetric matrices:

 Eq. 3-3

where:

= system matrix

= lower triangular factor

= diagonal matrix

= system matrix

= Cholesky factor

= system matrix

= lower triangular factor

= monic upper triangular factor

A[] L[] D[] L[]T=

A[]

L[]

D[]

A[] C[] C[]T=

A[]

C[]

A[] L[] U[]=

A[]

L[]

U[]

51CHAPTER 3
Matrix Decomposition
3.2 Theory of Decomposition

Symmetric Decomposition Method
The symmetric decomposition algorithm of NX Nastran is a sparse algorithm. This
algorithm relies on fill-in reducing sequencing and sparse numerical kernels. The
specific implementation also allows for the indefiniteness of the input matrix. This
method is based on Duff, et al., 1982.

The factor has a specific storage scheme that can be interpreted only by the sparse
FBS method.

Mathematical Algorithm
Permute and partition as follows:

Eq. 3-4

where the assumption is that the inverse of the by submatrix exists. lf is
indefinite, appropriate pivoting is required to ensure the existence of the inverse.
This requirement is fulfilled by the presence of the permutation matrices in the
above equation. The order of E is either 1 or 2. Then the elimination of can be
shown as

Eq. 3-5

Take , permute and partition again to obtain the following:

Eq. 3-6

and continue the process until

The final factored form of

Eq. 3-7

A

PAPT E CT

C B
=

s s E A

P
E

PAPT
Is 0

CE 1– In 1–

E 0

0 B CE 1– CT–
= Is E 1– CT

0 In 1–

A2 B CE 1– CT–=

PA2 PT E2 C2
T

C2 B2

=

O Bk() 1 or 2=

PAPT LDLT=

 NX Nastran Numerical Methods User’s Guide

52
is then given by building the following:

Eq. 3-8

and

Eq. 3-9

where is built from 1 by 1 and 2 by 2 diagonal blocks. The identity submatrices
are also of order 1 or 2 and the submatrices are rectangular with one or two
columns. The rows of the matrices extend to the bottom of the L matrix.

The most important step is the proper selection of the partition. This issue is
addressed later in this guide.

The module consists of two distinct phases: the symbolic phase and the numeric
phase.

Symbolic Phase
This phase first reads the input matrix and creates the following information: one
vector of length NZ (where NZ is the number of nonzero terms of the upper half of
the input matrix) which contains the column indices, and another vector of the
same length which contains the row indices of the nonzero terms of the upper
triangular half of the matrix . Both of these vectors contain integers. Another
responsibility of this phase is to eliminate the zero rows and columns of the input
matrix.

The selection of the partition (i.e., the general elimination process) can be executed
in a variety sequences. The performance of the elimination using different
sequences is obviously different. To find an effective elimination sequence, a
symbolic decomposition is also executed in the preface. An important criterion is to
minimize the fill-in (off-diagonal nonzeros) created in each step of the elimination
process, thereby reducing the numerical work and the I/O requirements.

L

I1 0 0 . 0

C1E1
1– I2 0 . 0

 : C2 E2
1– I3 . 0

 : : C3E3
1– . 0

 : : : . Ik

=

D

E1 0 0 .

0 E2 0 .

0 0 E3 .

0 0 0 Bk Ck Ek
1– Ck

T–

=

D Ik

Ci Ei
1–

E

A

A

A

E

53CHAPTER 3
Matrix Decomposition
The reordering methods may be prefaced by a compression process based on grid-
dof connection or the so-called supernodal amalgamation principle (both available
with any reordering). Both contribute by making the reordering more efficient in
time and profile.

Several different reordering algorithms are available in the symbolic phase:
multiple minimum degree algorithm (MMD), Metis, EXTREME, MLV (multilevel
vertex partitioning), etc. These are described in the references.

Each of the methods can be selected by setting system cell 206 to the desired option;
see “User Interface” on page 58 for details.

In each of the above methods, the elimination of a chosen variable is performed
based on severing all the edges connected to it and connecting those nodes which
were connected through the eliminated variable. Severing these edges leaves a
reduced graph where the same process can continue until the reduced graph is a
single node only. Then using this term as the root, create a so-called assembly tree
of the matrix. The final elimination sequence is obtained by traversing the assembly
tree. Note that this sequence may be changed due to numerical reasons.

Finally, the elimination sequence is stored into an array of length (where
is the order of the matrix). Note that at this phase, the actual terms of the matrix
are not needed.

Numeric Phase
The mathematical decomposition process was described previously except for the
details of the pivot selection for numerical stability. The strategy applied is a variant
of the Bunch-Parlett method (1971) and is implemented as follows.

Let us assume that the next potential pivot row is the j-th. The diagonal entry of that
row is tested against all the other terms as follows:

where t is based on an input parameter. If the inequality is true, then the
decomposition process uses s = 1 (1 by 1 pivot) and as the pivot term (matrix).
If the inequality is not true and the term is the largest in the pivot row, then the
following pivotal matrix is tested for stability:

If

3 N• N
A

k = j 1 … n, ,+()

ajj t ajk>

ajj E
ajl

E2
ajj ajl

alj all

=

 NX Nastran Numerical Methods User’s Guide

54
is satisfied, then is the pivot. Here is the largest term in row and are the
terms of .

If both of the above pivots fail, then a search is performed in the remaining possible
pivot rows for pivots. When one is found, that particular row is permuted
into the j-th row position (by putting ones into the proper locations of the P matrix),
and the numerical elimination proceeds.

The numerical work is executed primarily by vector kernels. The triangular kernels
DFMR and DFMQ are also used in addition to the conventional AXPY kernel.

Numerical Reliability of Symmetric Decomposition
The numerical reliability of the matrix decomposition process is monitored via the
matrix/factor diagonal ratio as follows:

Eq. 3-10

where is the original diagonal term of the matrix and is the corresponding
diagonal term of the factor. The maximum value of these ratios is used to indicate
how well-conditioned the original matrix was. The higher this ratio, the closer the
matrix is to singularity. As shown by the algorithm of the decomposition, small
values are the cause of numerical instability. Hence, in the case of unusually high
matrix/factor diagonal ratios, the user should practice extreme care in evaluating
the results.

In NX Nastran, a common source of high ratios are mechanisms. A mechanism is a
part of the structure that may move independently from the rest of the structure as
a rigid body.

For example, when unconstrained directions allow the entire model to move (a
mechanism) a high ratio occurs at the last grid point in the internal sequence.
Another possible cause of high ratios is connecting flexible elements to stiff
elements. Finally, missing elements can also cause high ratios.

In general, ratios below are usually acceptable; however, the safety limit is
approximately .

Unsymmetric Decomposition
The sparse unsymmetric decomposition algorithm is another variation of the
Gaussian elimination as follows:

maxi eij
alm

t
-------------<

j 1=

2

∑

E2 alm l eij

E2
1–

k j>()

aii
di

aii di

di

107

103

55CHAPTER 3
Matrix Decomposition
For (loop on all columns)

For (loop on all rows)

If , then (elements of lower triangular factor)

If , then

Note that the diagonal entries of U are equal to 1 by construction. For numerical
reliability, the above elimination order is modified when necessary. The pivoting
step is based on the following criterion:

Eq. 3-11

Thus, the term is accepted as a possible pivot term if it is larger than the
maximum taken in the k-th column multiplied by a ratio of t (which is based on a
user-specified threshold parameter; see Eq. 3-12).

From the computer science aspect, the sparse unsymmetric decomposition is similar
to the symmetric decomposition, using indexed vector operations and frontal logic
which are not discussed here in detail. The sparse unsymmetric decomposition also
has a distinct symbolic and numeric phase similar to symmetric sparse
decomposition.

Partial Decomposition
The sparse symmetric decomposition method may be used to decompose only a
certain partition specified by a partitioning vector (PARTVEC input data block for
DCMP). In this case the following decomposition is obtained:

where

j 1= ..., n,

i 1= ..., n,

i j≥

li j aij lik ukj

k 1=

j 1–

∑–=

i j<

uij

aij lik ukj

k 1=

i 1–

∑–

lii
---=

akk max
i

aik t•≥

akk

A
Aoo Aoa

Aao Aaa

Loo

Lao I

Doo

 Aaa

Loo
T Lao

T

 I
= =

 NX Nastran Numerical Methods User’s Guide

56
The results of are stored in the LD output data block and the is in the
LSCM data block (see “User Interface” on page 58).

Distributed Decomposition
A distributed decomposition method based on domain decomposition is available
using the DISDCMP module. This method is used, for example, in the GDSTAT
parallel SOL 101 sequence. Essentially, each processor performs a partial
decomposition, producing a decomposition of the local interior matrix and a
global Schur complement (assembled from the local Schur complements). A
conceptually similar distributed decomposition method is used in the eigensolver;
see “Geometric Domain Decomposition-Based Distributed Parallel Lanczos
Method” on page 159 for details. The DISFBS module is used to perform the
corresponding distributed forward-backward substitution.

Diagonal Scaling Option
When the input matrix is sparse and has diagonal entries of widely varying
magnitude, the factor in symmetric decomposition may have more deferred pivots,
therefore, obtain an excessively large front size and spend much more time for
factorization. Diagonal scaling would achieve a smaller front size and improve
performance of symmetric decomposition.

Diagonal scaling prescales the input matrix into :

where is a diagonal matrix. Each entry of is the magnitude of the
corresponding diagonal term in . The decomposition of is:

and the decompositon of is

Aaa Aaa Lao Doo Lao
T–=

Loo Doo Lao, , Aaa

Aoo

A Ã

Ã D

1
2
---–

AD

1
2
---–

=

D D

A Ã

Ã L̃D̃L̃
T

=

A

A L D

1
2

D̃D

1
2

⎝ ⎠
⎜ ⎟
⎛ ⎞

LT=

57CHAPTER 3
Matrix Decomposition
where

L D

1
2

L̃D

1
2
---–

=

 NX Nastran Numerical Methods User’s Guide

58
3.3 User Interface

Decompose a square matrix [A] into upper and lower triangular factors [U] and [L]
and diagonal matrix [D]. DCMP also provides extended diagnostics.

Format:

Input Data Blocks:

Output Data Blocks:

DCMP Matrix decomposition with extended diagnostics

DCMP USET,SIL,EQEXIN,A,,PARTVEC/
LD,U,LSCM/
S,N,KSYM/CHOLSKY/BAILOUT/MAXRATIO/SETNAME/F1/DECOMP/
DEBUG/THRESH/S,N,MINDIAG/S,N,DET/S,N,POWER/S,N,SING/
S,N,NBRCHG/S,N,ERR/LMTROWS $

USET Degree-of-freedom set membership table.

SIL Scalar index list.

EQEXIN Equivalence between external and internal numbers.

A A square matrix (real or complex, symmetric or unsymmetric).

PARTVEC Partitioning vector specified when A is a partition of SETNAME. Its
rowsize is indicated by SETNAME. A is the zero-th partition from
PARTVEC. In the partial decomposition case it defines .

LD Nonstandard lower triangular factor [L] and diagonal matrix [D] or
Cholesky Factor. [LD] also contains [] for partial decomposition.

U Upper triangular factor or high ratios matrix. If A is unsymmetric, U is
the nonstandard upper triangular factor of [A] or the Cholesky factor. If
A is symmetric and the value of system cell 166 includes the value of 8,
U contains the "high ratio terms of the factor diagonal ratios."

LSCM Resequencing matrix based on internal resequencing of A.

A[] L[] U[] for unsymmetric A[]=

A[] L[] D[] L[]T for symmetric A[]=

Aoo

Lao

59CHAPTER 3
Matrix Decomposition
Parameters:

KSYM Input/output-integer-default=1. See “Method Selection” on page 61

CHOLSKY Input-integer-default=0. See “Method Selection” on page 61

BAILOUT Input-integer-default=0. If BAILOUT>0, then the module exits with
error message if factor to diagonal ratio exceeds MAXRATIO. If
BAILOUT<–1, then the module continues with warning message if
factor to diagonal ratio exceeds MAXRATIO.

MAXRATIO Input-real-default=1.E5. See the BAILOUT and ERR parameter.

SETNAME Input-character-default=‘H’. One or two letters indicating the set
membership of [A].

F1 Input-real-default = 0.0. Tolerance for suppressing numbers of small
magnitude. Matrix elements with magnitudes less than F1 will be set
to zero.

DECOMP Input-integer-default=–1. See “Option Selection” on page 62.

DEBUG Input-integer-default=–1. See “Option Selection” on page 62.

THRESH Input-integer-default=–6. See “Option Selection” on page 62.

MINDIAG Output-real double precision-default=0.0D0.

DET Output-complex-default=(0.0,0.0).

POWER Output-integer-default=0.

SIGN Output-integer-default=0. See “Option Selection” on page 62.

NBRCHG Output-integer-default=0. See READ module.

ERR Output-integer-default=–1. If BAILOUT=–1, this parameter always
remains at zero. If BAILOUT=0 and the factor to diagonal ratio is
negative or greater than MAXRATIO, ERR is reset to –1.

LMTROWS Input-integer-default=0. Number of Lagrange multipliers appended
to the A matrix. These rows are excluded from the internal reordering
in the DCMP module.

 NX Nastran Numerical Methods User’s Guide

60
Performs distributed decomposition which includes the parallel elimination of
boundary nodes and summation of global Schur complement.

Format:

Input Data Blocks:

Output Data Blocks:

Parameters:

DISDCMP Distributed decomposition

DISDCMP USET,SIL,EQEXIN,SCHUR,,EQMAP/
LBB,DSFDSC,SCHURS/
HLPMETH////////////// $

USET Degree-of-freedom set membership table.

SIL Scalar index list.

EQEXIN Equivalence between external and internal numbers.

SCHUR Local Schur complement matrix in sparse factor format.

EQMAP Table of degree-of-freedom global-to-local maps for domain
decomposition.

LBB Distributed boundary matrix factor in sparse factor format (contains
the local panels of the fronts).

DSFDSC Distributed boundary matrix factor.

SCHURS Sum of all Schur matrices from all processors.

HLPMETH Input-integer-default=1. Processing option.

>0 Summation only.

=0 Complete boundary decomposition.

61CHAPTER 3
Matrix Decomposition
3.4 Method Selection
To select decomposition methods in DCMP, the following parameters are used:

KSYM 1 Use symmetric decomposition (default).

0 Use unsymmetric decomposition.

–1 Use decomposition consistent with form of [A]. KSYM will be
reset to 0 or 1 consistent with actual decomposition type.

3 Use symmetric partial decomposition.

CHOLSKY If KSYM=1 or KSYM=–1 and [A] is symmetric then:

1 Use Cholesky decomposition.

0 Use standard decomposition (default).

If KSYM=3, then CHOLSKY is set to the number of degrees of
freedom in the o-set.

 NX Nastran Numerical Methods User’s Guide

62
3.5 Option Selection

Minimum Front Option
To increase performance of the sparse symmetric decomposition, the user may set
SYSTEM(198), the MINFRONT keyword to a value greater than 1. The appropriate
value is problem and machine dependent. Its meaning is to restrict the sparse
strategy to above a certain minimum front size (characteristically 8 – 16).

Reordering Options
The various reordering options are selected via SYSTEM(206) as follows. Note that
the EXTREME method has two submethods; BEND and AMF. If EXTREME is used
when SYSTEM(206) = 0 (default), then either BEND or AMF is automatically
selected by the software depending on the size of the model. If SYSTEM(206) = 4,
then BEND is used.

Compression Options
The supernodal compression scheme currently is available only with EXTREME
and Metis. Supernodal compression scheme with EXTREME is selected by
SYSTEM(206) = 68 (64 + 4), and similarly supernodal compression scheme with
Metis is chosen by SYSTEM(206) = 72 (64 + 8).

The grid-based compression scheme is automatically executed when the datablocks
defining the grid-DOF connections (USET,SIL) are available to the module.

SYSTEM(206)
DCMPSEQ Method

0 (Default) EXTREME for 3D, Metis or
MMD for 2D

1 MMD – definite matrices

2 MMD – indefinite matrices

3 No sequencing

4 EXTREME

8 Metis

9 Better of Metis and MMD

32 MLV

64 Turn on Supernodal Compression Scheme

63CHAPTER 3
Matrix Decomposition
Non-Sparse SDCOMP Options
If bit 4 of SPARSE = SYSTEM(126) is set to 0, then sparse symmetric decomposition
is deactivated, and the old non-sparse symmetric decomposition is used instead. If
bit 1 of SYSTEM(166) is set and the sparse decomposition fails because of
insufficient memory, the old non-sparse decomposition will be attempted.

TAUCS provides another option for sparse decomposition of symmetric positive
definite matriices. The functionality is Multifrontal Supernodal Cholesky
Factorization. It uses the BLAS to factor. For better performance, an efficient BLAS
is necessary. TAUCS performs factorization in-core and requires larger memory
than sparse Cholesky decomposition. Without sufficient memory, it will fail and fall
back to sparse Cholesky decomposition. More detail about TAUCS can be found at
http://www.tau.ac.il/~stoledo/taucs/.

If the SPARSE setting allows sparse symmetric decomposition, Cholesky
decomposition and TAUCS decomposition are further controlled by SPCHOL =
SYSTEM(424) as in the following table:

Non-Sparse UDCOMP Option
If SYSTEM(209) = 0 is set, the old non-sparse unsymmetric Gaussian elimination
option is used.

Perturbation Options
If DEBUG (= SYSTEM(60)) is set with the old non-sparse decomposition, then an

 replaces the zero diagonal terms. If DEBUG is not set or the sparse
decomposition is used, then the perturbation is .

If SYSTEM(69)=16 with sparse decomposition, then a 1.0 is placed in the diagonal
position for all null columns of the input matrix.

SYSTEM(424)
SPCHOL Cholesky Decomposition

0 Old non-sparse Cholesky only

1 Attempt sparse; if sparse fails, fall back to
old non-sparse

2 Sparse only, do not fall back

4 TAUCS; if fails, fall back to option 0

5 TAUCS; if fails, fall back to option 1

ε 10 DEBUG–=
ε 10 10–=

 NX Nastran Numerical Methods User’s Guide

64
High Rank Options
An additional performance improvement is possible, with the high rank update in
the sparse decomposition methods. The rank of update in the various sparse
decomposition methods is set as:

The defaults of these cells are set automatically, since they are machine dependent.

Diagnostic Options
These options of the sparse symmetric decomposition are requested as follows:

SYSTEM Sparse Decomposition

(205) Symmetric, real

(219) Symmetric, complex

(220) Unsymmetric, real

(221) Unsymmetric, complex

SYSTEM Action

(69) = 1 Stop if null column is found

(69) = 4 Stop if zero diagonal term is found

(69) = 16 Place 1.0 on diagonal of null columns
and continue

(69) = 32 Terminate on zero diagonal term

(69) = 64 Stop after diagnostic phase

65CHAPTER 3
Matrix Decomposition
The THRESH parameter is used to control the pivoting for the unsymmetric and the
sparse (which also pivots) decompositions. The pivot threshold is

Eq. 3-12

In the unsymmetric case, pivoting occurs if a factor diagonal value is less than . In
the symmetric case of the sparse decomposition, pivoting occurs when the ratio for
the factor diagonal value to the largest term in the pivot row is less than .

The default value of THRESH is 6 for the sparse decomposition and 10 for the
unsymmetric decomposition. The latter may also be defined by SYSTEM(91) for the
unsymmetric case.

In the case where DCMP is called from eigenvalue analysis, the THRESH parameter
may be set by SYSTEM(89).

The shared memory parallel execution of the sparse symmetric decomposition can
be selected by

SYSTEM(126) = 8 and SYSTEM(107) > 1

and deselected by turning off either one of these system cells.

(166) =

1 Fall back due to insufficient memory

2 Provides internal diagnostics

4 Overwrites MAXRATIO by 1.0

8 Provides MAXRATIO vector in U

16 Reserved for Siemens PLM internal
use

32 Reserved for Siemens PLM internal
use

64 UWM or UFM if sparse Cholesky
fails

128 Diagonal scaling

(294)>0 Print debugging information from
symbolic phase

t 10THRESH=

t

t

 NX Nastran Numerical Methods User’s Guide

66
3.6 Diagnostics
The diagnostics given by the decomposition module are organized into numerical,
performance, statistical, and error diagnostics.

Numerical Diagnostics
These diagnostics are related to the accuracy of the solution.

Singularity

Causes of Singularity. A matrix is singular if its inverse cannot be calculated. The
SING parameter is set to –1 if the matrix is singular. Singularity is a relative issue
with respect to stiffness ratios. However, some independent general reasons for
singularity include:

• Degree of freedom without stiffness

• 2-D problem, normal rotation unconstrained

• 3-D problem, rotational DOFs at solids unconstrained

• Planar joint in space structure

Singularity Test

To avoid singularity, the user can enter the AUTOSPC keyword. If AUTOSPC is set
to YES, the singular degrees of freedom are automatically constrained out. A degree
of freedom is considered singular if

Eq. 3-13

where is the term in the i-th row and the j-th column of matrix, and is the
largest term in .

The default for is and can be changed by the keyword EPZERO. The SPC
entries constraining the singular DOFs are generated by setting the SPCGEN
keyword to YES.

Parameter EPPRT (Bulk Data) (default =) is used to set a threshold below which
all potential singularities are listed. If EPPRT is greater than EPZERO, then the
printing of singularities with a ratio of exactly zero is suppressed.

Ill-Conditioning

Causes of Ill-Conditioning. The ill-conditioning of a matrix can be caused by any
of the following reasons:

Aij
Amax
--------------- ε≤

Aij A Amax

Aelem[]

ε 10 8–

10 8–

67CHAPTER 3
Matrix Decomposition
• Low stiffness in rotation

• Large mass

• Very stiff beam

• Mechanisms

MAXRATIO Parameter. Ill-conditioning is diagnosed by the MAXRATIO
diagnostics parameter which is defined as

Eq. 3-14

where is the i-th diagonal term in the matrix.

The maximum MAXRATIO of the decomposition is printed under User Information
Message 4158 or 4698 when its value is greater than . This limit can be changed
by setting the keyword MAXRATIO. Setting SYSTEM(60) = -999 will result in
printing only the highest and lowest.

In the case of pivoting, this ratio is not calculated.

Negative Terms on Factor Diagonal

STURM Number. The NBRCHG parameter (DMAP call) gives the number of
negative terms on the factor diagonal (also called the STURM number). This
diagnostics information message is important when decomposition is used in an
eigenvalue module. In this case, the number of negative terms provides the number
of negative eigenvalues of the matrix. Since the matrix decomposed in this case is
usually a shifted matrix, the NBRCHG gives the number of eigenvalues to the left of
the shift. User Information Messages 4158 and 5010 in the eigenvalue modules print
the value of NBRCHG.

Performance Diagnostics
For symmetric decomposition, the following message (UIM 4157) appears:

MATRIX SIZE NUMBER OF NONZEROES

NUMBER OF ZERO COLUMNS NUMBER OF ZERO DIAGONALS

CPU TIME ESTIMATE I/O TIME ESTIMATE

EST. MEMORY REQUIRED MEMORY AVAILABLE

EST. INTEGER WORDS IN FACTOR EST. NONZERO TERMS IN FACTOR

EST. MAX FRONT SIZE RANK OF UPDATE

MAXRATIO
Aii
Dii
--------=

Dii D

107

2 2×

 NX Nastran Numerical Methods User’s Guide

68
The integer words in factor are the row and column index information, and the real
words are the actual terms of the factor matrix . In the sparse methods, the
integer and real words are stored in two separate records.

The 4157 message is followed by UIM 6439 for the sparse symmetric decomposition
as follows:

For unsymmetric sparse decomposition, UIM 4216 provides the following
information.

This message is also followed by a UIM 6439 which gives actual values for the
estimates in UIM 4216.

Statistical Diagnostics
The following messages are self-explanatory.

UIM 4158:
STATISTICS FOR SYMMETRIC (PARALLEL AND/OR SPARSE)
DECOMPOSITION OF DATA BLOCK XX
NUMBER OF NEGATIVE TERMS ON FACTOR DIAGONAL.
MAXIMUM RATIO OF MATRIX DIAGONAL TO FACTOR DIAGONAL.

UIM 4367:
STATISTICS FOR UNSYMMETRIC DECOMPOSITION OF DATA BLOCK XX
FOLLOW.
NUMBER OF PIVOT OPERATIONS = XX.

UIM 6439 (DFMSA) ACTUAL MEMORY AND DISK SPACE REQUIREMENTS
FOR SPARSE SYMMETRIC DECOMPOSITION

SPARSE DECOMP MEMORY REQUIRED MAXIMUM FRONT SIZE

INTEGER WORDS IN FACTOR NONZERO TERMS IN FACTOR

MATRIX SIZE NUMBER OF NONZEROES

NUMBER OF ZERO COLUMNS NUMBER OF ZERO DIAGONAL
TERMS

CPU TIME ESTIMATE I/O TIME ESTIMATE

ESTIMATED MEMORY REQUIREMENT MEMORY AVAILABLE

EST. INTEGER WORDS IN FACTOR EST. NONZERO TERMS

ESTIMATED MAXIMUM FRONT SIZE RANK OF UPDATE

L[]

69CHAPTER 3
Matrix Decomposition
UWM 5221:
STATISTICS FOR DECOMPOSITION OF MATRIX XX.
THE FOLLOWING DEGREES OF FREEDOM HAVE NULL COLUMNS.

UWM 4698:
STATISTICS FOR DECOMPOSITION OF MATRIX XX.
THE FOLLOWING DEGREES OF FREEDOM HAVE FACTOR DIAGONAL
RATIOS GREATER THAN MAXRATIO OR HAVE NEGATIVE TERMS ON THE
FACTOR DIAGONAL.

Error Diagnostics
The following are messages from sparse decomposition and are described as
follows:

SFM 4370:
DECOMPOSITION REQUIRES THAT PRECISION OF DATA BLOCK XX EQUAL
SYSTEM PRECISION.

This is a general limitation of the module.

UFM 3057:
MATRIX XX IS NOT POSITIVE DEFINITE.

A Cholesky option was requested by the user on a non-positive definite matrix.

SFM 4218:
UNSYMMETRIC DECOMPOSITION IS ABORTED DUE TO INSUFFICIENT
MEMORY.

The preface of the unsymmetric decomposition module needs more memory to
execute.

SFM 4255:
UNSYMMETRIC DECOMPOSITION OF DATA BLOCK XX FAILS AT ROW XX.
UNABLE TO PIVOT.

A singular matrix was given to the module.

UW(F)M 6136 (DFMSA):
INSUFFICIENT CORE FOR SYMBOLIC (NUMERIC) PHASE OF SPARSE
DECOMPOSITION.
USER ACTION: INCREASE CORE BY XX WORDS.

UFM 6133 (DFMSD):
SINGULAR MATRIX IN SPARSE DECOMPOSITION.
USER ACTION: CHECK MODEL

 NX Nastran Numerical Methods User’s Guide

70
UFM 6134 (DFMN):
MATRIX IS NOT POSITIVE DEFINITE IN SPARSE DECOMPOSITION AT ROW =
XX:
USER ACTION: CHECK MODEL

Sparse Cholesky decomposition failed because the matrix is not positive definite.

SWM 6731 (SDCBOD):
ROW XX OF LOWER TRIANGULAR FACTOR HAS DIAGONAL TERM = 0 (OR
.LT. 0 IF CHOLESKY)

Non-sparse decomposition failed, usually because a Cholesky decomposition was
requested and the matrix is not positive definite.

UFM 6137 (DFMSD):
INPUT MATRIX IS RANK DEFICIENT, RANK = XX.
USER ACTION: CHECK MODEL

71CHAPTER 3
Matrix Decomposition
3.7 Decomposition Estimates and Requirements
The CPU time estimate for the sparse symmetric decomposition method includes:

Computation time (sec):

Eq. 3-15

Data move time (sec):

Eq. 3-16

where:

Storage Requirements. The minimum storage requirements are as follows:

where:

The CPU time estimate for the sparse unsymmetric decomposition method is

Computation time (sec):

= order of problem

= average number of connected DOFs

= approximate number of nonzeroes in the upper triangle of the original

matrix

= density of the original matrix

Note: and are defined in the Glossary of Terms.

Disk:

Memory:

NWP
T

= number of words per term

1 for 32 bit word real arithmetics

2 for 32 bit word complex arithmetics

2 for 64 bit word real arithmetics

4 for 64 bit word complex arithmetics

1
2
--- N Nfront

2 M⋅ ⋅ ⋅

1
2
--- N Nfront Ps 2 Ps Nz⋅ ⋅+⋅ ⋅ ⋅

N

Nfront

Nz

N2 ρ 2⁄ N+•

ρ

M Ps

1 NWPT+()Nfront N N+⋅

6 2 NWPT⋅+() N⋅

 NX Nastran Numerical Methods User’s Guide

72
Eq. 3-17

Data move time (sec):

Eq. 3-18

N Nfront
2 M⋅

N Nfront Ps 4 Ps Nz+⋅

73CHAPTER 3
Matrix Decomposition
3.8 References
Bunch, J. R.; Parlett, B. N. Direct Methods for Solving Symmetric Indefinite Systems

of Linear Equations. Society for Industrial and Applied Mathematics Journal
of Numerical Analysis, Volume 8, 1971.

Duff, I. S.; Reid, J. K. The Multifrontal Solution of Indefinite Sparse Symmetric
Linear Systems. Harwell Report CSS122, England, 1982.

George, A.; Liu, J. W. Computer Solutions of Large Sparse Positive Definite
Systems. Prentice Hall, 1981.

Goehlich, D.; Komzsik, L. Decomposition of Finite Element Matrices on Parallel
Computers. Proc. of the ASME Int. Computers in Engineering Conf., 1987.

Golub, G. H.; Van Loan, C. F. Matrix Computations. John Hopkins University Press,
1983.

Hendrickson, B., Rothberg, E. Improving the Runtime and Quality of Nested
Dissection Ordering. Silicon Graphics, Inc., Mountain View, CA, April 11,
1996.

Karypis, G., Kumar, V. METIS©, A Software Package for Partitioning Unstructured
Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of
Sparse Matrices, Version 3.0.3, University of Minnesota, Department of
Computer Sciences/Army HPC Research Center, Minneapolis, MN,
November 5, 1997. (http://www.cs.umn.edu/~karypis)

Pissanetzsky, S. Sparse Matrix Technology. Academic Press, 1984.

Shamsian, S.; Komzsik, L. Sparse Matrix Methods in MSC/NASTRAN. The MSC
1990 World Users Conf. Proc., Vol. II, Paper No. 64, March, 1990.

Rothberg, E. Ordering Sparse Matrices Using Approximate Minimum Local Fill,
Silicon Graphics, Inc., Mountain View, CA, April 11, 1996.

NX Nastran Numerical Methods User’s Guide

CHAPTER

4 Direct Solution of Linear Systems

■ Solution Process

■ Theory of Forward-Backward Substitution

■ User Interface

■ Method Selection

■ Option Selection

■ Diagnostics

■ FBS Estimates and Requirements

 NX Nastran Numerical Methods User’s Guide

76
4.1 Solution Process
Solution of linear systems is an important and time-consuming component of NX
Nastran runs. Mathematically, the solution process represents a right-handed

Eq. 4-1

or a left-handed

Eq. 4-2

direct solution.

The iterative solution directly solves Eq. 4-1 and is described in “Iterative Solution
of Systems of Linear Equations” on page 89.

The direct solution method contains two distinct parts, a forward and a backward
substitution, hence the name forward-backward substitution.

The forward-backward substitution is a follow-up operation to the decomposition
process (see “Matrix Decomposition” on page 49).

The right-handed direct solution step is executed using the triangular factors
calculated in the decomposition as a forward step of

Eq. 4-3

The backward step in the case of symmetric decomposition uses the intermediate
result as follows:

Eq. 4-4

In the case of unsymmetric decomposition, the backward step is

Eq. 4-5

The left-handed forward step to solve Eq. 4-2 is

Eq. 4-6

and

Eq. 4-7

In Eq. 4-6 and Eq. 4-7, the decomposition is assumed to be a Cholesky method. In
the case, Eq. 4-7 is modified as

Eq. 4-8

A[] X[] B[]=

X[]T A[] B[]T=

L[] Y[] B[]=

Y[]

L[]T X[] D[] 1– Y[]=

U[] X[] Y[]=

WTLT BT=

XTL WT =

LDLT

XTL WTD 1–=

77CHAPTER 4
Direct Solution of Linear Systems
The theory covering the solution of systems of linear equations is described in the
following section.

 NX Nastran Numerical Methods User’s Guide

78
4.2 Theory of Forward-Backward Substitution

Right-Handed Method
The elements of matrices and of Eq. 4-3 and Eq. 4-4 are given by

Eq. 4-9

and

Eq. 4-10

NX Nastran uses a sparse implementation of the above algorithm, as well as special
modifications for the parallel, unsymmetric, and left-handed cases.

Left-Handed Method
The elements of Eq. 4-6 and Eq. 4-7 are:

Eq. 4-11

and

In the above equations, the matrix is assumed to have been decomposed with the
Cholesky method.

Sparse Method
The sparse option of FBS executes the forward-backward substitution from the
factor of the sparse (multifrontal) decomposition. Therefore, one must consider the
pivoting performed by the permutation matrix for the symmetric case, or the
permutations and for the unsymmetric case, and then solve the following
matrix equations. For the symmetric case,

Y[] X[]

yij bij lik ykj
k 1=

i 1–

∑–=

xij
yij
di
------ lki xkj

k i 1+=

n

∑–=

wik

bik wjk li j
j 1=

i 1–

∑–

li i
---=

zik

wik

j i 1+=

n

∑ wjk li j–

li i
--=

A

P
P Q

79CHAPTER 4
Direct Solution of Linear Systems
Eq. 4-12

For the unsymmetric case,

Eq. 4-13

The usual forward pass solves the following equation for the symmetric case

Eq. 4-14

For the unsymmetric case,

Eq. 4-15

for . The backward pass gives from the following equation for the symmetric
case

Eq. 4-16

For the unsymmetric case,

Eq. 4-17

The storage requirements are real arrays for the right-hand side and the result
, an integer vector of length holding the permutation information, and

workspace for the factor.

Note that only real right-hand sides are supported in the sparse Cholesky case.

Parallel Method
A shared memory, parallel execution of the sparse method is also available. The
parallelization is either on the factor side of the equations, based on special shared
memory parallel kernels, or on the right-hand side when multiple loads exists.

Also, the DISFBS module is available for distributed forward-backward
substitution based on domain decomposition. The distributed method uses the
factor and Schur complement matrices produced by the DISDCMP module.
Conceptually, this is similar to the distributed linear solution used in the parallel
Lanczos method; see “Geometric Domain Decomposition-Based Distributed
Parallel Lanczos Method” on page 159.

LDLTPX PB=

PLUQX PB=

LY PB=

PLY PB=

Y X

DLT PX() Y=

UQX Y=

B
X N

 NX Nastran Numerical Methods User’s Guide

80
4.3 User Interface
To solve the matrix equation (right-handed solution) or
(left-handed solution) using the triangular factors computed by DCMP.

Input Data Blocks:

Output Data Block:

Parameters:

To perform a distributed forward-backward substitution using the factors
computed by DISDCMP.

Input Data Blocks:

Output Data Blocks:

FBS LD,U,B/X/KSYM/SIGN/FBTYP $

LD Lower triangular factor/diagonal, or Cholesky factor.

U Upper triangular factor. Purged unless [A] is unsymmetric.

B Rectangular matrix.

X Rectangular matrix having the same dimensions as [B].

KSYM Input-integer-default = –1. See “Method Selection” on page 82.

SIGN Input-integer-default = 1. See “Method Selection” on page 82.

FBTYP Input-integer-default = 0. See “Option Selection” on page 83.

DISFBS LBB,DSFDSC,EQMAP,UABAR/UA,PABAR,LOO/HLPMETH $

LBB Distributed boundary sparse factor matrix (contains the local panels of
the fronts).

DSFDSC Table description of boundary sparse factor matrix.

EQMAP Table of degree-of-freedom global-to-local maps for domain
decomposition.

UABAR Local updated rectangular ("loads") matrix.

UA Global boundary solution for distributed decomposition.

PABAR Summed up updated rectangular ("loads") matrix for distributed
decomposition.

LOO Merged boundary sparse factor matrix for distributed decomposition.

A[] X[] B[]±= X[]T A[] B[]T=

81CHAPTER 4
Direct Solution of Linear Systems
Parameters:

Remark: LBB and DSFDSC may be purged.

HLPMETH Input-integer-default = 0. Processing option.

>0 Summation only.

=0 Complete distributed forward-backward substitution (default).

=4 Summation operation and merging of distributed sparse
boundary factor matrix.

 NX Nastran Numerical Methods User’s Guide

82
4.4 Method Selection

FBS Method Selection
The FBS method selection is executed via the following parameters:

Additionally, if the factor matrix is symmetric and non-sparse, the system cell
FBSOPT = SYSTEM(70) may be used to select a submethod. By default, the method
minimizing the sum of CPU and I/O time estimates is chosen. The value of FBSOPT
is interpreted as follows:

KSYM Symmetry flag.

–1 choose symmetric if [U] is purged, otherwise unsymmetric
(default).

0 matrix [A] is unsymmetric.

1 matrix [A] is symmetric.

2 perform left-handed solution. See “Option Selection” on
page 83.

SIGN Sign of [B].

1 solve [A] [X] = [B] (default).

–1 solve [A] [X] = –[B].

SYSTEM(70)
FBSOPT Non-Sparse Submethod

-2 Method 1A

-1 Method 1

0 Automatic selection (default)

+1 Method 2

83CHAPTER 4
Direct Solution of Linear Systems
4.5 Option Selection

Right-handed FBS Options
The user can control the flow of the forward-backward substitution from within
source code via SYSTEM(74), or by using the FBTYP parameter (DMAP call). If the
FBS module is called from DMAP, then SYSTEM(74) is overriden by the FBTYP
parameter. The default value is 0, which indicates a full execution of both passes
of the solution. Set FBTYP to +1 for a forward pass only; set FBTYP to –1 for a
backwards only partial execution. These options are useful in eigenvalue
modules.

If the forward-backward substitution is called from source code with a symmetric
non-sparse factor matrix, then SYSTEM(73) = +1 can be set to indicate the presence

of a Cholesky factor . The default is 0, which indicates the regular
factor. The factor type is determined automatically in the FBS module, so this
system cell has no effect when called from DMAP. To summarize this:

Left-handed FBS Option
The left-handed FBS obtains the solution by rows, as opposed to columns. Since
the solution is packed out via the usual GINO facilities, the solution rows are
stored as columns of the solution (X) matrix. The user may input a transposed or
untransposed right-hand side (B) matrix, except for sparse Cholesky factors, in
which case only SYSTEM(72) = 1 is supported. To summarize this:

SYSTEM Value Action

(73) +1 Cholesky factor:

else Regular factor: (default)

(74) +1 Solve

or FBTYP 1 Solve

0 Full FBS (default)

SYSTEM Value Action

(72) = 1

L[] L[]T L[] D[] L[]T

L[] L[]T X[] B[]=

L[] D[] L[]T X[] B[]=

L[] Y[] B[] or L[] D[] Y[] B[]==

L[]T X[] Y[]=

B XTA=

1≠ BT XTA=

 NX Nastran Numerical Methods User’s Guide

84
The FBS options controlled by cells 73 and 74 apply to the left-handed solution
similarly.

Parallel FBS Solution
The user needs FBSOPT = –2 and SYSTEM(107) = PARALLEL > 1 for the right-hand
side shared memory parallel execution. For the factor side parallel, only PARALLEL
> 1 is needed.

The parallel method can be deselected for FBS by setting PARALLEL = 1024 + ncpu
where ncpu = number of CPUs. This setting leaves the other parallel methods
enabled.

85CHAPTER 4
Direct Solution of Linear Systems
4.6 Diagnostics
For the direct solution of systems of linear equations, diagnostics can also be
classified as follows: numerical diagnostics, performance messages, and error
diagnostics.

Numerical Diagnostics
UIM 5293:

Performance Messages
UIM 4234:
UFBS TIME ESTIMATE TO FORM XX TYPE = X CPU = X I/0 = X TOTAL = X
PASSES = X

UIM 4153:
FBS METHOD X TIME ESTIMATE TO FORM XX CPU = X I/0 = X TOTAL = X
PASSES = X

These messages are printed only when the CPU time estimate is greater than the
value of SYSTEM(20) (default = machine-dependent). To force the printing of
these messages, the user must set SYSTEM(20) = 0.

Error Diagnostics
FBS 1(2, 3 OR 4) FATAL ERROR 20: USER FATAL MESSAGE

This error should not occur under normal circumstances. The cause for the error
is that information from the GINO control block is incompatible with information
from the buffer. This occurs in methods 1 or 1A only.

SFM FBSUB LOGIC ERROR 10: USER FATAL MESSAGE

This error is similar to the previous one from method 2.

SFM 6069 (LFBSS):
SYMMETRIC LEFT HANDED FBS IS CALLED TO SOLVE A COMPLEX SYSTEM
WITH CHOLESKY FACTOR.

This option is not supported.

SFM 6070 (LFBSS):
ERROR IN READING THE FACTOR IN SYMMETRIC LEFT HANDED FBS

FOR DATA BLOCK LOADSEQ EPSILON EXTERNAL WORK

.

.

 NX Nastran Numerical Methods User’s Guide

86
These messages are from the left-handed method. They are either from symmetric,
unsymmetric, or from the timing phase of either one. The cause for this error is
similar to the cause for Error 20.

SFM 6072 (LFBSU):
INCORRECT PIVOTING INSTRUCTIONS IN UNSYMMETRIC FACTOR
DURING A LEFT HANDED FBS.

This message is similar to Error 20 since it indicates inconsistency in a data block.

SFM 6073 (LFBSU):
ERROR IN READING THE FACTOR IN UNSYMMETRIC LEFT HANDED FBS

Similar causes as Error 20.

SFM 6201 (FBSQCK):
SPARSE FBS CANNOT BE EXECUTED WHEN THE FACTOR IS REAL AND THE
RIGHT HAND SIDE IS COMPLEX.

Recommendation: Do not select the sparse decomposition and FBS methods under
these circumstances.

UFM 6138 (DFMSB):
INSUFFICIENT CORE FOR SPARSE FBS.
USER ACTION: INCREASE CORE BY XX WORDS.

87CHAPTER 4
Direct Solution of Linear Systems
4.7 FBS Estimates and Requirements

Sparse FBS Estimates
The CPU time for sparse FBS is:

Eq. 4-18

Data move time (sec):

Eq. 4-19

where:

The minimum storage requirements of FBS are:

where:

= number of right-hand sides

= number of nonzeroes in the factor

= number of passes

Disk:

Memory:

= average front size

= machine precision (1 for short-word machines, 2 for long-word
machines)

Note: are defined in the Glossary of Terms.

2 NRHS NZFAC M⋅ ⋅

2 N NRHS P 2 NZFAC Ps Npass⋅ ⋅+⋅ ⋅

NRHS

NZFAC

Npass

NZFAC IPREC⋅ 2 N NRHS IPREC⋅ ⋅+

1 2⁄ Nfront
2 IPREC 2 N IPREC⋅+⋅ ⋅

Nfront

IPREC

M P and Ps,

 NX Nastran Numerical Methods User’s Guide

88
4.8 References
Komzsik, L. Parallel Processing in Finite Element Analysis. Finite Element News,

England, June, 1986.

Komzsik, L. Parallel Static Solution in Finite Element Analysis. The MSC 1987
World Users Conf. Proc., Vol. I, Paper No. 17, March, 1987.

NX Nastran Numerical Methods User’s Guide

CHAPTER

5 Iterative Solution of Systems of
Linear Equations

■ Iterative Solutions

■ Theory of the Conjugate Gradient Method

■ Preconditioning Methods

■ User Interface

■ Iterative Method Selection

■ Option Selection

■ Global Iterative Solution Diagnostics

■ Global Iterative Solver Estimates and Requirements

■ Element Iterative Solver Memory Requirements

■ References

 NX Nastran Numerical Methods User’s Guide

90
5.1 Iterative Solutions
The previous chapter discussed the solution of linear systems using the direct
method, which consists of matrix decomposition followed by a forward-backward
substitution. In this chapter an alternative method, the iterative solution, is
described.

There are two types of iterative solution; global and element. The global type uses
the assembled matrices while the element type uses the element matrices. The
element type is limited in the problems it can solve but is more efficient with solve
times as much as 6X faster.

Solution Sequences. The iterative solver can be used in the following solution
sequences:

Parallel Execution. In addition to the above sequential versions, the global
iterative solver is implemented for parallel execution on distributed memory
machines in SOL 1 and SOL 101 (linear statics).

Methods
Global:

For symmetric positive definite systems, several different versions of the
preconditioned conjugate gradient method are available in NX Nastran. For
unsymmetric or indefinite systems, the preconditioned bi-conjugate gradient or
the preconditioned conjugate residual method is used.

Element:

In the element based version, the preconditioner consists of two parts:

(i) The first part approximates the matrix very well in a lower dimensional
subspace. This lower dimensional subspace is generated using the element and
node geometry and the types of degrees of freedom in the model. The lower
dimensional subspace is meant to provide a very coarse approximation to the low
frequency eigenvector subspace.

Global Element

Linear statics (SOLs 1, 101) Linear statics (SOLs 1, 101)

Nonlinear statics (SOL 106)

Direct frequency response (SOLs 8, 108)

Modal frequency response (SOLs 11, 111)

91CHAPTER 5
Iterative Solution of Systems of Linear Equations
(ii) The second part is a simple approximation to the matrix in the orthogonal
complement of the above low dimensional subspace.

The preconditioner makes a suitable trade-off between the cost of factoring the
preconditioner and the estimated number of conjugate gradient iterations required
to solve the problem within a reasonable tolerance.

 NX Nastran Numerical Methods User’s Guide

92
5.2 Theory of the Conjugate Gradient Method
The conjugate gradient method minimizes the error function

Eq. 5-1

The first derivative (gradient) of this function is

Eq. 5-2

which is the negative of the residual. An iterative procedure is obtained by
calculating consecutive versions of the approximate solution as follows:

Eq. 5-3

and

Eq. 5-4

where the direction and the distance are computed to minimize the above
error function.

Computationally efficient forms to calculate these quantities are

Eq. 5-5

where

See Hageman and Young, 1981 [1] for more details. The algorithmic formulation
is fairly straightforward.

Convergence Control
Convergence is achieved inside the iteration loop when the following inequality
holds:

F x() 1
2
--- xTAx xTb–=

dF
dx
------- Ax b r–=–=

xi 1+ xi αi pi+=

ri 1+ ri αi Api–=

p α

αi
ri
Tri

pi
TApi

---------------=

pi ri βi pi 1–+=

βi
ri
Tri

ri 1–
T ri 1–

----------------------------=

93CHAPTER 5
Iterative Solution of Systems of Linear Equations
Eq. 5-6

where denotes the residual vector after iterations, denotes the initial
right-hand side vector, and is a user-defined parameter (default: 1.E-06). If this
ratio does not become smaller than within the maximum number of iterations,
is compared to an energy norm (Eq. 5-7) after the iteration loop is finished. The
solution is accepted if the following inequality holds:

Eq. 5-7

where is the solution vector, is the final residual vector, and is the initial
right-hand side vector as before. Experience has shown that the convergence
criterion inside the iteration loop (Eq. 5-6) is far more conservative than the
convergence criterion outside the iteration loop (Eq. 5-7).

Based on user selection, an alternate convergence criterion is available for Jacobi,
Cholesky and RIC preconditioning:

Eq. 5-8

where:

See Conca, 1992 [2] for details.

Block Conjugate Gradient Method (BIC)
The BIC method is the most recent and most recommended method for the iterative
solution of linear systems in NX Nastran. It was introduced several years ago and
has gone through major improvements with regard to memory management and
spill logic since then.

BIC is a block version of the conjugate gradient method described above where
‘block’ refers to two characteristics of the method:

1. The efficient solution of the linear system with a block of right-hand sides
where the following inequality is expected to hold for (= the
number of right-hand sides)

=

=

rn
b

----------- ε<

rn n b
ε

ε ε

xTr

bTx
------------- ε<

x r b

Δxn ε 1 fn–<

Δxn xn 1+ xn–

fn
Δxn

Δxn 1–

m 10< m

 NX Nastran Numerical Methods User’s Guide

94
where refers to the time needed to solve the linear system with just the
i-th right-hand side and refers to the time needed to solve the linear
system with the complete block of right-hand sides.

The method will still work for ; however, the inequality may not
hold.

2. Both the matrix and the preconditioner are stored in block-structured
form to improve the performance.

The block of direction vectors is updated in every iteration as

Eq. 5-9

and the blocks of residual and solution vectors are updated as

Eq. 5-10

Eq. 5-11

where all matrices are size except for , which is obtained by the
concatenation of the two matrices as

Eq. 5-12

and it is of size . Convergence is achieved when the following inequality
holds

Eq. 5-13

where is the column index, , is the rectangular matrix of the residual
vectors, is the set of right-hand sides, and is the set of solution vectors. See
Babikov, 1995 [3] for more details.

The algorithmic formulation of this method employed in the iterative solution
module is fairly straightforward, except for the very difficult issue of performing
the linear solve of order in Eq. 5-9. However, the details of that calculation are
beyond the scope of this guide.

ti tm>

i 1=

m

∑

ti
tm

m

m 10≥

Pk Tk
TATk[]

1–
Tk

T Rk=

Rk 1+ Rk ATk Pk–=

Xk 1+ Xk Tk Pk–=

n m× Tk

Tk Xk Xk 1– Rk–[]=

n 2m×

max
max

i
Xn 1+ Xn–

Xn 1+
------------------------------------ ,

max
i

Rn 1+
F

⎝ ⎠
⎜ ⎟
⎛ ⎞

ε<

i i m≤ R r
F X

2m

95CHAPTER 5
Iterative Solution of Systems of Linear Equations
Real and Complex BIC
The BIC methods differ for real and complex linear systems of equations, and
therefore are described separately in the following paragraphs. The parameters are
described in “User Interface” on page 101.

The real BIC method follows the basic algorithm shown below. Here, is the
preconditioner, is the block of right-hand side vectors, is the block of updated
solution vectors, and is the block of updated residual vectors.

The memory management and the spill logic are rather involved, and only the basic
steps are listed below:

1. Execute a bandwidth-reducing permutation

2. Symbolic phase

B
F X

R

X0 X 1– 0= =

R0 R 1– F–= =

Loop on k 1 2 … ITSMAX,,,=

Wk B 1– Rk=

Vk AWk=

Tk Xk Xk 1– Wk–[]=

Pk Rk Rk 1– Vk–[]=

Gk Pk
T Tk()

1–
=

Hk Gk Tk
T Rk=

Xk Xk 1– Tk Hk–=

IF error ITSEP S<() then converged

End loop on k

Rk Rk 1– Pk Hk–=

 NX Nastran Numerical Methods User’s Guide

96
Find the best memory usage given a certain amount of memory and an
IPAD value (see “User Interface” on page 101 for details on IPAD). The
following logical steps are traversed in this order:

a. Check if matrix and factor fit in core; if yes, go to step e.

b. Check if factor fits in core with matrix being out-of-core; if yes, go to
step e.

c. Check if memory is sufficient when factor and matrix are both
out-of-core; if yes, go to step e.

d. Decrease padding level: IPAD = IPAD – 1; go back to step a.

e. Set up memory accordingly.

3. The numeric phase of the preconditioner calculation makes use of the
following techniques:

a. Calculation of preconditioner in double precision; storage of final
preconditioner in single precision.

b. Restarts with global shift regularization if incomplete factorization
fails.

c. Post truncation for well-conditioned problems.

4. Using the techniques described above, more memory may be available
than was predicted by the symbolic phase. Unless both matrix and
preconditioner are in core, as much as possible is read from the scratch
files and saved in memory.

The memory management and spill logic for the complex BIC methods are
different.

For the complex case, there are two different BIC methods which are selected via
the IPAD value. For IPAD < 5, the complex BIC algorithm is similar to the real BIC
method. However, for IPAD ≥ 5, a very different strategy is used, which is
described below.

The solution of the system

is based on its equivalent representation

where matrices and (= , since is symmetric) have fully zero
imaginary parts and is truly complex. The solution is found using the Schur
complement.

AX F=

A11 A12

A21 A22⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞ X1

X2⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞ F1

F2⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

A11 A12 A21
T A

A22

97CHAPTER 5
Iterative Solution of Systems of Linear Equations
There is no spill logic for the first complex method (IPAD < 5): if the matrix and
preconditioner do not both fit in core, then a fully out-of-core approach is used.

Spill logic for the second complex BIC method is available. It determines whether
only , only , or both and can be kept in core. is always kept in core
since it usually has very few nonzero terms.

The second complex BIC method is recommended and is also the default for
complex symmetric linear systems.

A11 A22 A11 A22 A12

 NX Nastran Numerical Methods User’s Guide

98
5.3 Preconditioning Methods
The use of a preconditioner is recommended to reduce the number of iterations.
The disadvantage of this process is that the preconditioning calculation increases
the amount of work in each iteration. With the use of a preconditioner matrix, the
original problem is now written as

Eq. 5-14

where is the preconditioning matrix. In this form, the preconditioner is applied
in every iteration step. This is called stepwise preconditioning. The Jacobi and
Cholesky preconditioners are stepwise. If is chosen, then the problem is
trivial:

Eq. 5-15

Of course, the cost of this preconditioning is equivalent to the direct solution of the
system.

The following four major stepwise preconditioning strategies are supported in NX
Nastran.

Jacobi (J). For the Jacobi method, the matrix is a diagonal matrix containing
the diagonal terms of the matrix. The preconditioning step in every iteration is
a simple division of the current residual vector by these terms.

Cholesky (C). In the Cholesky method, the selection of the preconditioner matrix
is

Eq. 5-16

where is an incomplete Cholesky factor of . Despite wide acceptance, the use
of standard Cholesky preconditioning in the conjugate gradient method is only
proven to be very good for finite difference discretization of partial differential
equations. For example, the conjugate gradient method has convergence
problems when used in finite element problems with high Poisson ratios.

Reduced Incomplete Cholesky (RIC). In the RIC method the preconditioner
matrix is calculated based on elemental information as

Eq. 5-17

where is the elemental matrices used to assemble .

This method significantly increases the performance of the iterative solver for shell
problems. See Efrat, 1986 [4] for details.

P 1– Ax P 1– b=

P

P A=

P 1– Ax Ix= A 1– b=

P
A

P CCT A≅=

C A

P CCT B f A Aelem,()=≅=

Aelem A

99CHAPTER 5
Iterative Solution of Systems of Linear Equations
Block Incomplete Cholesky (BIC). Another disadvantage of the Cholesky
method is the calculation cost for the incomplete or reduced factor and the memory
requirement for parts of the Cholesky factor. A specific block sparse
implementation reduces these disadvantages. This proprietary method uses a
global shift regularization strategy, a post-truncation technique for
well-conditioned problems, and allow a certain level of fill-in based on delicate
numerical considerations. The implementation of the block conjugate gradient
method accelerates convergence for problems involving multiple loads. Moreover,
a band reordering method is used for the matrix in the symbolic phase of the
iterative solver. See Babikov, 1995 for details.

Scaling
Another approach for preconditioning is to use the preconditioner as a
transformation. Then

Eq. 5-18

is transformed into

Eq. 5-19

In this case the solution of the transformed system has to be converted back to the
original solution as follows:

Eq. 5-20

An example of this transformation approach is diagonal scaling. Diagonal scaling
is a useful tool for matrices whose terms differ significantly in magnitude. In this
method, the following transformation is performed:

Eq. 5-21

where is an intermediate result, such as

Eq. 5-22

The diagonal terms of the scaled matrix are unity as a result of the diagonal scaling.
This scaling makes the Jacobi preconditioning step trivial. The other (Cholesky
type) preconditioning methods may be combined with scaling.

Numerical Reliability of Equation Solutions
The accuracy of the solution of the linear equation systems in NX Nastran is
evaluated with the following residual vector:

P 1– AP 1– Px P 1– b=

A x b=

x P 1– x=

D 1– A D 1– x D 1– b•=••)

x)

D diag … aii …, ,() and x D 1– x•==)

 NX Nastran Numerical Methods User’s Guide

100
Eq. 5-23

This residual vector is calculated for each solution vector in static analysis. Then
a scalar value is calculated as follows:

Eq. 5-24

The magnitude of this error ratio indicates the numerical accuracy of the solution
vector x.

r b Ax–=

ε xTr

xTb
---------=

101CHAPTER 5
Iterative Solution of Systems of Linear Equations
5.4 User Interface
Format for global non-p-version solution:

Format for global p-version solution:

Input Data Blocks:

SOLVIT A,B,XS,PC,USET,KGG,GM,SIL,EQEXIN,EDT,CASECC,EQMAP/
X,R,PC1,EPSSE/
SIGN/ITSOPT/ITSEPS/ITSMAX/IPAD/IEXT/ADPTINDX/
NSKIP/MSGLVL/PREFONLY/S,N,ITSERR/SEID $

SOLVIT A,B,XS,PS,USET,USET0,SIL0,SIL,EQEXIN,EDT,CASECC,
EQMAP/
X,R,PG,EPSSE/
SIGN/ITSOPT/ITSEPS/ITSMAX/IPAD/IEXT/ADPTINDX/
NSKIP/MSGLVL/PREFONLY/S,N,ITSERR/SEID $

A Square matrix (real or complex, symmetric or unsymmetric).

B Rectangular matrix (real or complex), the right-hand side.

XS Optional starting vector, same type as B (may be purged).

PC Optional stepwise preconditioner, same type as A (may be purged).

USET Degree-of-freedom set membership table. See Remark 3.

KGG Stiffness matrix - g-set. See Remark 3.

GM Multipoint constraint transformation matrix. See Remark 3.

USET0 USET table from previous adaptivity index in p-version analysis.

SIL Scalar index list.

SIL0 SIL table from previous adaptivity index in p-version analysis.

EQEXIN Equivalence table between external and internal grid/scalar
identification numbers. Required for p-version preconditioning only.

EDT Table of Bulk Data entry images related to element deformation,
aerodynamics, p-element analysis, divergence analysis, and the
iterative solver.

CASECC Table of Case Control command images. Required if SMETHOD Case
Control command is used and NSIP=-1.

EQMAP Table of degree-of-freedom global-to-local maps for domain
decomposition.

 NX Nastran Numerical Methods User’s Guide

102
Output Data Blocks:

Parameters:

X Solution matrix. Rectangular matrix having the same dimensions and
type as [B].

R Residual matrix. Rectangular matrix having the same dimensions
and type as [B], the residual [R] = [B] - [A][X].

PC1 Updated stepwise preconditioner matrix. See Remark 6.

EPSSE Table of epsilon and external work.

SIGN Input-integer-default = 0. Sign flag for [B].

0 : + [B]

1 : - [B]

ITSOPT Input-integer-default = 0. Preconditioner flag. See “Option
Selection” on page 108.

0 Choose optimal method based on type of problem:

ITSOPT Type of problem

 6 p-version and real [A] and [B]
 10 complex [A] and/or [B]
 11 non p-version and real [A] and [B]

1 Jacobi preconditioning (default) for real, complex, symmetric
and unsymmetric A.

2 Incomplete Cholesky preconditioning or user-given
preconditioner.

3 Reduced incomplete Cholesky preconditioning. preconditioner
(available for real symmetric A only).

4 User supplied for real, complex, symmetric A.

5 Incomplete geometric, Jacobi hierarchic for real symmetric A.

6 Complete geometric, Jacobi hierarchic for real symmetric A.

7 Complete geometric, incomplete hierarchic for real symmetric A.

10 Block incomplete Cholesky for well-conditioned real symmetric
A (default for real A).

11 Block incomplete Cholesky for well-conditioned complex
symmetric A (default for complex A).

<0 Same as above with diagonal scaling.

ITSEPS Input-real-default = 1.0E-6. Convergence parameter epsilon.

103CHAPTER 5
Iterative Solution of Systems of Linear Equations
ITSMAX Input-integer-default = 0. Maximum number of iterations. The
default value implies N/4 (N = dimension of [A]).

IPAD Input-integer-default = 0 (see table below). Padding level for reduced
or block incomplete Cholesky factorization (0, 1, 2, ...). See Remarks 1
and 2. See also “Option Selection” on page 108.

IPAD
default

Method ITSOPT Model
type

Type of
[A]

0 reduced incomplete
Cholesky

3 all real

2 block incomplete Cholesky 10,11 3-D real

3 block incomplete Cholesky 10,11 2-D or
mixed

real

5 block incomplete Cholesky 10,11 all complex

IEXT Input-integer-default = 0. Extraction level in reduced or block
incomplete Cholesky factorization. See Remarks 1 and 2. See also
“Option Selection” on page 108.

IEXT
default

Reduced Block

0 0 solid bodies, no rigid elements. Requires USET and
SIL

1 1 shells only Heuristic block
structure (default)

2 2 mixed including rigid elements n/a

ADPTINDX Input-integer-default=0. P-version analysis adaptivity index. See
Remark 7.

NSKIP Input-integer-default=1. Record number of current subcase in
CASECC and used only if the SMETHOD command selects the
ITER Bulk Data entry which specifies values for the desired iteration
parameters. If NSKIP=-1 then CASECC is not required and the
values are taken from the module specification of the values.

MSGLVL Input-integer-default=0. Message level output. See “Option
Selection” on page 108.

0 minimal; i.e., UIM 6447 (default).

 NX Nastran Numerical Methods User’s Guide

104
Remarks:

1. If ITSOPT = 3, the IPAD level is recommended to be 0, 1, or 2 (IEXT = 0) and
should be increased when IEXT is increased.

2. The amount of memory needed for ITSOPT = 3, 10, and 11 increases with the
increase of the parameters IPAD and IEXT.

3. For ITSOPT = 1 or 2, the input data blocks USET, KGG, and GM may be
purged. For ITSOPT = 3, USET must be specified. KGG and GM are necessary
only if IEXT = 2.

4. If the message “ *** USER FATAL MESSAGE 6288 (SITDRV): UNABLE TO
CONVERGE WITH ITERATIVE METHOD” is issued, then results will still be
printed but may be inaccurate.

5. The system cell SYSTEM (69) is equivalent to the SOLVE keyword and
controls some special options for the module:

6. If data block PC1 is specified, the CPU time will increase slightly.

7. If SOLVIT is to be used for p-element analysis and ADPTINDX>1, then XS
and PC must be the solution matrix and pre-conditioner from the previous
adaptivity p-level. Also, the USET and SIL from the previous p-level are
specified for U and KGG and the USET and SIL from the current p-level are
specified for GM and SIL.

8. For frequency response analysis with ITSOPT=10 or 11 (block incomplete
Cholesky), IEXT=0 is not available and IEXT=1 is used automatically.

1 UIM 6447, convergence ratios, and residual norms

PREFONLY Input-integer-default=0. Preface execution only. If set to -1 then
SOLVIT is terminated after the preface information is
computed and printed.

ITSERR Output-integer-default=0. Iterative solver return code.

 1 no convergence

 2 insufficent memory

SEID Input-integer-default=0. Superelement identification number.

SOLVE Action

2 Suppresses the user information message at each iteration.

8 Use alternative convergence criterion (less conservative
than default).

105CHAPTER 5
Iterative Solution of Systems of Linear Equations
Examples:

1. Solve [A][X]=[B] with Jacobi pre-conditioning with convergence established at
1.E-4 and maximum allowed iterations at 55 specified for the module
parameters.

SOLVIT A,B,,,,,,,,,/X,,//1/1.E-4////-1 $

2. Same as 1 except parameters are obtained from the SMETHOD command and
ITER entry.

SOLVIT A,B,,,,,,,,EDT,CASECC/X,, $

3. Same as 2 except for p-version analysis.

DBVIEW SIL0 = SILS (WHERE PVALID=PVALOLD) $
DBVIEW UL0 = UL (WHERE PVALID=PVALOLD) $
DBVIEW USET0 = USET (WHERE PVALID=PVALOLD) $
DBVIEW PRECON0 = PRECON (WHERE PVALID=PVALOLD) $
SOLVIT KLL,PLI,UL0,PRECON0,USET,USET0,SIL0,SILS,
 EQEXINS,EDT,CASES/
 UL,RUL,PRECON///////ADPTINDX/NSKIP $

 NX Nastran Numerical Methods User’s Guide

106
Format for element based solution:

Input Data Blocks:

Output Data Blocks:

Parameters:

SOLVIT KELM,PG,KDICT,SIL,ECT,BGPDT,CSTM,EDT,CASECC,USETB,RG,MPT,
YGB,SLT,MDICT,MELM,EPT/UGV1,QG1,/V,Y,ISIGN/V,Y,IOPT/
S,N,ITSEPS/V,Y,ITSMAX/V,Y,IPAD/V,Y,IEXT//NSKIP/V,Y,IMSGFL/
V,Y,IDEBUG/V,Y,IERROR $

KELM Element stiffness matrix.

PG Load vector in g set.

KDICT Element stiffness dictionary.

SIL Scalar index list.

ECT Element connectivity table.

BGPDT Basic grid point data table.

CSTM Coordinate system transformation matrix.

EDT Element data table.

CASECC Case control command images.

USETB Degree-of-freedom set membership table.

RG Constraint matrix in g set.

MPT Material property table.

YGB Specified non-zero displacements in g set.

SLT Static load table.

MDICT Mass dictionary.

MELM Element mass matrix.

EPT Element property table.

UGV1 Displacements - g set.

QG1 SPC forces - g set.

ITSEPS Input-real-default = 1.0E-6. Convergence parameter epsilon.

ITSMAX Input-integer-default = 1000. Maximum number of iterations.

ITSERR Output-integer-default = 0. Iterative solver return code.

107CHAPTER 5
Iterative Solution of Systems of Linear Equations
5.5 Iterative Method Selection
The NASTRAN keyword ITER (equivalent to SYSTEM(216)) is used to select the
iterative solution by ITER = YES. The default is ITER = NO. The NASTRAN
keyword ELEMITER (equivalent to SYSTEM(399)) is also required to select the
element iterative solution by ELEMITER=YES.

The defaults for the iterative solver can be changed via the Bulk Data entry ITER,
which needs to be selected in the Case Control Section as

SMETHOD = SID

The Bulk Data entry ITER uses a free parameter format as follows:

where CHAR = character type and INT = integer.

Note that the order and existence of the parameters is not mandatory. For example,
the following Bulk Data entry selected by SMETHOD=10 in the Case Control
Section is valid:

This entry chooses a Jacobi preconditioner with 1.0E-04 accuracy.

Continuation lines must start in column 9, aligning with SID. Embedded spaces and
commas are allowed and the conventional continuation entry markers (+xx, +xx)
are obsolete.

All integer and real parameters correspond to the appropriate SOLVIT parameters.
The parameters used for method and option selections are also described in
“Option Selection” on page 108.

ITER SID
PRECOND=CHAR CONV=CHAR
MSGFLG=CHAR ITSEPS=REAL ITSMAX=INT
IPAD=INT IEXT=INT PREFONLY=INT

ITER 10
ITSEPS=1.0E-04 PRECOND=J

 NX Nastran Numerical Methods User’s Guide

108
5.6 Option Selection

Preconditioner Options
The global iterative solver preconditioner options are controlled via the IOPT and
the PRECOND parameters as shown below:

The scaling option is chosen by adding an ‘S’ to PRECOND or by setting IOPT
negative. For example, PRECOND=CS or IOPT=–2 means incomplete Cholesky
with scaling.

The option PRECOND=USER can be used in the following ways:

• For direct frequency response (SOLs 8, 108) it will result in using the
direct method for the first frequency. The factor from this decomposition
will then be used for the subsequent frequencies as the preconditioner
with the iterative solver. If the iterative solver fails or takes too long time
to converge, then the direct method will be used for the next frequency
and the new factor will be used as the preconditioner for the subsequent
frequencies.

• In cases where several linear systems of the same size need to be solved,
and where the system matrices differ only slightly, this option can be
used with a DMAP ALTER. A possible scenario is to use the direct
method to solve the first linear system, and then use the SOLVIT module
for the solution of the subsequent systems. Specify the output data block
from the decomposition containing the factor as the 4th input data block
(= user given preconditioner) to the SOLVIT module. The following lines
of DMAP show a simple example of the solution of two linear systems:

A X = F

PRECOND IOPT Preconditioner Type

J(S) 1(–1) Jacobi real, complex,
symmetric,
unsymmetric

C(S) 2(–2) Incomplete Cholesky real, complex,
symmetric,
unsymmetric

RIC(S) 3(–3) Reduced Incomplete
Cholesky

real, symmetric

USER 4 User given real, complex,
symmetric

109CHAPTER 5
Iterative Solution of Systems of Linear Equations
and

B Y = G

where A and B do not differ too much

The hierarchic (for p-version elements) preconditioning strategies are chosen as:

The block incomplete Cholesky (BIC) technique options are:

For the distributed parallel SOLVIT only Jacobi preconditioning is available.

Convergence Criterion Options
The convergence criterion options of SOLVIT are selected by CONV as follows:

DECOMP A/L, /$

FBS L, , F/X/$

SOLVIT B,G,,L,,,,,,,/Y,,//4//////–1 $

PRECOND IOPT Strategy Type

PBCJ 5 Incomplete geometric, Jacobi hierarchic real,
symmetric

PBDJ 6 Complete geometric, Jacobi hierarchic
(default for p-version problems)

real,
symmetric

PBDC 7 Complete geometric, Incomplete
hierarchic

real,
symmetric

PRECOND IOPT Technique Type

BIC 11 Well conditioned problems (default
for real problems)

real, symmetric

BICCMPLX 10 Complex problems (default for
complex problems)

complex
symmetric

CONV Criterion

AR Equation Eq. 5-6

GE Equation Eq. 5-8

AREX Equations Eq. 5-6 and Eq. 5-7

GEEX Equations Eq. 5-8 and Eq. 5-7

 NX Nastran Numerical Methods User’s Guide

110
For the BIC method the convergence criterion is automatically set to Eq. 5-13.

The default is determined according to preconditioner and solution type. For SOL
108, Eq. 5-8 is used; otherwise, Eq. 5-6 applies. This default is overruled by
choosing Jacobi (which selects Eq. 5-6) or incomplete Cholesky preconditioning
(Eq. 5-8). Furthermore, the external convergence criterion (Eq. 5-7) is used unless
the preconditioner is Jacobi with scaling (IOPT=-1) or incomplete Cholesky with
scaling (IOPT=-2).

Diagnostic Output Options
The diagnostic output from the iterative solver is controlled by MSGFLG or
MSGLVL as follows:

The parameter PREFONLY (default=0) can be set to –1, which will terminate the
iterative solver after the preface, giving some helpful information in UIM 4157
(.f04 file) such as matrix size and optimal memory requirements for best
performance.

Element Iterative Solver Options
The parameter ELITASPC performs the autospc in the element iterative solver
(default is NO). This parameter is set using a bulk PARAM card, e.g.
PARAM,ELITASPC,YES. Normally the element iterative solver does not perform
an autospc function as it is usually not necessary. For solid elements, the rotational
dofs are eliminated directly. If K6ROT is specified for linear shell elements, there
is no issue either. But for CQUAD8 and CTRIA6 elements and possibly other
special cases, the autospc function is required. The drawback of this option is that
it requires the assembly of the KGG matrix which is used in the autospc and this
can have a significant impact on performance. This parameter will also generate
the rigid body mass properties.

MSGFLG MSGLVL Action

no
(default)

0 Only minimal output (i.e., UIM 6447 [see “Option
Selection” on page 108], information on whether
convergence was achieved). In case of multiple
loads, only if one or more loads did not converge,
a final output is given for each right hand side.

yes 1 For 1 RHS: Output above + convergence ratio and
norm of residual for each iteration are given.

For > 1 RHS: Minimal output + final output is
given for each RHS.

111CHAPTER 5
Iterative Solution of Systems of Linear Equations
In-core Frequency Response Options
The in-core frequency response is available for modal frequency response(SOL 111).
USER is selected as the preconditioner option. The in-core frequency method is
selected by setting SYSTEM(462)=1and iter=yes. It will be deactivated if memory is
insufficient.

Incomplete Cholesky Density Options
The density of the incomplete factor is controlled by the IPAD parameter as follows:

IPAD
Default Method ITSOPT Model

Type
Type of

[A]

0 reduced incomplete
Cholesky

3 all real

2 block incomplete Cholesky 10,11 3-D real

3 block incomplete Cholesky 10,11 2-D or
mixed

real

5 block incomplete Cholesky 10,11 all complex

 NX Nastran Numerical Methods User’s Guide

112
Extraction Level Options for Incomplete Cholesky

Recommendations
The recommended preconditioner options are as follows:

In the case where it is known in advance that a particular model needs to be run
many times (e.g. because the model needs to be modified in between, the load
vector changes, or for some other reason), it is highly recommended to determine
the best parameter setting for the iterative solver. To do this, one can simply vary
the IPAD value from 1, ... , 4, while monitoring the EST OPTIMAL MEMORY (see
Performance Diagnostics), the size of the SCRATCH FILE (see Performance
Diagnostics), and the CPU time spent in SOLVIT. The defaults have been selected
to give the best performance for most problems, but since the iterative solver is
very sensitive to the conditioning of the matrix, they may not be best for all
problems.

IEXT
Default Reduced Block

0 solid bodies, no rigid elements. Requires USET and SIL

1 shells only Heuristic block structure
(default)

2 mixed including rigid elements n/a

• Real symmetric positive definite systems

Sequential : PRECOND = BIC

Parallel : PRECOND = J

• Complex symmetric positive definite systems

Sequential : PRECOND = BICCMPLX

• p-version analysis

Sequential : PRECOND = PBDJ

• Direct frequency response (SOLs 8, 108)

Sequential : PRECOND = USER

• Unsymmetric or indefinite systems

Sequential : PRECOND = J

Note: Except for SOL 108, all of the above recommended options are also the
defaults.

113CHAPTER 5
Iterative Solution of Systems of Linear Equations
To find the EST OPTIMAL MEMORY without having to go through a complete run,
one can set PREFONLY=–1 on the ITER Bulk Data entry. This option will give the
desired information and cause NX Nastran to exit after the symbolic phase of the
iterative solver.

The distributed memory parallel execution of the SOLVIT module takes advantage
of the fact that the matrix multiply operation (the most time-consuming part of
certain iterative strategies) is also easily executed while the system matrix resides in
parts on the local memories. This is also the method of the iterative option of the
STATICS supermodule.

Examples:

1. Solve [A][X]=[B] with Jacobi pre-conditioning with convergence established at
1.E-4 and maximum allowed iterations of 55 specified for the module
parameters.

SOLVIT A,B,,,,,,,,,/X,,//1/1.E-4/55///-1 $

2. Same as 1 except parameters are obtained from the SMETHOD command and
ITER entry.

SOLVIT A,B,,,,,,,,EDT,CASECC/X,, $

 NX Nastran Numerical Methods User’s Guide

114
5.7 Global Iterative Solution Diagnostics
There are several different types of diagnostics given by the iterative solver,
including:

• Accuracy diagnostics (.f06 file)

• Performance and memory diagnostics (.f04 file)

Accuracy Diagnostics
In the .f06 output file of an NX Nastran run, the following accuracy diagnostics
and convergence messages may be found:

UIM 6447:
ITERATIVE SOLVER DIAGNOSTIC OUTPUT

The following example shows diagnostics for MSCFLG=yes and MSGFLG=no
(default).

are as given in Eq. 5-6 and Eq. 5-13, EPSILON is given in Eq. 5-24, and
EXTERNAL WORK is the denominator of Eq. 5-24.

MSGFLG=yes

R
B

---------- and X I 1+() X I()–
X I()

--

*** USER INFORMATION MESSAGE 6447 (SITDR3)
 ITERATIVE SOLVER DIAGNOSTIC OUTPUT
 IPS : 0.9999999975E-06
 BIC PRECONDITIONING
 ITERATION NUMBER ||R|| / ||B|| ||X(I+1)-X(I)|| / ||X(I)||
 1 .1209539266E+00 .10000000E+01
 2 .2251168868E-02 .14229420E-01
 3 .8846335248E-04 .61378225E-03
 4 .1581571489E-05 .13831341E-04
 5 .5083508633E-07 .47836956E-06
*** USER INFORMATION MESSAGE 5293 (SBUT5)
 FOR DATA BLOCK KLL
 LOAD SEQ. NO. EPSILON EXTERNAL WORK
 1 -4.3350458E-16 1.2827542E+05
*** USER INFORMATION MESSAGE 6448 (SITDR3)
 SOLUTION CONVERGED WITH ITERATIVE METHOD.

115CHAPTER 5
Iterative Solution of Systems of Linear Equations
MSGFLG=no (Default)

This last portion of the diagnostic table prints either the last iteration number only
or all the iteration numbers based on the user selection of MSGFLG (see SOLVIT
OPTIONS).

UIM 6448:
SOLUTION CONVERGED WITH ITERATIVE METHOD.

UIM 6320:
SOLUTION WAS CONTINUED BECAUSE EXTERNAL CONVERGENCE
CRITERION WAS PASSED.

This message is printed if convergence is not achieved within the maximum number
of iterations, even though the solution is accepted due to the energy norm check (see
“Iterative Solutions” on page 90).

UFM 6288:
UNABLE TO CONVERGE WITH ITERATIVE METHOD.

UIM 5293:
FOR DATA BLOCK XX
LOADSEQ NO EPSILON EXTERNAL WORK

*** USER INFORMATION MESSAGE 6447 (SITDR3)
 ITERATIVE SOLVER DIAGNOSTIC OUTPUT
 EPS : 0.9999999975E-06
 BIC PRECONDITIONING
 ITERATION NUMBER ||R|| / ||B|| ||X(I+1)-X(I)|| / ||X(I)||
 5 .5083508633E-07 .47836956E-06
*** USER INFORMATION MESSAGE 5293 (SBUT5)
 FOR DATA BLOCK KLL
 LOAD SEQ. NO. EPSILON EXTERNAL WORK
 1 -4.3350458E-16 1.2827542E+05
*** USER INFORMATION MESSAGE 6448 (SITDR3)

 SOLUTION CONVERGED WITH ITERATIVE METHOD.

MSGFLG=YES will print the information in every iteration.

MSGFLG=NO must be set by the user to suppress the information (default).

 NX Nastran Numerical Methods User’s Guide

116
Performance Diagnostics
Performance diagnostics as well as information about the system matrix and the
memory requirements are given in the .f04 NX Nastran output file with SIM 4157,
which is also used in the direct solution. An example is shown below with
interpretation of the meaning of the different variables:

MATRIX SIZE, DENSITY, STRING LENGTH, NUMBER OF STRINGS,
NONZERO TERMS, and FULL BAND WIDTH are all obvious characteristics of
the system matrix.

The parameters IPAD, BLOCK SIZE, SCRATCH FILE, and MEMORY USED
appear only for BIC preconditioning.

*** SYSTEM INFORMATION MESSAGE 4157 (SITDR3)
 PARAMETERS FOR THE ITERATIVE SOLUTION WITH DATA BLOCK KLL (TYPE = RDP) FOLLOW
 MATRIX SIZE = 134333 ROWS DENSITY = .00056
 STRING LENGTH = 5.19 AVG NUMBER OF STRINGS = 1910 K
 NONZERO TERMS = 10107 K FULL BAND WIDTH = 6243 AVG
 MEMORY AVAILABLE = 37359 K WORDS IPAD = 2
 NUMBER OF RHS = 1
 BLOCK SIZE = 5 EST OPTIMAL MEMORY= 27347 K WORDS
EST MINIMUM MEMORY = 4217 K WORDS
 MEMORY USED = 36639 K WORDS PREFACE CPU TIME = 52.49 SECONDS
 SCRATCH FILE = 0 K WORDS AVG. CPU/ITER = .7693 SECONDS

MEMORY AVAILABLE = K words of memory available to the iterative solver.

IPAD = padding level used (see “User Interface” on
page 101).

NUMBER OF RHS = number of load vectors.

BLOCK SIZE = block size used to block-structure the matrix.

ESTIMATED OPTIMAL
MEMORY

= memory needed by iterative solver to run in core;
ensures optimal performance.

ESTIMATED MINIMUM
MEMORY

= absolute minimum memory needed for iterative
solver to run; will not give best performance.

MEMORY USED = memory that was actually used by iterative solver.

PREFACE CPU TIME = time required for memory estimation, re-ordering,
and preconditioner calculation.

SCRATCH FILE =0
>0

⇒ in core run
⇒ amount of spill

117CHAPTER 5
Iterative Solution of Systems of Linear Equations
For p-version analysis, the following additional information is printed in SIM 4157.

GEOMETRIC DOFs = number of rows in stiffness matrix corresponding to the
geometric degrees of freedom.

HIERARCHIC DOFs = number of rows in stiffness matrix corresponding to the
p degrees of freedom.

 NX Nastran Numerical Methods User’s Guide

118
5.8 Global Iterative Solver Estimates and
Requirements
Time estimates for a complete iterative solution are not given, because the number
of operations per iteration is different for each preconditioner. Moreover, it is
never known in advance how many iterations will be required to achieve
convergence.

However, the following paragraph gives the computation time for one iteration
using Jacobi and BIC preconditioning. The calculation of the computation time t is
based on the operations necessary in each iteration using a particular
preconditioner.

• Jacobi:

• BIC:

where:

The minimum and optimal memory estimates are equally difficult to determine,
since they also depend on the preconditioner used. Since BIC preconditioning is
the most frequently used option and since the estimates for Jacobi preconditioning
are rather straightforward, some memory estimates for those two options are
given below:

–1 matrix/vector multiplication

–1 preconditioner application

–3 dot products

⇒

–1 matrix/vector multiplication

–1 preconditioner application

–8 dot products

–2 saxpy

⇒

= number of right-hand sides

N = number of rows in matrix

P = preconditioner

= number of nonzero terms in P

M = average time of one multiply-add operation

ri aii⁄

t M= NRHS N2 N 6 N•+ +()••

z Pr
1–=

t M= NRHS N2 2 NZp• 10 N•+ +()••

NRHS

NZp

119CHAPTER 5
Iterative Solution of Systems of Linear Equations
• Minimum memory in words (MINMEM)

• Jacobi:

• BIC:

• Optimal memory in words (OPTMEM)

• Jacobi:

• BIC:

where:

Remark

Memory requirements for BIC are only very rough estimates because of the:

• Automatic reduction of IPAD value.

• Automatic decision of post-truncation of the preconditioner for well-
conditioned problems.

Recommendation

To obtain reliable estimates, perform a trial run and stop after the symbolic phase
by setting:

PREFONLY = –1 on ITER Bulk Data entry.

= number of right-hand sides

NWPT = number of words per term

1 for long word machines
2 for short word machines

NZA = number of nonzero terms in system matrix

N = number of rows in system matrix

5 5NRHS 2+() N• NWPT• symmetric+

5 8NRHS 4+() N• NWPT• unsymmetric+

0.5 NZA•

OPTMEM MINMEM NZA 2 N+⁄() NWPT•+=

IPAD 2 3, OPTMEM 3 NZA•≈⇒=

IPAD 4 OPTMEM 4 NZA•≈⇒=

NRHS

 NX Nastran Numerical Methods User’s Guide

120
5.9 Element Iterative Solver Memory Requirements
The minimum memory required in words:

For models made up of mostly 10 node TETRA elements:

Else;

where

50 * NGRIDs + PCG + 2,000,000

PCG = 90 * NE

PCG = 200 * NE

NGRID = number of grid points

NE = number of equations to be solved - sum of the L & M sets

121CHAPTER 5
Iterative Solution of Systems of Linear Equations
5.10 References
Babikov, P. & Babikova, M. An Improved Version of Iterative Solvers for Positive

Definite Symmetric Real and Non-Hermitian Symmetric Complex Problems.
ASTE, JA-A81, INTECO 1995.

Conca, J.M.G. Computational Assessment of Numerical Solutions. ISNA ’92,
Prague, 1992.

Efrat, I.; Tismenetsky, M. Parallel Iterative Solvers for Oil Reservoir Models. IBM
J. Res. Dev. 30 (2), 1986.

Hageman & Young. Applied Iterative Methods. Academic Press, 1981.

Manteuffel, T. A. An Incomplete Factorization Technique for Positve Definite
Linear Systems, Math. of Computation, Vol 34, #150, 1980.

McCormick, Caleb W., Review of NASTRAN Development Relative to Efficiency of
Execution. NASTRAN: Users’ Exper., pp. 7-28, September, 1973, (NASA TM
X-2893).

Poschmann, P.; Komzsik, L. Iterative Solution Technique for Finite Element
Applications. Journal of Finite Element Analysis and Design, 19, 1993.

Poschmann, P.; Komzsik, L., Sharapov, I. Preconditioning Techniques for Indefinite
Linear Systems. Journal of Finite Element Analysis and Design, 21, 1997.

 NX Nastran Numerical Methods User’s Guide

122

NX Nastran Numerical Methods User’s Guide

CHAPTER

6 Real Symmetric Eigenvalue Analysis

■ Real Eigenvalue Problems

■ Theory of Real Eigenvalue Analysis

■ Solution Method Characteristics

■ DMAP User Interface

■ Method Selection

■ Option Selection

■ Real Symmetric Eigenvalue Diagnostics

■ Real Lanczos Estimates and Requirements

■ References

 NX Nastran Numerical Methods User’s Guide

124
6.1 Real Eigenvalue Problems
The solution of the real eigenvalue problem is very important for many analysis
solution sequences. The problem is numerically difficult and time consuming;
therefore, NX Nastran offers methods in two different categories: the reduction
(tridiagonal) method, and the iterative (Lanczos) method.

The problem of normal modes analysis is of the form:

Eq. 6-1

The problem of the buckling analysis is stated as

Eq. 6-2

where:

These problems may be solved with a reduction type method by transforming to a
canonical form and reducing the whole matrix to tridiagonal form. An iterative
method usually does not modify the matrices and ; it may use their linear
combination of where is a shift value. The Lanczos method, as
implemented in NX Nastran, is a method using this technique. The detailed theory
of real eigenvalue analysis is discussed in “Theory of Real Eigenvalue Analysis”
on page 125.

Although the methods are mathematically interchangeable, the Lanczos method is
recommended for the solution of large buckling and normal modes problems, for
example, those arising in the analysis of complete vehicles. The reduction methods
are useful for small normal modes problems in analysis of structural components.

= the stiffness

= differential stiffness

= mass matrices

= eigenvalue

= eigenvector

K[]x λ M[]x=

K[]x λ Kd[]x=

K[]

Kd[]

M[]

λ

x

K M
K[] λs M[]+ λs

125CHAPTER 6
Real Symmetric Eigenvalue Analysis
6.2 Theory of Real Eigenvalue Analysis
Two main methods of real eigenvalue extraction are provided in NX Nastran in
order to solve the wide variety of problems arising in finite element analysis
applications:

1. Reduction (Tridiagonal) Method

2. Iterative (Lanczos) Method

In a reduction method, the matrix of coefficients is first transformed, while
preserving its eigenvalues, into a special form (diagonal, tridiagonal, or upper
Hessenberg) from which the eigenvalues may easily be extracted. In an iterative
method, a certain number of roots are extracted at a time by iterative procedures
applied to the original dynamic matrix. One of the methods used in NX Nastran is
a transformation method (tridiagonal method), and the other is an iterative method
(shifted block Lanczos method).

The preliminary transformation procedure of the transformation methods requires
that the major share of the total effort be expended prior to the extraction of the first
eigenvalue. Thus, the total effort is not strongly dependent on the number of
extracted eigenvalues. In marked contrast, the total effort in the iterative methods is
linearly proportional to the number of extracted eigenvalues. Therefore, it follows
that the iterative methods are more efficient when only a few eigenvalues are
required and less efficient when a high proportion of eigenvalues are required.

The general characteristics of the real methods used in NX Nastran are compared in
Table 6-1. The tridiagonal method is available only for the evaluation of the
vibration modes of conservative systems and not for buckling analysis due to
restrictions on the matrix form. The Lanczos method is available for all vibration
modes and buckling problems currently solved by NX Nastran.

It may be noted from Table 6-1 that a narrow bandwidth and a small proportion of
extracted roots tend to favor the Lanczos method. An example of such a problem is
the evaluation of the lowest few modes of a structure. When the bandwidth is
relatively large, and/or when a high proportion of the eigenvalues are required, the
tridiagonal method is probably more efficient, assuming the problem size is not too
large.

The main advantage of including two methods is to provide a backup method if one
method should fail (as sometimes happens with all methods of eigenvalue
extraction).

 NX Nastran Numerical Methods User’s Guide

126
where:

Reduction (Tridiagonal) Method
The reduction method of NX Nastran offers Givens or Householder
tridiagonalization options.

Table 6-1 Comparison of Methods of Real Eigenvalue Extraction

Characteristic/Method Tridiagonal
Method

Lanczos
Method

Matrix pencil

or

or

Restrictions on matrix
character

A real, symmetric,
constant

or

 positive
semidefinite

or

 positive
semidefinite

Obtains eigenvalues in order All at once Several—nearest to
the shift point

Takes advantage of
bandwidth or sparsity

No Yes

Number of calculations

Recommended All modes Few modes

= number of equations

= semi-bandwidth or similar decomposition parameter (such as average front size)

= number of extracted eigenvalues

A I,()

A K
M
-----=

A M
K λM+
--------------------=

M K σM–() 1– M M,()

K K σKd–() 1– K K,()

M Singular≠

K λM Singular≠+

M

K

0 n3() 0 nb2E()

n

b

E

127CHAPTER 6
Real Symmetric Eigenvalue Analysis
Transformation to Canonical Form

In the tridiagonal method when the eigenvalue problem is solved in a canonical
mathematical form, a Cholesky decomposition is performed as follows:

Eq. 6-3

where is a lower triangular matrix. The procedure used to obtain the factors is
described in “Decomposition Process” on page 50. The symmetric matrix is
then obtained by the following transformation:

Eq. 6-4

Let

Eq. 6-5

where is the transformed vector. Then

Eq. 6-6

After the eigenvalue of Eq. 6-4 is found, the eigenvectors can be calculated by using
Eq. 6-5.

Tridiagonal Method

Tridiagonal methods are particularly effective for obtaining vibration modes when
all or a substantial fraction of the eigenvalues and eigenvectors of a real symmetric
matrix are desired. The general restrictions on the use of the method within NX
Nastran are described in Table 6-1. The basic steps employed in the method are as
follows. First, the canonical matrix is transformed into a tridiagonal matrix

Eq. 6-7

Next is transformed to diagonal form:

Eq. 6-8

Finally, the eigenvectors are computed over a given frequency range or for a given
number of eigenvalues and are converted to physical form.

Givens Tridiagonalization Method

The most recognized and stable tridiagonalization methods are the Givens and
Householder methods. In the tridiagonal method of NX Nastran, both the Givens
and Householder solutions are used. This section describes the Givens solutions,
and the next section describes the Householder solutions.

M[] C[] C[]T=

C[]
A[]

C[] 1– K[] u{ } λ C[] 1– C[] C[]T u{ } 0=–

u{ } C[] 1 T,– x{ }=

x{ }

A C[] 1– K[] C[] 1 T,–=

A At→

At

At diag λ()→

 NX Nastran Numerical Methods User’s Guide

128
The Givens method depends on orthogonal transformations of a
symmetric matrix . An orthogonal transformation is one whose matrix
satisfies the following:

Eq. 6-9

The eigenvalues of a matrix are preserved under an orthogonal transformation since

Eq. 6-10

Consequently, if det vanishes, then det also vanishes.

The effect of a series of orthogonal transformations on the eigenvectors of a matrix
is a succession of multiplications by orthogonal matrices. If

Eq. 6-11

and if are orthogonal matrices, then

Eq. 6-12

Through the substitution

Eq. 6-13

we obtain

Eq. 6-14

where Eq. 6-9 is applied repeatedly to obtain the final form. Here is an
eigenvector of the transformed matrix:

and is obtained from by Eq. 6-13.

The Givens method uses a series of specially constructed orthogonal rotation
matrices ; each such matrix, for given indices and a given angle ,
matches the identity matrix except for the four elements:

Eq. 6-15

T[] A[] T[]T

A[] T[]

T[] T[]T T[]T T[] I[]= =

T[] A[] λ I[]–() T[]T T[] A[] T[]T λ I[]–=

A[] λ I[]–() T[] A[] T[]T λ I[]–()

A[] x{ } λ x{ }=

T1[] T2[] … Tr[], , ,

Tr[] Tr 1–[]… T2[] T1[] A[] x{ } λ= Tr[] Tr 1–[]… T2[] T1[] x{ }

x{ } T1[]T T2[]T… Tr 1–[]T Tr[]T y{ }=

Tr[] Tr 1–[]… T2[] T1[] A[] T1[]T T2[]T… Tr 1–[]T Tr[]T y{ }

λ= Tr[] Tr 1–[]… T2[] T1[] T1[]T T2[]T… Tr 1–[]T Tr[]T y{ }

λ= y{ }

y{ }

Tr[] Tr 1–[]… T2[] T1[] A[] T1[]T T2[]T… Tr 1–[]T Tr[]T

x{ } y{ }

Tk[] i j, θi 1 j,+
I[]

ti 1+ i 1+, tj j, θi 1+ j,()cos= =

ti 1+ j, tj i 1+,– θi 1+ j,()sin= = ⎭
⎬
⎫

129CHAPTER 6
Real Symmetric Eigenvalue Analysis
The orthogonal transformation leaves all the elements of unchanged
except those in the st and j-th rows and columns, the so-called plane of
rotation. The four pivotal elements of the transformed matrix are:

 Eq. 6-16

where , etc., are elements of the untransformed matrix. The other elements of the
-st and j-th rows and columns of the transformed matrix are:

Eq. 6-17

In the Givens method, each rotation matrix is chosen so that vanishes, which
happens when

Eq. 6-18

The calculation of followed by the orthogonal transformation

Eq. 6-19

is carried out for a sequence of iterations with . The values of used in
Eq. 6-8, Eq. 6-9, Eq. 6-10, and Eq. 6-11 are . For each , a set of
transformations is performed with assuming the values of before the
next value of is used. As a result, the elements in the matrix positions

 are successively reduced to zero together with
their transposes, the elements. Thus, the set of
transformations reduces the matrix to tridiagonal form.

NX Nastran employs a procedure introduced by Wilkinson (1965) in which the
Givens method is modified by grouping the transformations together,
which produces zeroes in the i-th row and column. This procedure should not be
confused with the Householder method which eliminates a row and column at a
time. The Wilkinson process is particularly advantageous when the matrix is so
large that all the elements cannot be held in memory at one time. The process
requires only transfers of the matrix to and from auxiliary storage instead of
the transfers required by the unmodified Givens method. This
modified Givens method requires 4n memory locations for working space that are
divided into four groups of n storage locations each. The first rows and
columns play no part in the i-th major step. This step has five substeps as follows:

T[] A[] T[]T A[]
i 1+()

ai 1+ i 1+, ai 1+ i 1+, cos2 θi 1+ j,() aj j, sin2 θi 1+ j,() ai 1+ j, 2θi 1+ j,()sin+ +←

aj j, ai 1+ i 1+, sin2 θi 1+ j,() aj j, cos2 θi 1+ j,() ai 1+ j, 2θi 1+ j,()sin–+←

ai 1+ j6y, aj i 1+, ai 1+ j, 2θi 1+ j,()cos← 1
2
--- ai 1+ i 1+, aj j,–() 2θi 1+ j,()sin–= ⎭

⎪
⎪
⎬
⎪
⎪
⎫

aj j,
i 1+()

ai 1+ s, as i 1+, ai 1+ s, θi 1+ j,()cos← aj s, θi 1+ j,()sin+=

aj s, as j, ai 1+ s,– θi 1+ j,()sin aj s, θi 1+ j,()cos+←= ⎭
⎬
⎫

ai j,

θi 1+ j,()tan
ai j,

ai i 1+,
------------------=

θi 1+ j,

A m[][] Tm[] A m 1–()[] Tm[]T=

A 0()[] A[]= i
1 2 3 … n 1–(), , , , i n i– 1–()

j i 2 i 3 … n, ,+,+
i 1 3,() 1 4,() …,, ,

1 n,() 2 4,() 2 5,() … 2 n,() … n 2 n,–(), , , , , ,
3 1,() 4 1,() … n n 2–,(), , ,

n i– 1–()

A[]

n 2–()
n 1–() n 2–() 2⁄

i 1–()

 NX Nastran Numerical Methods User’s Guide

130
1. The i-th rows of are transferred to the set of memory locations in group
1.

2. The values of , , , are computed
successively from the following:

Eq. 6-20

where the superscripted term is computed by the following:

Eq. 6-21

and the starting value for is as follows:

Eq. 6-22

The may be overwritten on those elements of the untransformed
matrix which are no longer required, and the is stored in the
group 2 storage locations.

3. The st row of is transferred to the group 3 storage locations. Only
those elements on and above the diagonal are used in this and succeeding
rows. For , in turn, the operations in substeps 4 and 5 are
carried out.

4. The k-th row is transferred to the group 4 storage locations. The
elements , , and are subjected to the row and column
operations involving and . For in turn,
the part of the row transformation involving and is
performed on and . At this point, all the transformations involving
the i-th major step were performed on all the elements of row and on the
elements , , of row .

5. The completed k-th row is transferred to auxiliary storage.

When substeps 4 and 5 are complete for all appropriate values of , the work on row
 is also complete. The values of and for , ,

are transferred to the auxiliary storage, and row is transferred to the group 1
core storage locations. Since the row plays the same part in the next major step
as in the i-th in the step just described, then the process is ready for substep 2 in the

A[]

θi 1+ i 2+,cos θi 1+ i 2+, …,sin θi 1+ n,cos θi 1+ n,sin

θi 1+ j,cos
ai j, 1+

j 1–()

ai i 1+,
j 1–()()

2
ai j, 1–

2+
--=

θi 1+ j,sin
ai i,

ai i 1+,
j 1–()()

2
ai j,

2+
--=

ai i 1+,
j 1–() ai i 1+,

j 2–()()
2

ai j 1–,
2+=

j i 2+=

ai i 1+,
i 1+() ai i 1+,=

θi j,cos

ai j, θi 1+ j,sin

i 1+() A[]

k i 2 i 3 … n, ,+,+=

A[]
ai 1+ i 1+, ai 1+ k, ak k,

θi k,cos θi 1+ k,sin i k 1 k 2 … n, ,+,+=
θi 1+ k,cos θi 1+ k,sin

ai 1+ ak
k

i 2+ i 3 …,+ n i 1+()

k
i 1+() θi 1+ k,cos θi 1+ k,sin k i 2+= i 3+ … n,

i 1+()
i 1+()

131CHAPTER 6
Real Symmetric Eigenvalue Analysis
next major step. In fact, substep 1 is only required in the first major step because the
appropriate row is already in the storage locations of group 1 while performing
subsequent steps.

Householder Tridiagonalization Method

The Householder tridiagonalization method uses the following transformation:

Eq. 6-23

where:

=

= symmetric, orthogonal

= 1

Ar Pr Ar 1– Pr=

A0 A

Pr
 I 2 wr wr

T–

wr
Twr

 NX Nastran Numerical Methods User’s Guide

132
The elements of are chosen so that has all zeroes in the r-th row except for the
three diagonal positions. The matrix can be partitioned as:

where:

The transformation matrix can be partitioned similarly as

where = a vector of order

By executing the multiplication given in the right-hand side of Eq. 6-23, the
following is obtained:

where .

If we have chosen so that is null except for its first component, then the first
 rows and columns of are tridiagonal.

An algorithm formulation can be developed by writing in the following form:

Eq. 6-24

= a tridiagonal matrix of order (partial result)

= a square matrix of order (part of original matrix)

= a vector having components

wr Ar
Ar 1–

Ar 1–

= =

r

n r–

x x
x x x
 x x x x x
 x x x x
 x x x x
 x x x x

Cr 1–

0

br 1–
T

0 br 1– Br 1–

Cr 1– r

Br 1– n r–

br 1– n r–

Pr

Pr
r

n r–

I 0

0 Qr

I 0

0 I 2vrvr
T–

==

vr n r–

Ar 1– =

r

n r–

Cr 1–

0

cr
T

0 cr Qr Br 1– Qr
T

cr Qr br 1–=

vr cr
r 1+() Ar

Pr

Pr I 2wr wr
T–=

133CHAPTER 6
Real Symmetric Eigenvalue Analysis
where is a vector of order with zeroes as the first elements. Furthermore, we
can substitute :

Eq. 6-25

where:

and is the element of . Substituting Eq. 6-25 into Eq. 6-23, the following
equation results:

Eq. 6-26

with a new notation as follows:

Eq. 6-27

Now the form becomes the following:

Eq. 6-28

By introducing one more intermediate element

Eq. 6-29

=

=

=

=

=

wr n r
wr ur 2Kr()⁄=

Pr I
urur

T

2Kr
2

-----------–=

uir 0 i 1 2 … r, , ,=,

ur 1+ r, ar r 1+, Sr±

uir ari i, r 2 … n, ,+=

Sr
2 ari

2

i r 1+=

n

∑

2Kr
2 Sr

2 ar r 1+, Sr±

aij i j,() A

Ar I
urur

T

2Kr
2

-----------–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

Ar 1– I
urur

T

2Kr
2

-----------–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

pr
Ar 1– ur

2Kr
2

--------------------=

Ar Ar 1– ur pr
T pr ur

T–
ur ur

Tpr()ur
T

2Kr
2

-----------------------------+–=

qr pr
1
2
--- ur

ur
Tpr

2Kr
2

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

–=

 NX Nastran Numerical Methods User’s Guide

134
the final algorithmic form is obtained

Eq. 6-30

which takes advantage of the symmetry.

Modified Tridiagonal Methods

The modified tridiagonal methods (i.e., modified Givens or Householder) are used
if the mass matrix is singular. These methods have a different transformation
scheme to obtain the canonical form. First, perform a Cholesky decomposition on a
shifted matrix as follows:

Eq. 6-31

where is a positive shift value obtained, as shown below, from the diagonal terms
of and matrices. The new form of Eq. 6-1 is now

Eq. 6-32

where:

The shift value is calculated as:

where and are the diagonal elements of and respectively. If or
 or , the term is omitted from the summation. If all terms are

omitted, is set to 0.001. If the value calculated does not result in a stable
Cholesky decomposition, the value is slightly perturbed, and the decomposition is
repeated up to 2 times. After three unsuccessful shifts, a fatal error is given.

The details of the above equation can be seen by rearranging Eq. 6-7 as follows:

Eq. 6-33

Then by premultiplying and substituting Eq. 6-31 the following is
obtained:

=

=

Ar Ar 1– ur qr
T qr ur

T––=

M

K[] λs M[]+() C[] C[]T=

λs
K[] M[]

A[] λI x{ } 0=–

λ 1
λ λs+

A[] C[] 1– M[] C[] 1 T,–

λs

λs
1

n1 2⁄ Mii
Kii

i 1=

n

∑⋅

--=

Mii Kii M K Mii 0=
Kii 0= Mii Kii⁄ 108>

λs λs

K[] λs M[] λ λs+() M[]–+() u{ } 0=

1– λ λs+()⁄

135CHAPTER 6
Real Symmetric Eigenvalue Analysis
Eq. 6-34

Finally, premultiplying by and substituting the term

Eq. 6-35

gives the Eq. 6-32.

QR Method of Eigenvalue Extraction

In the tridiagonal methods of Givens or Householder, NX Nastran employs the
iteration of Francis (1962), which produces a series of orthogonal transformations

 where is factored into the product , with an
upper triangular matrix. Thus,

Eq. 6-36

and

Now by virtue of the orthogonality property; therefore,

Eq. 6-37

It follows that is determined from by performing in succession the
decomposition given by Eq. 6-36 and multiplication. Francis has shown that if a
matrix is nonsingular, then approaches an upper triangular matrix as

. Since eigenvalues are preserved under orthogonal transformation, it follows
that the diagonal elements of the limiting matrix are the eigenvalues of the original
matrix . Although the method can be applied to any matrix, it is particularly
suitable for tridiagonal matrices because the bandwidth of the matrix can be
preserved as will be shown. In the case where is symmetric, the matrix
converges to diagonal form as .

Even though the upper triangular matrix and the orthogonal matrix are
unique up to sign, several methods are available for performing the decomposition.
In the method of calculation devised by Francis, is expressed as a product of

 elementary rotation matrices as follows, where is the order of :

Eq. 6-38

M[] C[] C[]T

λ λs+
----------------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

u{ } 0=

C[] 1–

x{ } C[]T u{ }=

QR

Ar 1+[] Qr[]T Ar[] Qr[]= Ar[] Qr[] Rr[] Rr[]

Ar[] Qr[] Rr[]=

Ar 1+[] Qr[]T Ar[] Qr[]=

Qr[]T Qr[] Rr[] Qr[]=

Qr[]T Qr[] I[]=

Ar 1+[] Rr[] Qr[]=

Ar 1+[] Ar[]

A[] A1[]= Ar[]
r ∞→

A[]

A[] Ar[]
r ∞→

Rr[] Qr[]

Qr[]
n 1–() n Ar[]

Qr[] T 1()[] T 2()[]… T n 1–()[]=

 NX Nastran Numerical Methods User’s Guide

136
The nonzero elements of the j-th elementary rotation matrix are the following:

Eq. 6-39

The manner in which the and coefficients are obtained from the elements of
are shown later. From the orthogonality property

Eq. 6-40

we can define the nonzero elements of , and as follows:

Eq. 6-41

Eq. 6-42

and

tj j,
j() tj 1+ j 1+,

j() cj= =

tj 1+ j,
j() tj j, 1+

j()– sj= =

tk k,
j() 1= k j j 1+,≠ ⎭

⎪
⎪
⎬
⎪
⎪
⎫

cj sj Ar[]

Rr[] Qr[] 1– Ar[] Qr[]T Ar[]= =

T n 1–()[]
T

T n 2–()[]
T

… T 2()[]
T

T 1()[]
T

Ar[]=

Ar[] Ar 1+[] Rr[]

Ar[]

a1 b1 0

b2 a2 b3

 bn 1– an 1– bn
0 bn an

= .
.

.

Ar 1+[]

a1 b1 0

b2 a2 b3

 bn 1– an 1– bn

0 bn an

= .
.

.

137CHAPTER 6
Real Symmetric Eigenvalue Analysis
Eq. 6-43

The coefficients of the elementary rotation matrices are selected to reduce the
subdiagonal terms of to zero. Specifically,

Eq. 6-44

where

Eq. 6-45

Substitution yields the elements of as follows:

Eq. 6-46

From Eq. 6-37, the elements of are the following:

Rr[]

r1 q1 t1

 r2 q2 t2

 rn 1– qn 1–

0 rn

= .
.

.

Rr[]

sj
bj 1+

pj
2 bj 1+

2+()
1 2⁄

--=

cj
pj

pj
2 bj 1+

2+()
1 2⁄

--=

⎭
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎫

j 1 2 … n 1–, , ,=

p1 a1=

p2 c1a2 s1b2–=

pj cj 1– aj sj 1– cj 2– bj–= j 3 4 … n 1–, , ,=

Rr[]

rj cj pj sj bj 1++= j 1 2 … n 1–, , ,=

rn pn=

q1 c1b2 s1 a2+=

qj sj aj 1+ cj cj 1– bj 1++= j 2 3 … n 1–, , ,=

tj sjbj 2+= j 1 2 … n 2–, , ,= ⎭
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎫

Ar 1+

 NX Nastran Numerical Methods User’s Guide

138
Eq. 6-47

NX Nastran uses a variation of Francis’s original method that avoids the calculation
of square roots. This variation uses the following equations in place of Eq. 6-47 as
follows:

Eq. 6-48

Eq. 6-49

where

Eq. 6-50

The reason that the use of Eq. 6-48, Eq. 6-49, and Eq. 6-50 in place of Eq. 6-47 avoids
the calculation of square roots can best be seen by considering the terms input to and
produced by these equations. For Eq. 6-47, the input terms consist of the elements
of (which are) and (which are the elements of).
This completes one iteration step but involves the calculation of square roots.
However, for Eq. 6-48, Eq. 6-49, and Eq. 6-50, the input terms consist of
and . The data produced is and , which serve as the
input to the next iteration step. No square roots need to be computed here.

a1 c1r1 s1q1+=

aj cj 1– cj rj sj qj+= j 2 3 … n 1–, , ,=

an cn 1– rn=

bj 1+ sj rj 1–= j 1 2 … n 2–, , ,= ⎭
⎪
⎪
⎬
⎪
⎪
⎫

aj 1 sj
2+()gj sj

2 aj 1++= j 1 2 … n 1–, , ,=
⎭
⎬
⎫

an gn=

bj 1+
2

sj
2 pj 1+

2 bj 2+
2+()= j 1 2 … n 2–, , ,=

bn
2

sn 1–
2 pn

2= ⎭
⎪
⎪
⎬
⎪
⎪
⎫

g1 a1=

gj cj 1– pj aj sj 1–
2 aj gj 1–+()–== j 2 3 … n, , ,=

g1
2 a1

2=

g1
2

gj
2

cj 1–
2

------------- if cj 1– 0≠ j 2 3 … n, , ,=

cj 2–
2 bj

2 if cj 1– 0= j 2 3 … n, , ,=⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

⎭
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎫

Ar[] a1 a2 … an, , , b2 b3 … bn, , , Ar 1+[]

a1 a2 … an, , ,
b1

2 b2
2 … bn

2, , , a1 a2 … an, , , b2 b3 … bn, , ,

139CHAPTER 6
Real Symmetric Eigenvalue Analysis
Convergence of the tridiagonal matrix to a diagonal form is speeded up by origin
shifting. NX Nastran employs a procedure suggested by Wilkinson’s quadratic shift
which has shown that when the eigenvalues are real, the best shift strategy is to
subtract from each diagonal element of and thereby reduce each eigenvalue
by .

Another device, useful in speeding up the determination of eigenvalues of
tridiagonal matrices, takes advantage of zeroes that may occur in the off-diagonal
rows. Let matrix be represented in partitioned form as follows:

Eq. 6-51

In this matrix, the diagonal terms in the lower right-hand partition are eigenvalues
that were determined in previous iterations. The j-th is the next lowest row in which
the off-diagonal term is zero thereby uncoupling the equations in the first

rows from the rest. As a result, the eigenvalues of the matrix in the central block may
be obtained separately. Other uncoupled blocks may be found in the upper left
partition.

The iteration described by Eq. 6-48 and Eq. 6-49 is continued until decreases
to a satisfactory level of accuracy so that may be accepted as an eigenvalue of the
shifted matrix. must be negligible compared to , that is,
must approximately equal . Then is transferred to the lower partition, and
the process is continued until all the eigenvalues of the partitioned matrix are
extracted.

an A[]
an

Ar[]

a1 b1

b1 a2 b2

 aj 2– bj 2–

 bj 2– aj 1–

 aj bj

 bj aj 1+ bj 1+

 bm 2– am 1– bm 1–

 bm 1– am

 am 1+

 an

.
.

.

.
.

.

.
.

.

bj 1– j 1–

bm 1–()
2

am
bm 1–()

2
am()2 bm 1–()

2
am()2+

am()2 am()

 NX Nastran Numerical Methods User’s Guide

140
Computation of Eigenvectors

The eigenvector corresponding to any eigenvalue of the tridiagonal matrix may
be determined by solving of the following equations:

Eq. 6-52

If the first equations are used, the solution is obtained by taking to be unity
and substituting in the equations to obtain values of . Wilkinson (1958)
shows that this method is unstable and suggests the following approach, which is
used in NX Nastran.

The tridiagonal matrix is factored into the product of a lower unit triangle
 and an upper triangle . Partial pivoting is used in this decomposition; i.e.,

the pivotal row at each stage is selected to be the equation with the largest coefficient
of the variable being eliminated. An approximation to the eigenvector is then
obtained from the solution of the following equation:

Eq. 6-53

where is randomly selected. The solution is easily obtained by backward
substitution because has the form below:

Eq. 6-54

An improved solution is obtained by repeated application of Eq. 6-53 using the
current estimate of on the right-hand side. Thus,

Eq. 6-55

where

λi
n 1–

a1 λi–()x1 b2 x2 0=+

b2 x1 a2 λi–()x2 b3 x3 0=++

bn 1– xn 1– an 1– λ– i()xn 1– bn xn 0=++

bn xn 1– an λi–()xn 0=+

.

.

.

n 1–() x1

x2 x3 … xn, , ,

A λiI–[]
Li[] Ui[]

φi[]

Ui[] φi[] C[]=

C[]
Ui[]

Ui[]

p1 q1 r1

 p2 q2 r2

 pn 2– qn 2– rn 2–

 pn 1– qn 1–
 pn

=
.

.
.

φi[]

Ui[] φi
n()

⎩ ⎭
⎨ ⎬
⎧ ⎫

φi
n 1–()

⎩ ⎭
⎨ ⎬
⎧ ⎫

=

141CHAPTER 6
Real Symmetric Eigenvalue Analysis
Wilkinson showed that, if the computed eigenvalue is a close approximation to
the true eigenvalue, convergence is so rapid that not more than two iterations are
required. The applied test is for the maximum component of the eigenvector to
remain unchanged (to single precision accuracy) in one iteration. The initial vector

 is chosen so that each element is unity.

In the case of a multiple eigenvalue, the above method gives one eigenvector .
If you start with any initial vector orthogonal to and apply the previous
algorithm, convergence to the other eigenvector results. The following
procedure is used in NX Nastran to compute eigenvectors associated with multiple
eigenvalues. If eigenvectors with elements
are obtained, an initial vector orthogonal to each of these eigenvectors is
obtained by taking the components as unity and solving the
simultaneous equations as follows:

Eq. 6-56

Accumulated round-off errors result in the computed multiple eigenvectors since
they are not exactly orthogonal to one another. The following Gram-Schmidt
algorithm is used to produce an orthogonal set of eigenvectors from the
almost orthogonal set . For , select as follows:

Eq. 6-57

Then for , calculate as follows:

φ1
0

⎩ ⎭
⎨ ⎬
⎧ ⎫

C[]=

λi

C[]

φ1{ }
b{ } φ1{ }

φ2{ }

φ1{ } φ2{ } … φm{ }, , , φd{ } a1s a2s … ans, , ,{ }T=
b{ }

bm 1+ bm 2+ … bn, , ,

b1 a11 b2 a21 … bm am1 ai1()

i m 1+=

n

∑–=+ ++

b1 a12 b2 a22 … bm am2 ai2()

i m 1+=

n

∑–=+ ++

b1 a1m b2m a2m … bm amm aim()

i m 1+=

n

∑–=+ ++

⎭
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎫

.

.

.

k ys{ }
xs{ } s 1=

y1{ }
x1{ }
x1{ }

-------------------=

1 s k≤<

 NX Nastran Numerical Methods User’s Guide

142
Eq. 6-58

where denotes the Euclidean norm

of vector and is a scalar product of the vectors and

.

When all the eigenvectors of the tridiagonal matrix are extracted, the back
transformations are carried out to obtain the eigenvectors of the original matrix .
Finally, for all of the tridiagonal methods, the eigenvectors are given one last stage
of orthogonalization as follows. First compute:

Then, find , such that

by Cholesky factorization. Finally, find the reorthogonalized eigenvectors by a
forward solution pass of . It can be shown that this operation is equivalent
to orthogonalizing the second vector with respect to the first, orthogonalizing the
third with respect to the purified second and first vector, , and orthogonalizing
the last vector with respect to all of the other purified vectors. If is poorly
conditioned with respect to the Cholesky decomposition, a fatal error message is
produced.

Shared Memory Parallel Householder Method

The most time-consuming part of the reduction type methods is the reduction to
tridiagonal form. Besides being more easily vectorizable, the Householder method
also lends itself easily to parallelization. The computer science aspects of the parallel
Householder method (i.e., creating subtasks, waiting, etc.) are similar to those of the
parallel methods mentioned previously and are not detailed here. The necessary
mathematical details follow.

zs{ } xs{ } xs{ }T yt{ }() yt{ }

t 1=

s 1–

∑–=

yt{ }
zt
zt{ }

-----------------=

zt{ }

zt1
2 zt2

2 … ztn
2+ + +

zt1 zt2 … ztn, , ,{ }T xs{ }T yt{ } xs{ }

yt{ }

A[]

Mmodal φTMφ=

L

LTL Mmodal=

φ
L φ

T
φT=•

…
Mmodal

143CHAPTER 6
Real Symmetric Eigenvalue Analysis
A logical suggestion is to “aggregate” the Householder transformations, i.e., work
in column blocks instead of columns. For example, by observing the first k steps, the
following can be written:

where:

Completing the process in k-size blocks produces the following:

where

Before the j-th block step, the structure of is as follows:

=

 and = matrices (representation)

A[]k P[]k P[]k 1– … P[]1,,()A P[]k P[]k 1– … P[]1,,()T=

 Q[]k A[] Q[]k
T=

Q[]k I W[]k Y[]k
T+

W[] Y[] n k× WY

A[]j Q[]j A[] Q[]j
T= j 1= 2 … n k⁄, , ,

Q[]j P[]jk P[]jk 1– … Pjk k 1+–[],=

A

Aj[] Cj 1–[]= Bj 1–[] A1
j 1–()[]

j 1–() k• k n jk()–

 NX Nastran Numerical Methods User’s Guide

144
where:

The process is then to generate so that assumes tridiagonal form and

afterwards update the remainder of the matrix as shown:

This block update can be parallelized and forms the parallel portion of the NX
Nastran Householder code. It is intended for shared memory parallel computers. It
does not run on distributed memory computers. A similar approach can also be
used in the reduction to Hessenberg form, which is one of NX Nastran’s complex
eigenvalue methods. However, this parallelized Hessenberg approach is not
implemented as yet.

Real Symmetric Lanczos Method
The basic Lanczos recurrence (Lanczos, 1950) is a transformation process to
tridiagonal form. However, the Lanczos algorithm truncates the tridiagonalization
process and provides approximations to the eigenpairs (eigenvalues and
eigenvectors) of the original matrix. The block representation increases performance
in general and reliability on problems with multiple roots. The matrices used in the
Lanczos method are specifically selected to allow the best possible formulation of
the Lanczos iteration and are described in Table 6-1 of “Theory of Real Eigenvalue
Analysis” on page 125.

Basic Lanczos Recurrence

The basic Lanczos algorithm solves the following problem:

Eq. 6-59

and can be formulated as follows:

1. Initialization

a. A starting vector is chosen with .

b. Initialize the scalar and vector .

2. lteration

= tridiagonal matrix of order

= general matrix of order

= general matrix of order

Cj 1– n j 1–()k⋅

Bj 1– n k⋅

A j 1–() n n jk–⋅

I Wj Yj
T+ Bj 1–

A j() I Wj Yj
T+()A j 1–() I Wj Yj

T+()
T

=

Ax λx=

q1 q1 1=

β1 0= q0 0=

145CHAPTER 6
Real Symmetric Eigenvalue Analysis
For , iterate as below until convergence:

If this algorithm is carried out without round-off errors, the vectors , are
orthonormal. These vectors can be considered to be the columns of an orthogonal
matrix . The scalars and can be combined in a tridiagonal
matrix as follows:

With this notation, the first steps of the Lanczos algorithm can be combined in
matrix form as follows:

Eq. 6-60

where the vector is the unit vector with zero entries except for the j-th row which
holds the value of one.

This mathematical presentation is not sufficient for a practical implementation of
the Lanczos algorithm that is capable of coping with finite precision arithmetic. The
computation of the Lanczos loop can be carried out in many mathematically
equivalent ways, one of which is the best for finite arithmetic, while several others
do not work in finite arithmetic (Grimes, R.G., et al.). Even with the recurrence
written in the proper form, round-off errors can cause the algorithm to behave quite
differently from the ideal description given above. More details on the effects of
round-off errors are given in the section on preserving orthogonality.

=

=

=

=

j 1 2 3 …, , ,=

αj qj
TAqj

rj 1+ Aqj αj qj βj qj 1–––

βj 1+ rj 1+

qj 1+ rj 1+ βj 1+⁄

q1 q2 q3 …, , ,

Qj q1 q2 … qj, , ,()= αj βj
Tj

Tj

α1 β2

β2 α2 β3

 β3 α3 β4

 βi αi βi 1+

 βj
 βj αj

=

.
.

.

.
.

.

j

AQj QjTj βj 1+ qj 1+ ej
T=–

ej

 NX Nastran Numerical Methods User’s Guide

146
The Lanczos algorithm is valuable for solving sparse eigenvalue problems because
it needs only a partial tridiagonalization and does not actually modify the matrix .
The matrix enters the algorithm only in the formation of the matrix vector product

. In practice, this means that the sparsity of can be exploited in a natural way
since all that is needed is an efficient subroutine to compute from .

The eigenvalues and corresponding eigenvectors of are computed from those of
. Let and be an eigenpair of the tridiagonal matrix ; that is, let

Eq. 6-61

Then and with can be considered an approximate eigenpair for the
original problem. Note that in a typical application, the order of matrix may be in
the tens of thousands, whereas the order of is about 20 to 30. Hence, it is much
easier to solve the eigenvalue problem of Eq. 6-61 than of Eq. 6-60. But the question
is: How good is the approximate eigenpair , or more directly, when should the
Lanczos recurrence be stopped so that the eigenpairs are satisfactorily accurate?

The correct answer requires the norm of the residual for the eigenpair ,
which seems to require the full computation of a candidate eigenpair. In fact, this
residual norm can be obtained from Eq. 6-61 by observing that

Eq. 6-62

where is the j-th or bottom element of the eigenvector . Hence, the norm of the
residual is given by and the quantity can be computed without computing the
eigenvector explicitly. A small extra effort allows the convergence of the
eigenpairs to be monitored and terminates the Lanczos loop whenever the required
number of sufficiently accurate eigenpairs is found. The eigenvector is computed
only once at the end.

Why should it be expected that some of the eigenvalues of the tridiagonal matrix
converge quickly to the eigenvalues of ? This question is answered by some
intricate mathematical theorems (see Parlett for an overview) which guarantee that,
under reasonable assumptions on the properties of the starting vector,
approximations to some of the extreme eigenvalues appear in the tridiagonal matrix
very quickly. Two factors can impede this rapid convergence. If the starting vector
has no components in the direction of one of the eigenvectors, the convergence of
this eigenvector is delayed. A cluster of poorly separated eigenvalues also causes
slow convergence.

Shifted Algorithm

The basic Lanczos algorithm as discussed in the previous section must be modified
in two respects to solve the practical vibration problem. The vibration problem is a
symmetric generalized eigenvalue problem using the following form:

A
A

Aq A
Av v

A
T θ s Tj

Tj s θs=

θ y y Qjs=
A

Tj

θ y,

Ay θy–

Ay θy βj 1+ qj 1+ sj=–

sj s
βj 1+ sj

y

y

Tj
A

147CHAPTER 6
Real Symmetric Eigenvalue Analysis
Eq. 6-63

where is a symmetric matrix, is a symmetric positive semidefinite matrix, and
 is the eigenvalue. If is positive definite, the Cholesky factorization of can be

computed and Eq. 6-63 can be reduced to an ordinary eigenvalue equation.
However, there are considerably more difficulties when is only semidefinite
(nonnegative definite). The implementation of the Lanczos algorithm in NX Nastran
avoids the Cholesky factorization of to use the more general form of the problem.

The typical eigenvalue problem is to compute the smallest (closest to zero)
eigenvalues and eigenvectors of Eq. 6-63. These eigenvalues are usually clustered
closely together when compared to the largest eigenvalues. The Lanczos algorithm
applied directly to Eq. 6-63 yields precise approximations to these large,
well-separated, but uninteresting eigenvalues, and poor approximations to the
small, clustered, and interesting eigenvalues. In order to overcome this convergence
difficulty, the Lanczos algorithm is applied to the following shifted and inverted
eigenvalue problem:

Eq. 6-64

In Eq. 6-64 the shift is chosen close to the eigenvalues of interest. This
formulation of the shifted and inverted eigenvalue problem is only one of several
possible ones. Eq. 6-64 is the preferred choice for vibration problems because of its
improved rate of convergence to the desired eigenvalues and the fact that the
eigenvectors of Eq. 6-64 are also eigenvectors of Eq. 6-63.

The relationship between the application of the Lanczos algorithm to Eq. 6-63 and
Eq. 6-64 is comparable to the relationship between the power method and the
inverse power method (inverse iteration). The choice of shift in the inverse power
method directs the convergence toward the eigenpair closest to the shift. For
well-chosen shifts, the convergence can be very rapid. The same is true for the
shifted and inverted Lanczos algorithm. A properly chosen shift guarantees rapid
convergence not only to the closest eigenpair but also to a whole group of eigenpairs
in the vicinity of the shift. The cost of this accelerated convergence towards the
desirable eigenvalues is the factorization of which, for large matrices, can
be the dominating cost in either algorithm. The computational superiority of the
Lanczos algorithm derives from its efficient use of this expensive factorization. Even
a relatively short run of the shifted and inverted Lanczos algorithm can extract
many eigenvalues using only one factorization.

The Lanczos algorithm applied to the vibration problem of Eq. 6-64 can be
formulated as follows:

1. Initialization

a. A starting vector is chosen.

Kx λMx=

K M
λ M M

M

M

M K σM–() 1– Mx 1
λ σ–
--------------= Mx

σ

K σM–()

r0

 NX Nastran Numerical Methods User’s Guide

148
b. is computed.

c. The mass-normalized vector is computed.

d. and are initialized.

2. lteration

For the following iteration is performed until convergence
occurs:

There are two remarkable facts about this formulation of the Lanczos algorithm for
the eigenvalue problem. First, no factorization of the possibly singular mass matrix

 is required. Second, the Lanczos vectors are orthogonal with respect to
the inner product defined by .

When is semidefinite, it does not define a true inner product, but the algorithm
still works as described. The null space of is spanned by the eigenvectors
corresponding to infinite eigenvalues of Eq. 6-63. In that case, the initialization step
(1b) purges the infinite eigenvector components from the first Lanczos vector (and
therefore all successive Lanczos vectors, in exact arithmetic). Thus, the Lanczos
algorithm still works by implicitly restricting to a positive definite matrix
operating on the row space of , this restriction defining a true inner product. An
extra benefit is that the Lanczos algorithm in the version above generates no
approximations to the infinite eigenvalues of Eq. 6-63 that arise when is
semidefinite. It is worth noting that in implementation, the Lanczos vectors may
collect some infinite eigenvector components due to round-off; these components
do not affect the Lanczos recurrence, and can be purged from the computed
eigenvectors by an Ericsson-Ruhe correction.

The tridiagonal matrix defined in Eq. 6-61 contains approximations to the finite
eigenvalues of Eq. 6-64 via the so-called spectral transformation. Specifically, if is
an eigenvalue of , then

Eq. 6-65

=

=

=

=

r1 K σM–() 1– Mr0=

q1 r1 r1
TMr1()1 2⁄⁄=

β1 0= q0 0=

j 1 2 3 …, , ,=

αj qj
TM K σM–() 1– Mqj

rj 1+ K σM–() 1– Mqj αj– qj βjqj 1––

βj 1+ rj 1+
T Mrj 1+()

1 2⁄

qj 1+ rj 1+ βj 1+⁄

M q1 q2 …, ,
M

M
M

M
M

M

Tj
θ

Tj

λ σ 1
θ
---+=

149CHAPTER 6
Real Symmetric Eigenvalue Analysis
is an approximate eigenvalue of Eq. 6-64. The approximate eigenvector can be
computed in the same way as in the previous section. Since the Lanczos vectors are

-orthogonal, the eigenvectors corresponding to different eigenvalues are also
-orthogonal.

To solve the buckling problem of the form

Eq. 6-66

a different shifting and inverting strategy is required. In Eq. 6-66, the differential
stiffness matrix is merely symmetric and has no definite properties, whereas the
stiffness matrix is positive semidefinite. The semidefinite property of in the
vibration analysis is critical to the Lanczos algorithm, so the shifting strategy
applied in the vibration case cannot be applied to the buckling case simply by
substituting for .

Since the desired eigenvalues are usually the ones closest to zero, a simple approach
is to interchange the roles of and and then compute the largest eigenvalues of
the problem. Therefore, by applying the Lanczos algorithm without shift, we can
write

Eq. 6-67

where . This formulation is not quite sufficient, because it does not allow
any shifting for other eigenvalues.

A general shifting and inverting strategy is possible for the buckling problem. As
shown previously, the operator is factored for an arbitrary shift, but the
Lanczos recurrence is carried out using -orthogonality among the Lanczos
vectors. Each multiplication by the mass matrix in the vibration case is replaced
by a multiplication by the stiffness matrix in the buckling case. The rest of the
Lanczos recurrence remains the same. Hence, in the buckling case the Lanczos
algorithm works with the operator and -orthogonality.

This shifted and inverted operator allows for arbitrary shifts with the exception of a
shift at zero that reduces the problem to an identity matrix. For all other shifts, an
eigenvalue of can be transformed as

Eq. 6-68

to yield an approximate eigenvalue of Eq. 6-66. Eigenvectors are computed as
before without any additional back transformation resulting in a -orthogonal set.
Since the stiffness matrix is used in the initialization step in the same way as is
used in the vibration problem, the sequence of Lanczos vectors and hence the

y

M
M

Kx λKd x=

Kd
K M

Kd M

K Kd

Kdx μ K x=

μ 1 λ⁄=

K σKd–
K

M

K σKd–() 1– K K

θ Tj

λ σ θ
θ 1–
-------------=

K
K M

 NX Nastran Numerical Methods User’s Guide

150
eigenvectors are orthogonal to the null space of . Therefore, does not yield any
approximation to the exact zero eigenvalues of the buckling problem. The rigid
body modes of the structure are not computed during the buckling analysis.

Block Method

In exact arithmetic, the single-vector Lanczos algorithm can only compute one
eigenvector in a degenerate set. Because of round-off errors introduced into the
Lanczos recurrence, additional eigenvectors of multiple eigenvalues may
eventually appear in the tridiagonal matrix . A second eigenvector of a multiple
eigenvalue only converges a number of steps after the first eigenvector converged.
(Effectively, this is the case where the starting vector is orthogonal to the desired
eigenvector.) Thus, the single-vector Lanczos algorithm has difficulties with
eigenvalues of high multiplicity.

Each step of the shifted Lanczos recurrence requires the solution of a sparse linear
system of equations of the form and one multiplication by the
matrix . In NX Nastran these operations require accessing matrices stored on disk
files and thus entail significant I/O costs.

Block Lanczos algorithms have been developed in which the basic Lanczos
recurrence is carried out for vectors simultaneously. If the idea of a block code is
combined with the shifted and inverted Lanczos algorithm, the following
recurrence is obtained for the vibration problem:

1. Initialization

a. A starting block of column vectors is chosen.

b. is computed.

c. An upper triangular matrix and an -orthonormal
matrix are computed so that .

d. The upper triangular matrix is set to as well as .

2. lteration

a. For , the process iterates as follows, until convergence:

 where

b. Compute the following factorization:

 where is an matrix with -orthonormal columns and
is a upper triangular matrix.

K Tj

Tj

K σM–()x b=
M

p

p R0

R1 K σM–() 1– MR0=

p p× B0 M n p×
Q1 R1 Q1B0=

p p× B1 0 Q0 0=

j 1 2 3 …, , ,=

Rj 1+ K σM–() 1– MQj Qj Aj Qj 1– Bj
T––=

Aj Qj
T M K σM–() 1– MQj=

Rj 1+ Qj 1+ Bj 1+=

Qj 1+ n p× M Bj 1+
p p×

151CHAPTER 6
Real Symmetric Eigenvalue Analysis
Using the block version of the Lanczos algorithm provides the benefit that multiple
eigenvalues of the original problem can be computed more easily. All degenerate
eigenvectors can be found together when the multiplicity of an eigenvalue is less
than or equal to the block size . Further, the amount of I/O per column is reduced
by a factor of 1/ since it is possible to solve and perform the matrix multiplication
for vectors simultaneously.

The description of the block Lanczos code is incomplete without a description of the
factorization and consideration of the fact that is now block
tridiagonal. This factorization is required to obtain -orthonormal vectors in the
recurrence. Here, and are matrices and is an upper triangular
matrix, which is chosen so that the columns of are -orthonormal. This
procedure is implemented using a generalization of the modified Gram-Schmidt
procedure that avoids repeated multiplications by matrix . Both vectors in and
a second set, initially set to , are updated during the Gram-Schmidt
orthogonalization. At the completion of the procedure, the first set of vectors are
transformed to and the second set to . A multiplication by is required at
the beginning of the procedure. A second multiplication is made at the end to ensure
that is accurate, but no additional multiplications by are required during the
procedure.

Another consequence of using a block Lanczos algorithm is that matrix , from
which the approximations to the eigenvalues are computed, is now a block
tridiagonal matrix represented as follows:

Since the blocks are upper triangular, is actually a banded matrix with
bandwidth .

The eigenvalues and eigenvectors of are computed by the following procedure.
First, reduce to a tridiagonal form . An orthogonal matrix is found so that

p
p

p

R QB= Tj
M

R Q n p× B p p×
Q M

M R
MR

Q MQ M

MQ M

Tj

Tj

A1 B2
T

B2 A2 B3
T

 B3 A3 B4
T

 Bi Ai Bi 1+
T

 Bj
T

 Bj Aj

=
.

.
.

.
.

.

Bi{ } Tj
p 1+

Tj
Tj T QH

 NX Nastran Numerical Methods User’s Guide

152
Eq. 6-69

Then perform an eigenextraction for . An orthogonal matrix is found so that

Eq. 6-70

where is the diagonal matrix of the eigenvalues of . Then, by combining Eq. 6-69
and Eq. 6-70, the following is obtained:

Eq. 6-71

where the orthogonal matrix is the eigenvector matrix for .

The orthogonal matrices and are products of simple orthogonal matrices

(Givens rotations)

and

respectively. These product matrices are accumulated by beginning with the
identity matrix I and successively multiplying on the right by

where .

The algorithms used in Eq. 6-69 and Eq. 6-70 are standard and numerically stable.

The actual implementation of the band reduction algorithm of Eq. 6-69 uses
modified (square root free) Givens rotations to reduce the overall cost by
eliminating the square root computations associated with each rotation.

Note: The eigenvector matrix is formed by products that take linear
combinations of the columns. In the intermediate steps when only the
last rows of the eigenvector matrix are desired, the leading rows are

ignored and the rotations are applied only to the last rows of the
identity matrix.

QH
T Tj QH T=

T QT

QT
T T QT Λ=

Λ T

QT
T QH

T()Tj QH QT() Λ=

QH QT() H

QH QT

QH1
QH2

…QHs
⋅ ⋅

QT1
QT2

…QTr
⋅ ⋅

QHi

i 1 … r, ,=

p
p

153CHAPTER 6
Real Symmetric Eigenvalue Analysis
The extraction of the eigenvalues and eigenvectors of (see Eq. 6-70) is essentially
the same procedure used by the algorithm (see “QR Method of Eigenvalue
Extraction” on page 135). The procedure used here is an explicitly shifted
algorithm using ordinary Givens rotations. The square root

required for the calculation of the Givens rotations is computed by a special
recursion based on the Pythagorean Theorem. This recursion avoids overflow by
not forming or and avoids destructive underflow occurring with the implicitly
shifted algorithm for the matrices produced by the Lanczos shifted block. The
spectral transformation is applied as before to find approximate eigenvalues for the
original problem of Eq. 6-64. If is an eigenvector of , then with

 is an approximate eigenvector of Eq. 6-64. The residual norms of
the eigenpairs are now given by where the vector consists of the last
(block size) components of the eigenvector .

The expense of l/O operations suggests that should be as large as possible. The
available memory precludes choosing very large block sizes. However, large block
sizes also entail other costs because the -orthogonal factorization requires
additional computation and the overall convergence rate depends largely on the
number of Lanczos steps and less on the dimension of . Therefore, the actual block
size is taken as a compromise among the reduction of I/O costs, the possible
increase in arithmetic operations, and the largest multiplicity of the expected
eigenvalues.

Orthogonalization

The Lanczos algorithm produces an orthonormal (or -orthonormal) set of
Lanczos vectors in exact arithmetic. (For simplicity, the orthogonality referred to
always implies orthogonality with respect to the inner product defined by). The
numerical algorithm is affected by round-off errors that cause the Lanczos vectors
to lose their orthogonality. Maintenance of orthogonality is essential for preserving
the convergence properties of the Lanczos algorithm. Early implementations of the
Lanczos algorithm employed a “full reorthogonalization” scheme in which each
new block of Lanczos vectors was explicitly reorthogonalized against all previous
Lanczos vectors. This process required vector operations at step as well as
access to all previous vectors (usually stored out-of-core). Instead of this expensive
scheme, the Lanczos algorithm in NX Nastran employs a combination of several
efficient reorthogonalization mechanisms that together accomplish the computation
of a sufficiently orthonormal set of Lanczos vectors.

Loss of orthogonality can occur in four different areas:

1. Within a given block of Lanczos vectors (internal).

T
QR

QL

a2 b2+

a2 b2

QL

s Tj y Qj s=
Qj Q1 Q2 … Qj, , ,()=

Bj 1+ sj sj p
s

p

M

Tj

M

M

pj2 j

 NX Nastran Numerical Methods User’s Guide

154
2. With respect to the previous two blocks of Lanczos vectors (local).

3. With respect to the set of all previously computed Lanczos vectors (global).

4. With respect to eigenvectors from different shifts (external).

Problems with orthogonality within a block of Lanczos vectors can arise if the
vectors of are almost linearly dependent. For example, this problem occurs
when the shift is extremely close to an eigenvalue. In this case, one step of the
generalized modified Gram-Schmidt procedure is not sufficient to produce vectors
that are orthogonal to working precision. Gram-Schmidt is considered an iterative
procedure that possibly can be repeated several times until the Lanczos vectors are
orthogonal. The Gram-Schmidt procedure is referred to as “internal
reorthogonalization,” which also requires updating the elements of .

The local loss of orthogonality involves the previous two blocks of Lanczos vectors.
The recurrence can be considered an orthogonalization of the block against the
blocks and . The block computed from the Lanczos recurrence may not
be orthogonal to and to full working precision. Investigations indicate that
the orthogonality between and is crucial for the correct continuation of the
Lanczos process. Therefore, one step of local reorthogonalization is carried out; i.e.,
the block is reorthogonalized against the block . This procedure may be
repeated until the two blocks are orthogonal to working precision. This local
reorthogonalization also requires updating the elements of .

The global loss of orthogonality between the block and previous Lanczos
blocks is of a different nature. The Lanczos recurrence involves only three blocks of
Lanczos vectors. The beauty and efficiency of this recurrence lies in the fact that the
three-term recurrence in exact arithmetic is enough to assure global orthogonality
among all of the Lanczos vectors. Unfortunately, this is no longer true under the
influence of round-off errors. Once some tiny error is introduced into the
recurrence, it becomes amplified in the course of the next Lanczos steps and soon
the global orthogonality property is lost. The mechanisms of this loss of
orthogonality have been investigated in the last decade by several researchers and
are now well understood. There are two important insights from the theoretical
works that provide for an efficient implementation of the global
reorthogonalization. First, it is possible to monitor the loss of orthogonalization
inexpensively by updating certain estimates for loss of orthogonality at every
Lanczos step. Second, it is sufficient to maintain orthogonality at the level of the
square root of the machine’s precision (semi-orthogonality) and still obtain fully
accurate eigenvalues. These two observations give rise to the scheme of partial
reorthogonalization that is generalized to the block Lanczos algorithm in the NX
Nastran implementation.

Rj 1+
σ

Bj 1+

Rj 1+
Qj Qj 1– Rj 1+

Qj Qj 1–
Rj 1+ Qj

Rj 1+ Qj

Aj

Qj 1+

155CHAPTER 6
Real Symmetric Eigenvalue Analysis
The fourth type of loss of orthogonality can only occur in the context of the shifted
and inverted algorithm, and has nothing to do with the Lanczos recurrence directly.
The NX Nastran Lanczos algorithm begins by computing some eigenvalues and
eigenvectors with an initial shift . If not all of the desired eigenvalues are found,
then a second Lanczos run with a new shift is made. For reasons of efficiency and
simplicity in bookkeeping, the previously computed eigenvalues are prevented
from being recomputed. This benefit is achieved by the external selective
orthogonalization implemented in NX Nastran. For each new shift, a set of critical
converged eigenvalues is determined. The Lanczos vectors are then kept orthogonal
against the corresponding eigenvectors of this selected group of computed
eigenvalues using a modification of the technique of selective orthogonalization.
Estimates for the loss of orthogonality with respect to the computed eigenvectors
are updated at each Lanczos step, and reorthogonalizations are performed only
when semi-orthogonality is about to be lost.

Shift Strategy

The eigenanalysis problem in NX Nastran is to compute either the lowest
eigenvalues in magnitude or all eigenvalues in an interval where and can
be any real numbers, . The shift strategy incorporated in the block shifted
Lanczos code allows the shifts selected in the interval to rapidly find the
desired eigenvalues without wasted factorizations. The main objective for the shift
strategy is to encompass the region containing the eigenvalues of interest with a
trust region in which all the eigenvalues have been computed and the number of
eigenvalues has been verified with a Sturm sequence check.

The first shift is chosen at the primary point of interest (usually 0 in vibration or –1
in buckling) or the left endpoint if it is finite. Additional shifts are chosen to form or
extend a trust region until the requested eigenvalues are computed. These shifts are
selected based on the information computed during previous Lanczos runs. A trust
region can be extended in either direction.

The shift strategy is designed to place the final shift at the correct place to
simultaneously compute the last required eigenvalues and to make a Sturm
sequence check for the entire interval. However, a final shift may be required for a
separate final Sturm sequence check. This check is designed conservatively so that
shifts are not taken so far as to skip past part of the spectrum. However, if this does
happen, the Sturm sequence count indicates that not all the eigenvalues are
computed between two shift points. The shift strategy immediately attempts to find
the missing eigenvalues rather than to extend the trust region further.

Two values, called the left and right sentinels, are associated with all shifts. A right
sentinel is defined as the rightmost accepted eigenvalue that has no unaccepted
eigenvalue approximations between the shift and itself. The left sentinel is defined
similarly for the accepted and unaccepted approximations to the left of the shift.

σ1

σ2

m
a b,[] a b

a b<
a b,[]

 NX Nastran Numerical Methods User’s Guide

156
When eigenvalues are missing between two shifts, it is usually because the last shift
was too far from the previous shift. In this case, the missing eigenvalues should be
between the right sentinel of the leftmost of the two shifts and the left sentinel of the
rightmost of the two shifts. A new shift is selected to bisect the interval between the
above two sentinels. In the rare case when the sentinels overlap each other, the new
shift bisects the full interval between the two previous shifts. (The usual reason that
such an overlap occurs is that the multiplicity of eigenvalues is greater than the
Lanczos block size.)

There are several ways in which the shifting may deviate from the description
above. Four major special cases are listed in this section. The first special case is the
setting of the shift scale . Initially, is an approximation to the first nonrigid body
mode of the structure. In the case of an initial shift at 0 for a structure with rigid body
modes, only the rigid body modes in the initial Lanczos run are computed. In such
cases the shift strategy does not update the value of , but instead uses the initial
to move away from 0 towards the first nonzero eigenvalue. There are other special
cases related to the rigid body modes where the Lanczos algorithm may terminate
with no new information available for the next shift selection. In these cases is not
updated, and the previous value is maintained.

The second special case is when no new information is computed at two consecutive
shifts. This case may occur if there is a very large gap between modes of a structure
or all remaining modes are infinite. The shift strategy expands its step size to cross
the suspected hole in the spectrum. If the user-specified interval has a finite
endpoint that was not used previously, the shift strategy selects the new shift at that
endpoint. If the interval has only infinite endpoints remaining, then the new shift is
chosen at 10 past the last shift. If no new information is computed at this shift, the
next shift is chosen at 100 past the last shift. If there is still no new information,
then the Lanczos procedure terminates with the assumption that the remaining
eigenvalues are infinite. An appropriate warning is returned with those eigenvalues
that were computed.

The third special case is the buckling problem. The operator used in the buckling
problem for the Lanczos iteration is ill-posed for shifts at or near 0. The shift strategy
process of the buckling problem is similar to the vibration problem with the
exception that the shifts near 0 are perturbed away from 0.

The fourth major special case is the processing of factorization errors. In rare cases
when the selected shift is exactly an eigenvalue, the operator is singular,
and the factorization can fail. If this occurs, the shift is perturbed, and an additional
factorization is performed. If three factorization errors occur consecutively, then the
Lanczos procedure terminates with an appropriate error message and returns any
computed eigenvalues and eigenvectors. Presumably, the cause of such a failure is
an improperly posed eigenvalue problem for which the mass and stiffness matrices
have a common null space (massless mechanisms).

δ δ

δ δ

δ

a b,[]

δ
δ

σ K σM–

157CHAPTER 6
Real Symmetric Eigenvalue Analysis
Summary of Procedure

The general Lanczos procedure implemented in NX Nastran can be summarized in
the following figures. There are two major levels in the procedure: the outer level in
the shift strategy and administration, and the inner level in the actual Lanczos
iteration. Figure 6-1 describes the outer level and Figure 6-2 describes the inner
level.

Figure 6-1 Outer Level of the Lanczos Procedure

Administration
Accepted Eigenpairs

Use the
Same
Shift?

Prepare Output

No

Yes

Yes No

Initialization

Select a Shift
Value

Decompose Shifted
Matrix

Run Inner Level
Flowchart 2

Done

 NX Nastran Numerical Methods User’s Guide

158
Figure 6-2 Inner Level of the Lanczos Procedure

Segmented Lanczos Method

The segmented version of Lanczos is intended to alleviate the orthogonality
problems encountered on very wide frequency range runs. The orthogonality may
be lost when very long Lanczos runs are executed while trying to span a wide
frequency range of interest. The segment version forces intermittent shifts at semi-

Analyze :
Compute the Spectrum of
and analyze Residual Norms

for Convergence

Tj
Tj

Lanczos Step:
Compute from

the Lanczos recurrence
aj qj 1+ βj 1+, ,

Initialization of Inner Level

Lanczos Loop:
for , maxstp doj 1 2 …, ,=

Did Sufficiently
Many Eigenvalues

Converge?

Postprocessing of
Eigenvectors

Exit Lanczos Loop
Compute Eigenvectors of A

End of Lanczos Run
(Return to Outer Level)

No

Yes

159CHAPTER 6
Real Symmetric Eigenvalue Analysis
regular intervals resulting in more frequent restarts of the Lanczos process. While it
has significantly improved the solution quality, i.e., we avoid aborts due to loss of
orthogonality, the number of shifts is usually more than the non-segmented run.

Frequency Domain Decomposition-Based Distributed Parallel
Lanczos Method

The frequency domain decomposition normal modes analysis is built on the
frequency segment approach of the Lanczos method. The frequency range of
interest given by the user is subdivided automatically. The user also has the choice
of introducing intermediate frequencies directly on the EIGRL continuation card.
This may be especially advantageous in case of repeated runs (the most practical
situation), where the user may be able to enforce better load balancing than the
automatic intermediate frequency generation method. This process is executed in a
master/slave paradigm. One of the processors (the master) will execute the
coordination and collection of the separately calculated eigenvectors into an
appropriately ordered set. This guarantees the continuation and proper exit of the
master process. The slave processes will contain only the eigenvalues and
eigenvectors they found upon exiting the READ module of NX Nastran.

Geometric Domain Decomposition-Based Distributed Parallel
Lanczos Method

The principle of geometric domain decomposition is not confined completely to the
READ module, as is the frequency domain decomposition. The geometric domain
decomposition principle encompasses many DMAP modules prior to the READ
module and the eigenproblem presented to READ is only a subset of the original
problem.

It is important to emphasize that this version still solves the global (see Eq. 6-1)
eigenvalue problem as "exactly" as the single processor run. The significant
difference is that the geometry and therefore the global matrices are partitioned and
the local processors see only the local portions. In the current implementation, we
restrict ourselves to as many subdomains as we have processors. One might call this
a "distributed global solution technique."

In general, there are two alternatives to execute this process. One is to keep only
short, local size vectors (where o indicates the interior set and a the boundary
set), and another is to also add a global size vector to the local Lanczos processes.
The first method, while minimal in storage requirements, requires interprocess
communication even when executing vector operations such as the Lanczos step.
The latter technique requires communication only when matrix operations are
executed (while it has word redundancy on each processor), so this more
attractive option is used in our implementation.

no
j na

j,
na

na

 NX Nastran Numerical Methods User’s Guide

160
In the geometry domain parallel Lanczos method, the stiffness and mass matrices
are partitioned into submatrices based on geometry subdomains as follows:

Eq. 6-72

Eq. 6-73

where the superscript j refers to the j-th subdomain, subscript a refers to the
common boundary of the subdomains, and s is the number of the subdomains, so

. The size of these global matrices as well as the eigenvectors is N.
For the presentation of the algorithm, let us partition the Lanczos vectors
accordingly:

Eq. 6-74

Furthermore, the boundary portion may be partitioned as:

K

Koo
1 Koa

1

 Koo
2 Koa

2

 . .

 Koo
j Koa

j

 . .

Kao
1 Kao

2 . Kao
j . Kaa

=

M

Moo
1 Moa

1

 Moo
2 Moa

2

 . .

 Moo
j Moa

j

 . .

Mao
1 Mao

2 . Mao
j . Maa

=

j 1 2 … s, , ,=

x

xo
1

xo
2

.

xo
j

.
xa

=

161CHAPTER 6
Real Symmetric Eigenvalue Analysis
Eq. 6-75

i.e., the a set is the global boundary set. Finally, the j-th processor will receive the j-
th subdomain information:

Eq. 6-76

where the submatrices are partitioned into local o and a-sets and the appropriate
sizes are and .

The main computational elements of the Lanczos method are executed in the
distributed form as follows.

Simultaneous Shifted Matrix Generation. Since the inputs to the READ module
are the and matrices, the task of creating the local system matrix will be
simultaneously executed on each of the processors serially:

Eq. 6-77

The matrix is the distributed submatrix on the local memory of the j-th processor
(node). Naturally, the local mass matrix component will also be saved locally and,
since it is needed in each Lanczos step, it will be stored in local memory if possible.
The shifted stiffness matrix will be stored on the local scratch disk of the node.

Distributed Factorization. The parallel, distributed implementation will execute
the following steps:

Important: The shift is calculated from local information such as matrix norms
and runtime measures; therefore, it is processor dependent. Hence,
some communication between the nodes is required to assure that the
shift is uniform across the processors.

xa

xa
1

xa
2

.

xa
j

.

xa
s

=

Koo
j Koa

j

Kao
j Kaa

j

Moo
j Moa

j

Mao
j Maa

j

xo
j

xa
j

, ,

no
j na

j

Kj Mj

Aj Aoo
j Aoa

j

Aao
j Aaa

j

Koo
j Koa

j

Kao
j Kaa

j
λ0

Moo
j Moa

j

Mao
j Maa

j
–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

= =

Aj

λ0

 NX Nastran Numerical Methods User’s Guide

162
1. The partial decomposition will formally decompose this j-th subdomain as
follows:

Eq. 6-78

where the identity matrices are not formed explicitly (they are only
presented to make the matrix equation algebraically correct), and the
submatrix is the boundary submatrix of the j-th partition updated by the
factorization contributions from the interior as:

Eq. 6-79

2. The boundary submatrices are summed up as:

Eq. 6-80

3. The boundary is decomposed as:

Eq. 6-81

The distributed decomposition step will be executed outside the Lanczos
recurrence logic and the resulting partial factor:

and the global boundary factor will be utilized inside the recurrence.

Since one important function of the decomposition operation in the
Lanczos framework is to establish the Sturm count (), another
interprocessor communication is needed:

where the Sturm counts in the equation above are the global, boundary,
and local interior Sturm counts in that order.

Aj Aoo
j Aoa

j

Aao
j Aaa

j

Loo
j 0

Lao
j I

Doo
j 0

0 Aaa
j

Loo
j 0

Lao
j I

T

= =

Aaa
j

Aaa
j

Aaa
j Lao

j Doo
j Lao

j()
T

–=

Aaa Aaa
j

j 1=

s

∑=

Aaa Laa Daa Laa
T=

Loo
j

Lao
j

Laa

S

Sg Sa So
j

j 1=

s

∑+=

163CHAPTER 6
Real Symmetric Eigenvalue Analysis
Distributed Matrix Multiply. This is the first operation where the fact of having
+ + long Lanczos vectors in all local processors, but executing a local +
size matrix operation requires extra care. The basic local matrix-vector multiply
operation is:

Eq. 6-82

where the local vector partitions are defined as:

Eq. 6-83

and

Eq. 6-84

Note that the boundary partitions are the local subsets of the . That is, each
processor contains an identical copy of the global boundary in , and an
additional copy with local boundary entries only in . The operation may be
executed in the following steps:

1. Execute

2. Scatter to

3. Send to master processor

4. Master sums up contributions from all processors

5. Receive from master processor

6. Gather from

Operation 1. will be executed by the existing architecture, which consists of two
phases. In phase 1 we save the M matrix in a sparse form, storing the indices and
numerical terms separately. This in turn is read in and interpreted by the 2nd phase
that executes the actual numerical operation by calling the XPI2R* indexed, double
SAXPY kernel. This phase does not need to understand the local versus boundary
structure of the matrix.

no
j

na
j na no

j na
j

yj yo
j

ya
j

Moo
j Moa

j

Mao
j Maa

j

xo
j

xa
j

Mjxj== =

x xj

xa

xo
j

xa
j

xa

= =

y yj

ya

yo
j

ya
j

ya

= =

xa
j ya

j, xa ya,
xa ya,

xa
j ya

j,

yj Mjxj=

ya
j ya

ya

ya

ya

ya
j ya

M

 NX Nastran Numerical Methods User’s Guide

164
In addition, the option to keep a portion or all of the mass matrix in memory is
available in the distributed environment. The operations 3. through 5. execute the
communication and summing up of the boundary segments between the processors
sharing the boundary. Finally, the scattering and gathering of the local boundary
segments (operations 2., 6.) is straightforward.

Upon completing this step, all processors have a shared and complete vector,
identical in content. This is necessary to proceed with the local Lanczos process.

Distributed F-B Substitution. This phase contains the following elements. Here,
 is the right-hand side, is an intermediate result, and is the solution vector.

1. The partial factorization of the interior of the j-th subdomain is
independent of the boundary, allowing a forward substitution on the
interior as:

Eq. 6-85

It is important to note that in this step the overlapping boundary regions
are zeroed out on all subprocesses, except for one, which will do the
update.

2. The global boundary solution is a complete forward-backward
substitution of:

Eq. 6-86

3. Finally, the interior solution is a backward only substitution:

Eq. 6-87

The local vector is again partitioned as:

Eq. 6-88

therefore, a scattering and gathering operation is performed as described
in steps 2. and 6. of “Distributed Matrix Multiply” on page 163.

ya

y z z

Loo
j()

T
 zo

j Lao
j()

T
 za

j+ Loo
j Doo

j[] 1– yo
j zo

j= =

Laa Daa Laa
T za ya

j Lao
j Doo

j zo
j–()

j 1=

s

∑=

zo
j Loo

j()
T–

 zo
j Lao

j()
T

 za
j–=

z

z zj

za

zo
j

za
j

za

= =

165CHAPTER 6
Real Symmetric Eigenvalue Analysis
Simultaneous Lanczos Step. Since at this stage all processors have their local
 and vectors (refers to the Lanczos step number) as well as the

last two Lanczos vectors , the Lanczos step will be executed simultaneously
as follows:

1. Execute local inner product:

Eq. 6-89

2. Create global inner product via communication:

Eq. 6-90

3. Execute local saxpy:

Eq. 6-91

In order to normalize the next Lanczos vector, another matrix vector
multiplication is needed inside of the Lanczos step (using the same method
described in “Distributed Matrix Multiply” on page 163):

Eq. 6-92

The calculation of the normalization parameter follows steps 1. through 3.
above:

Eq. 6-93

This leads to the next normalized Lanczos vector

Eq. 6-94

and the step is completed.

yk
j Mjxk

j= zk
j Ajxk

j= k
xk

j xk 1–
j,

αk
j yk

j()
T
zk
j=

αk αk
j

j 1=

s

∑=

xk 1+
j zk

j αk xk
j– βk 1– xk 1–

j–=

yk 1+
j Mjxk 1+

j=

βk
j xk 1+

j()
T

 yk 1+
j

⎝ ⎠
⎛ ⎞

1 2⁄
=

and

βk βk
j()

1 2⁄

j 1=

s

∑=

xk 1+
j xk 1+

j βk⁄=

 NX Nastran Numerical Methods User’s Guide

166
Distributed Orthogonalization Scheme. While this operation does not explicitly
involve matrix operations, its performance impact is such that we have a distributed
implementation. The main kinds of orthogonalization are: against the last two
Lanczos blocks; against earlier found eigenvectors at the initial phase and during
the iteration, respectively; and, finally, within the current block.

The efficiency of the distributed orthogonalization scheme is coming from the fact
that we can distribute (vector) operations but need to communicate only

 (scalar) data.

The distributed orthogonalization is executed in the following steps:

1. Calculate local inner products.

2. Exchange and sum up local inner products.

3. Execute local saxpy step.

In step 1., each processor is to calculate:

Eq. 6-95

where is the set of selected Lanczos vectors. In step 2., the following global sum is
needed on each processor:

Eq. 6-96

Finally, step 3. is executed in two segments, , as

Eq. 6-97

and

Eq. 6-98

followed by a gathering into the array from

After this step, the Lanczos process may be continued again from the “Distributed
Matrix Multiply” on page 163. The process continues on all the nodes until a certain
number of steps are executed or convergence achieved, which decision again needs
communication..

Simultaneous Tridiagonal Solution Generation. Since all processors have the
Lanczos blocks, and hence the same block tridiagonal matrix, the solution of the
tridiagonal problem of Eq. 6-69 will be executed on all nodes simultaneously. Once
the tridiagonal solution has been completed, selected will be accepted as

O k n•()
O k()

ωi
j xk 1+

j()
T

 Mj xi
j=

i

ωi ωi
j

j 1=

s

∑=

xa xo
j,

xo k 1+,
j xo k 1+,

j ωi xo i,
j–=

xa k 1+, xa k 1+, ωi xa i,–=

xa k 1+,
j xa k 1+,

λ

167CHAPTER 6
Real Symmetric Eigenvalue Analysis
eigenvalues of the original problem and the corresponding will become the basis
to compute eigenvectors. Note that the vectors are the same size on all the nodes.
Since all the nodes have length Lanczos vectors , the
eigenvector computation of the local segments will not require additional
communication.

The decision to stop the Lanczos run is based on analyzing the matrix and cost
analysis. Since the terms of this matrix are identical on all nodes, the stop must be
simultaneous, but is synchronized for safety. If more eigenvectors are needed,
another Lanczos run may be executed or ultimately the complete process starting
from “Simultaneous Shifted Matrix Generation” on page 161 may be repeated
with a different shift value. If all required eigenvectors are found, the final
orthogonality test will be executed on the local matrices and vectors and the READ
module will complete by setting ND to the number of accepted eigenvectors. Note
that upon exiting the READ module, all the processors have a complete LAMA table
of eigenvalues; however, the PHIA matrix contains only the local rows of the
eigenvectors.

The data recovery for each domain is done independently on each processor on the
local segments of the eigenvectors provided by READ. As this does not require any
communication, it helps in the overall speedup and disk-space savings during that
part of the run. Following data recovery, the output may or may not be merged
based on the mergeofp keyword.

Hierarchic Domain Decomposition-Based Distributed Parallel
Lanczos

The hierarchic domain decomposition approach combines the frequency domain
decomposition and geometric domain decomposition techniques. It is well-suited
for very large problems with a wide frequency range, using a large number of
processors. At the beginning of the job, the processors are divided into nclust equal-
size subsets of processors, called clusters. When the eigenanalysis is begun, the user-
specified frequency range is subdivided into nclust frequency segments, just as in
frequency domain decomposition. Then, each cluster performs a complete eigenpair
computation on its own frequency segment, independent of the other clusters, using
geometric domain decomposition.

As in geometric domain decomposition, after exiting the READ module, the PHIA
matrix on each processor contains only partial results (eigenvector entries for local
rows). Unlike geometric domain decomposition, the LAMA table and columns of
the PHIA matrix correspond to only the eigenvalues computed in that processor’s
cluster, rather than the global eigensolution. The LAMA tables and PHIA matrices
are exchanged after the READ module as necessary, in order to produce complete
eigenvalue results and data recovery.

u
u

no
j na

j na+ + xi i 1= 2 … k, , , ,

Tk

λ0

 NX Nastran Numerical Methods User’s Guide

168
To use hierarchic domain decomposition, the number of clusters is set by the
"nclust" keyword.

The HDMP enables the usage of a cluster of workstation nodes by using both
geometric domain and frequency domain partitioning of the normal modes analysis
problem. The number of geometry partitions multiplied by the number of frequency
segments equals the number of processors available in the work environment.

The number of frequency segments equals the number of clusters available which is
defined by the new submittal keyword "nclust". In order to improve the balance of
the frequency domain decomposition, the existing ALPHA tuning value of the
EIGRL continuation card may be used.

The number of processors is specified with the existing dmp submittal keyword.
The number of geometry partitions is the value of the dmp keyword divided by the
value of the nclust keyword. The division result must be an integer greater than 1;
for best results, a power of 2 is recommended. It is possible that the problem is not
large enough to be partitioned, in which case a message is printed and a serial
execution is done.

The HDMP is available for SOL 103. The user must use the EIGRL card, not the EIGR
card, and both Fmin and Fmax must be specified. Fluid grids, disjoint structures and
superelements are not permitted in the original implementation. HDMP is available
with fewer restrictions and in a broader range of solution sequences if it is used
together with the gpart option, introduced in NX Nastran 4; see the Parallel
Processing User’s Guide for details.

Recursive Domain Decomposition-Based Distributed Parallel
Lanczos

The Recursive Domain Lanczos method (RDMODES) extends the DMP parallel
capability via substructruing technology for very large scal normal node analysis.

In general, the RDMODES approach computes fewer modes with lower accuracy
compared to the standard Lanczos approaches in order to gain performance.

RDMODES begins with partitioning the model into nrec external partitions. Each
interior eigensolution corresponding to its external partition is the performed in
serial, independent of the others. If the keyword nclust is specified, the processors
are divided into nclusters as in HDMODES. In this case, each interior eigensolution
is performed in GDMODES fashion in its own cluster.

As in hierarchic domain decomposition, the eigenvector matrix on each processor is
required to exchange across the processors after READ module in order to complete
data recovery. In the case of nclust presented, data recovery steps occur in two
phases: first, on all partitions local to that cluster, and secondly, across the cluster.

To use RDMODES, the number of external partitions is set by the "nrec" keyword.

169CHAPTER 6
Real Symmetric Eigenvalue Analysis
6.3 Solution Method Characteristics
The real eigenvalue solution methods are categorized as shown in the following
table:

Table 6-2 Real Eigenvalue Methods

Method Type Identifier Application Restriction

Givens Reduction GIV All Roots M Positive
Definite

Householder Reduction HOU All Roots M Positive
Definite

Modified
Reduction

Reduction All Roots
Not Singular

Lanczos Iteration LANC Small
Number of
Roots

Not Singular
M Positive

Semidefinite
 Symmetric

MHOU
GIV AHOU

GIV, K[] λs M[]+

K[] λs M[]+

K

 NX Nastran Numerical Methods User’s Guide

170
6.4 DMAP User Interface

Input Data Blocks:

READ KAA,MAA,MR,DAR,DYNAMIC,USET,CASECC,
PARTVEC,SIL,VACOMP,INVEC,LLL,EQEXIN,GAPAR/
LAMA,PHIA,MI,OEIGS,LAMMAT,OUTVEC/
FORMAT/S,N,NEIGV/NSKIP/FLUID/SETNAME/SID/METH/
F1/F2/NE/ND/MSGLVL/MAXSET/SHFSCL/NORM/PRTSUM/
MAXRATIO $

KAA Stiffness matrix.

MAA Mass matrix.

MR Rigid body mass matrix

DAR Rigid body transformation matrix.

DYNAMIC Eigenvalue Extraction Data (output by IFP module).

USET Degree-of-freedom set membership table.

CASECC Case Control Data Table (selects EIGR, EIGRL, or EIGB entries, output
by IFP module).

PARTVEC Partitioning vector with values of 1.0 at the rows corresponding to
degrees of freedom which were eliminated in the partition to obtain
KAA and MAA. Required for maximum efficiency. See SETNAME
parameter description below.

SIL Scalar index list. Required for maximum efficiency.

VACOMP Partitioning vector of size of a-set with a value of 1.0 at the rows
corresponding to r-set degrees-of-freedom. The USET table may be
specified here as well. If VACOMP is purged and DAR does not have
the same number of rows as KAA, then the partitioning vector will be
determined from the size of MR.

INVEC Starting vector(s) for Lanczos method only or EQMAP data blocks for
geometry domain parallel.

LLL Lower triangular factor from decomposition of KAA. Use to enhance
shift logic for buckling eigenvalue extraction or VF01: interior
boundary partitioning vector for geometry domain parallel Lanczos
method.

171CHAPTER 6
Real Symmetric Eigenvalue Analysis
Output Data Blocks:

Parameters:

EQEXIN Equivalence between external and internal grid identification
numbers. Required for maximum efficiency.

GAPAR Local-global boundary partitioning vector for geometry domain
parallel Lanczos method.

LAMA Normal modes eigenvalue summary table.

PHIA Normal modes eigenvector matrix in the a-set.

OEIGS Real eigenvalue extraction summary.

MI Modal mass matrix.

LAMMAT Diagonal matrix containing eigenvalues on the diagonal (Lanczos and
QLHOU only).

OUTVEC Last vector block (Lanczos only).

FORMAT Input-Character-no default. If FORMAT≠ ’MODES’, READ will solve

a buckling problem of .

NEIGV Output-integer-no default. NEIGV is the number of eigenvectors
found. If none were found, NEIGV = 0. If m modes were found (but
error encountered), NEIGV = –m. If m modes were found, NEIGV =
m.

NSKIP Input-integer-default=1. The method used by READ is taken from
the NSKIP record of CASECC.

FLUID Input-logical-default=FALSE. If FLUID = TRUE, then the EIGRL or
EIGR entry is selected from METHOD(FLUID) Case Control
command.

SETNAME Input-character-default='A'. For maximum efficiency, the rows and
columns KAA and MAA must correspond to or be a partition of the
displacement set specified by SETNAME. If KAA and MAA are a
partition then PARTVEC must also be specified.

K[] λ Kd[]+()

 NX Nastran Numerical Methods User’s Guide

172
SID Input-integer-default=0. Alternate set identification number.

If SID=0, the set identification number is obtained from the
METHOD command in CASECC and used to select the EIGR or
EIGRL entries in DYNAMIC.

If SID>0, then METHOD command is ignored and the EIGR or
EIGRL is selected by this parameter value. All subsequent parameter
values (METH, F1, etc.) are ignored.

If SID<0, then both the METHOD command and all EIGR or EIGRL
entries are ignored and the subsequent parameter values (METH, F1,
etc.) will be used to control the eigenvalue extraction.

METH Input-character-default='LAN'. If SID<0, then METH specifies the
method of eigenvalue extraction.

LAN Lanczos

GIV Givens

MGIV Modified Givens

HOU Householder

MHOU Modified Householder

AGIV Automatic selection of GIV or MGIV

AHOU Automatic selection of HOU or MHOU

F1 Input-real-default=0.0. The lower frequency bound.

F2 Input-real-default=0.0. The upper frequency bound. The default
value of 0.0 implies machine infinity.

NE Input-integer-default=0. The number of estimated eigenvalues for
non-Lanczos methods only. For the Lanczos method, NE is the
problem size (default=20) below which the QL Householder option is
used if it is enabled.

ND Input-integer-default=0. The number of desired eigenvalues.

MSGLVL Input-integer-default=0. The level of diagnostic output for the
Lanczos method only.

0 no output

1 warning and fatal messages

2 summary output

3 detailed output on cost and convergence

4 detailed output on orthogonalization

173CHAPTER 6
Real Symmetric Eigenvalue Analysis
MAXSET Input-integer-default=0. Vector block size for Lanczos method only.

SHFSCL Input-real-default=0.0. Estimate of the first flexible natural
frequency. SHFSCL must be greater than 0.0. For Lanczos method
only.

NORM Input-character-default='MASS'. Method for normalizing
eigenvectors. See “Option Selection” on page 176 for details.

PRTSUM Input-logical-default=TRUE. Lanczos eigenvalue summary print
flag. See “Performance Diagnostics” on page 116 for details.

MAXRATIO Input-real-default= . May be overwritten in the DMAP by: param,
maxratio, value.

105

 NX Nastran Numerical Methods User’s Guide

174
6.5 Method Selection

EIGR Entry. The method selection of any method may be performed with the EIGR
Bulk Data entry using the following format:

The SID is the set ID number corresponding to a METHOD command in the Case
Control Section. METHOD should be equal to any of the identifiers given in
“Solution Method Characteristics” on page 169. F1, F2 are frequency minimum
and maximum values specifying the boundaries of the user’s frequency range of
interest. NE and ND are the number of roots estimated and desired to be found,
respectively. On the continuation entry, the user can choose some normalization
options, which are detailed in “Option Selection” on page 176.

EIGRL Entry. To select the Lanczos method in detail, the user should use the
EIGRL Bulk Data entry with the following format:

The MSGLVL entry (0 through 3, default = 0) controls the amount of diagnostics
output. MAXSET specifies the maximum number of vectors in a block of the
Lanczos iteration. It is also equivalent to or may be overridden by the value of
SYSTEM cell 263. The value of SHFSCL is an estimate for the location of the first
nonzero eigenvalue of the problem.

The following parameters are only used if the F1 and F2 frequency range is to be
broken up into segments. ALPH is the constant defining the modal distributions
function (“Frequency Segment Option” on page 178). Its default value is 1.0, which
results in a uniform distribution of segments. NUMS is the number of segments in
the frequency range (default = 1). f1 to f15 are segment boundaries such that F1< f1
< f2 ... < f15 < F2. f1 to f15 if not specified will be computed based on a distribution
given by ALPH.

Different combinations of F1, F2, and ND specify different options in the Lanczos
module (see “Frequency and Mode Options” on page 176).

EIGR SID METHOD F1 F2 NE ND

NORM G C

EIGRL SID F1 F2 ND MSGLV
L

MAXSET SHFSCL NORM

ALPH NUMS f1 f2 f3 f4 f5 f6

f7 f8 f9 f10 f11 f12 f13 f14

f15

175CHAPTER 6
Real Symmetric Eigenvalue Analysis
The main purpose of the SHFSCL is to aid the automatic shift logic in finding the
eigenvalues especially in crossing the (possibly big) gap between the
computationally zero (rigid body) modes and the finite (flexible) modes. Another
use of SHFSCL is to create a cutoff frequency for the so-called supported modes.

The NORMalization parameter for Lanczos is described in “Normalization
Options” on page 176.

 NX Nastran Numerical Methods User’s Guide

176
6.6 Option Selection
Real symmetric eigenvalue analysis offers several normalization, frequency and
mode, and performance options.

Normalization Options
The methods accessed by the EIGR entry have several normalization options. They
are:

The Lanczos method (using EIGRL) has MASS or MAX normalization capability
only.

The following options are valid for the Lanczos method only unless otherwise
stated.

Frequency and Mode Options
At present, based on the F1, F2, and ND combinations, the following options are
supported in the Lanczos algorithm:

NORM = MASS Mass normalization of eigenvectors
(normalize to unit value of generalized
mass).

NORM = MAX Maximum normalization of eigenvectors
(maximum component of vectors is
unity).

NORM = POINT A selected point normalized to unity. The
point is specified by G (grid point
number) and C (components 1 through
6).

F1 F2 ND Option

Given Given Given Lowest ND or all in range

Given Given Blank All in range

Given Blank Given Lowest ND in range (F1, + ∞)

Given Blank Blank Lowest one in range (F1, + ∞)

Blank Blank Given Lowest ND in (– ∞, + ∞)

Blank Blank Blank Lowest one in (– ∞, + ∞)

Blank Given Given Lowest ND below F2

Blank Given Blank All below F2

177CHAPTER 6
Real Symmetric Eigenvalue Analysis
Note that if ND is not given in buckling, then both F1 and F2 need to be specified.

Performance Options

Space Saver. Another option available in Lanczos method is called the space
saver option. This option is selected by setting SYSTEM (229) = 1 (default = 0) and
results in significant reduction in scratch space usage by not preserving factor
matrices for later use in the case both F1, F2 are given. However, CPU-time may
increase.

Sparse Solver in Lanczos. For faster CPU execution, the Lanczos method by
default executes sparse matrix operations. The memory available for the sparse
solver inside the Lanczos module can be controlled by setting SYSTEM (146) to
greater than 1. The larger the number, the larger the area reserved for the factor.
Recommended values are 2, 3, or 4. SYSTEM(146) is equivalent to the FBSMEM
keyword. This increased memory space is taken from the space available for the
eigenvectors; consequently, the user must find a satisfactory compromise.

Model-Specific Lanczos Options. The REDORTH and REDMULT options may
improve performance for models with certain properties. For very sparse (e.g. shell-
dominated) models, setting SYSTEM(417) = 1 (the REDORTH keyword) improves
performance by reducing the reorthogonalization cost component of the Lanczos
run. For models containing virtual mass, setting SYSTEM(426) = 1 (the REDMULT
keyword) reduces the matrix-vector multiply cost component. Both options incur
some overhead, and therefore will not be beneficial for all models. These options
may be used independently, in either serial or frequency domain Lanczos runs.

I/O Reduction Options. Other performance-enhancing options which control the
I/O to CPU time ratio are described in the following table:

Table 6-3 I/O Reduction Options

System Performance Option

(199) =

l Set memory for incore mass matrix multiply to 2 × l ×BUFFSIZE
(default: l = 1)

0 Automatically fits the mass matrix in core if sufficient memory
is available

(193) =

0 Save

result of mass matrix multiply (default = 0)
1 Do not save

 NX Nastran Numerical Methods User’s Guide

178
Accuracy Options. The user may reset the Lanczos iteration tolerance by:

where k is the exponent of the Lanczos tolerance criterion if it is negative, or it is the
exponent of the maximum matrix factor diagonal ratio tolerated by Lanczos if it is
positive.

It is also possible to reset the pivot criterion for the decomposition inside the READ
module by SYSTEM(89) = –k, resulting in used.

In RDMODES, the user may modify the selected frequency range in the EIGRL
specification for eigensolutions of each substructure to increase the accuracy of the
solution by:

where d is a positive real number. In most practical circumstances values in the
range of 1.0-2.0 are acceptable. The trade-off is that the computational time increases
with higher values of rdscale. This keyword is unique to RDMODES.

RDMODES Sparse Eigenvector Recovery Option. In many instances, a user is
only interested in the solutions at a few key locations instead of all degrees of
freedom, especially for large problems with millions of degrees of freedom. In such
cases, the sparse eigenvector recovery method can significantly reduce the overall
computation time and storage resource.

In RDMODES, the sparse eigenvector recovery option will be determined
automatically based on the user’s output request. If full eigenvectors are desired
with only few output requests, a user can deactivate sparse data recovery with
PARAM, RDSPARSE, NO in BULK data.

Note that currently residual vectors (PARAM, RESVEC, YES) and user input
matrices (K2GG, M2GG, B2GG) are not supported for this sparse eigenvector
recovery. If these features are needed, a user must specify PARAM, RDSPARSE,
NO in BULK data for correct results.

Frequency Segment Option. The frequency segment option is controlled as
follows.

The number of frequency segments may be specified on the EIGRL entry (NUMS)
or on the NASTRAN entry (NUMSEG). In the case both are given, NUMS is set to
NUMSEG. The intermediate frequencies may be directly given (f1 ... f15) by the user
on the EIGRL entry. It is also possible to specify ALPH on the EIGRL entry or by
setting FRQSEQ = SYSTEM(195). If both are given, then ALPH on the EIGRL card
takes priority; if only SYSTEM(195) is set, then ALPH = SYSTEM(195)/100 is used.

SYSTEM(123) = k

rdscal
e

= d

10 k–

179CHAPTER 6
Real Symmetric Eigenvalue Analysis
If ALPH is specified by either means, the intermediate frequencies are automatically
calculated by the formula shown in Table 6-4. Otherwise, the frequency segment is
divided uniformly into equal-size subsegments.

 NX Nastran Numerical Methods User’s Guide

180
Miscellaneous Options
In the READ module, a new shift logic was introduced for the Lanczos method. If
you wish to use the old method (delivered via the REIGL module), SYSTEM(273)
must be set to a non-zero value. The default is zero.

Incompatible DAR and KAA sizes: If the DAR matrix has fewer rows than KAA, an
appropriate size identity matrix is generated inside READ and merged into DAR to
produce a DAA matrix. This assures that the rigid body modes included will have
the same size as the flexible modes computed. This operation requires the presence
of the VACOMP data block. If VACOMP is purged, a fatal error exit is produced.

Table 6-4 Frequency Segment Specification

PARAMETER
S Definition

NUMS Number of frequency spectrum subsegments

ALPH

Subsegment boundary, : ALPH 1≠

fi fmin fmax fmin–() 1 ALPHi–

1 ALPHNUMS–
--+=

181CHAPTER 6
Real Symmetric Eigenvalue Analysis
Parallel Options

Mass Matrix Analysis Options

Indefinite Test

The mass matrix MAA is examined for all real vibration (non-buckling) eigenvalue
problems if SYSTEM(303) < 0. The NASTRAN keyword MINDEF is equivalent to
SYSTEM(303). First and foremost, MAA is checked to determine if it is indefinite. If
MAA is indefinite, UFM 4646 is printed, which includes a User Action suggesting
the use of SYSTEM(304) to perturb the mass matrix, which may render it positive
semi-definite. If SYSTEM(304) (aka MPERTURB keyword) is activated, a small
value is added to the diagonal of MAA prior to the indefinite test. Then, if the
indefinite test passes, the perturbed MAA is used in the subsequent eigenvalue
analysis regardless of extraction method. Under no circumstances will an
eigenvalue analysis proceed if MAA is determined to be indefinite.

1) Frequency domain (fdmodes): dmp = n numseg = n on submittal

The value of dmp is equivalent to SYSTEM(231). The value of numseg in fdmodes is
equivalent to SYSTEM(197), and should equal the value of dmp.

2) Geometry domain (gdmodes): dmp = n on submittal

The value of dmp is equivalent to SYSTEM(231). The numdom value in gdmodes is
equivalent to SYSTEM(349), and equals the value of dmp by default.

3) Hierarchic domain (hdmodes): dmp=n nclust=m on submittal

The number of frequency segments equals the number of clusters available which is
equivalent to SYSTEM(408) and defined with the nclust keyword.

The number of geometry partitions equals the value of the dmp keyword divided
by the value of the nclust keyword, i.e. g = n/m. The division must be an integer.

Another choice is: gdoms=g fsegs=m on submittal

The number of processors equals the product of the value of the gdoms keyword
and the value of the fsegs keyword.

4) Recursive domain (rdmodes): dmp=n nrec=p on submittal

The number of external partitions of the model equals the value of the nrec
keyword, which is equivalent to SYSTEM(445). If nclust, an existing keyword
introduced in HDMODES, is specified, the interior eigensolution is performed in
GDMODES fashion in each cluster.

 NX Nastran Numerical Methods User’s Guide

182
Rank Test

A rank test is performed only when the indefinite test is requested. The rank of
MAA (NRANK) is determined in order to detect the presence of infinite roots. The
number of eigenvectors requested is restricted to min (N,NRANK) for the
tridiagonal methods (HOU,GIV). The rank test is controlled by SYSTEM(313),
which defines a maximum ratio of MAA diagonals to MAA-factor diagonals.

Density Control

Neither of the above tests is performed if it is estimated that the tests themselves
would require too much time. A test is made to determine if the density of MAA
exceeds some threshold (default 10%). If MAA exceeds the threshold, it is deemed
"dense"; therefore, its factorization might be nontrivial, and these tests are bypassed.
The threshold is controlled by SYSTEM(314). If N (the problem size) is less than or
equal to 100, the density check is bypassed.

These analyses are summarized in Table 6-5:

QL Householder Option

If sufficient memory is available, a modern (QL iteration based) version of
Householder methods (AHOU, MHOU, or HOU) is automatically used. This is also
used in place of Lanczos when the problem size is smaller than the value of the NE

Table 6-5 Mass Matrix Analyses

System
Cell Comment Description Default Value

303 Indefinite Test =0 cutoff=1.0e-6
<0 cutoff=10**sys303
> bypass test

0
(Do the Test)

304 M Perturbation =0 perturb=1.0e-6
<0 perturb=10**sys304
>0 bypass perturbation

+1
(Do not Perturb)

313 Rank Test =0 rank ratio=1.0e+7
>0 rank ratio=10**sys313
<0 bypass test

0
(Do the Test)

314 Density
Threshold

=0 thresh=0.1
>0 thresh=sys314/10000.
<0 do not check density

0
(10% Threshold)

183CHAPTER 6
Real Symmetric Eigenvalue Analysis
parameter (default = 20). Setting SYSTEM(359) = 0 will turn off the QL Householder
option (default SYSTEM(359)=1) and deactivate Lanczos fallback to Householder
for small problems.

 NX Nastran Numerical Methods User’s Guide

184
6.7 Real Symmetric Eigenvalue Diagnostics
The diagnostics of the eigenvalue methods can be categorized as execution
diagnostics, numerical diagnostics, and error messages.

Execution Diagnostics
A certain level of execution diagnostics of the READ module is requested by DIAG
16. For the Lanczos method, MSGLVL = 1, 2, or 3 in the EIGRL entry gives different
levels of execution diagnostics. These diagnostics pages are elaborate, and therefore
are described separately in “Lanczos Diagnostics” on page 188.

The following two tables are printed only when PRTSUM = TRUE (default)

Table of Shifts
The table of shifts shows the sequence of shifts taken, the Sturm counts, and the
number of modes computed at each shift for the Lanczos method. It appears as
follows:

Execution Summary. The execution summary table for the Lanczos method is as
follows:

EIGENVALUE ANALYSIS SUMMARY (REAL LANCZOS METHOD)

TABLE OF SHIFTS (REIGL)

SHIFT # SHIFT VALUE FREQUENCY, CYCLES # EIGENVALUES BELOW # NEW EIGENVALUES
FOUND

X1 X2 X3 X4 X5

X1 The shift number

X2 The shift value in eigenvalue units

X3 The shift value in frequency units (typically Hertz)

X4 The number of modes below this shift (the Sturm count)
If X4 is “FACTOR ERROR” then this shift is rejected because the
MAXRATIO is too large. To override this, the user may set
SYSTEM(166) = 4 and the factor will be used despite the high
MAXRATIO.

X5 The number of modes found by the algorithm at this shift

BLOCK SIZE USED X

NUMBER OF DECOMPOSITIONS X

NUMBER OF ROOTS FOUND X

185CHAPTER 6
Real Symmetric Eigenvalue Analysis
The TEXT of the termination message can be any of the following:

• REQUIRED NUMBER OF EIGENVALUES FOUND

• ALL EIGENVALUES FOUND IN RANGE

• NOT ALL EIGENVALUES FOUND IN RANGE

• INSUFFICIENT TIME TO FIND MORE EIGENVALUES

The run may also finish with the following message:

• USER FATAL MESSAGE 5405, ERROR X OCCURRED DURING
ITERATION

Numerical Diagnostics
UWM 3034:
ORTHOGONALITY TEST FAILED, LARGEST TERM = X NUMBER FAILED =
PAIR = X, EPSILON = X.

This message is printed when the eigenvector accuracy is in doubt (up to a certain
numerical limit). This message is given for all methods.

SFM 3034.2:
INTERNAL FAILURE IN THE LANCZOS PROCEDURE: M-ORTHOGONAL QR
PROCEDURE FAILED TO CONVERGE. PROBABLE CAUSE: MASS MATRIX IS
INDEFINITE (MODES) OR STIFFNESS MATRIX IS INDEFINITE (BUCKLING).

Indicates that the mass/stiffness matrix is indefinite or badly scaled.

UIM 5010:
STURM SEQUENCE DATA FOR EIGENVALUE EXTRACTION TRIAL
EIGENVALUE = X, CYCLES = X, NUMBER OF EIGENVALUES BELOW THIS
VALUE = X.

This information is very important in establishing the number of roots existing in
certain subregions of the frequency region.

NUMBER OF SOLVES REQUIRED X

TERMINATION MESSAGE: TEXT

where X can be equal to – 31: INSUFFICIENT WORKSPACE

– 32: QL ALGORITHM DID NOT CONVERGE

– 33: MORE EIGENVALUES FOUND THAN EXIST

– 34: FILE I/O ERROR

– 35: SVD ALGORITHM DID NOT CONVERGE

 NX Nastran Numerical Methods User’s Guide

186
UFM 4646:
THE MASS MATRIX IS NOT POSITIVE DEFINITE USING HOUSEHOLDER OR
GIVENS METHOD.

UFM 4645:
THE SHIFTED STIFFNESS MATRIX IS NOT POSITIVE DEFINITE IN MGIVENS
OR MHOUSEHOLDER METHOD.

UFM 4648:
THE MODAL MASS MATRIX IS NOT POSITIVE DEFINITE.

These messages report problems from the reduction methods.

UWM 5411:
NEGATIVE TERM ON DIAGONAL OF MASS (NORMAL MODES) OR
STIFFNESS (BUCKLING) MATRIX.

This is a Lanczos diagnostic message for information only.

Error Diagnostics

UFM 5429:
INSUFFICIENT TIME TO START LANCZOS ITERATION.

UFM 5400:
INCORRECT RELATIONSHIP BETWEEN FREQUENCY LIMITS.

This means the upper frequency limit has a lower value than the lower frequency
limit.

SFM 5401:
LANCZOS METHOD IS UNABLE TO FIND ALL EIGENVALUES IN RANGE.
ACCEPTED EIGENVALUES AND ADDITIONAL ERROR MESSAGES MAY BE
LISTED ABOVE. A POSSIBLE CAUSE IS THE OCCURENCE OF HIGH
MAXRATIOS. CHECK MODEL FOR MECHANISMS IF HIGH MAXRATIOS
EXIST. USER ACTION: RERUN WITH ANOTHER METHOD OR ANOTHER
SETTING ON EIGRL ENTRY.

UFM 5402:
THE PROBLEM HAS NO STIFFNESS MATRIX.

UFM 4683:
MASS (OR STIFFNESS) MATRIX NEEDED FOR EIGENVALUE ANALYSIS.

UWM 6243 (REIG):
THE DOF REQUESTED FOR POINT NORMALIZATION HAS NOT BEEN
SPECIFIED ON THE EIGR OR EIGB ENTRY.

SFM 5299:
FINITE INTERVAL ANALYSIS ERROR or

187CHAPTER 6
Real Symmetric Eigenvalue Analysis
STARTING BLOCK COMPUTATION ERROR or

INSUFFICIENT STORAGE FOR LANCZOS or

FACTORIZATION ERROR ON THREE CONSECUTIVE SHIFTS or

RESTORATION OF VECTORIZATION ERROR or

IMPROPER PARAMETER SPECIFICATION FOR LANCZOS or

TRUST REGION OVERFLOW IN LANCZOS or

UNRECOVERABLE TERMINATION FROM LANCZOS ITERATION

These messages issued under 5299 are from the Lanczos method. The first one, the
finite interval analysis error, is the one most frequently encountered. This error
indicates a high matrix-factor diagonal ratio at the F1 or F2 shifts which can be
caused by a modeling error or matrix singularity.

SFM 5407:
INERTIA (STURM SEQUENCE) COUNT DISAGREES WITH THE NUMBER OF
MODES ACTUALLY COMPUTED IN AN INTERVAL.

This message flags a serious problem, i.e., spurious modes were found in the
Lanczos method.

UWM 5406:
NO CONVERGENCE IN SOLVING THE TRIDIAGONAL PROBLEM.

This message signals the abortion of the reduction methods.

UWM 9282 (SUBDMAP):
VIRTUAL MASS WILL BE IGNORED IN GDMODES EIGEN SOLUTION WHEN
GPART = 0.

UWM 9288 (XREADR):
UNABLE TO PARTITION INTO NPART COMPONENTS.

RUNNING CONVENTIONAL LANCZOS SOLUTION INSTEAD.

UFM 9289 (XREADR):
EXIT DUE TO NO DESIRED INTERIOR MODES FOUND.

USER ACTION: INCREASE RDSCALE VALUE.

Performance Diagnostics
UIM 5403:
BREAKDOWN OF CPU USAGE DURING LANCZOS ITERATIONS

 NX Nastran Numerical Methods User’s Guide

188
Eigenvalue analysis can be computationally expensive and may dominate overall
CPU time. To help assess numerical performance, this message shows how much
time the primary operations (forward-backward substitution, matrix-vector
multiplication, and matrix summation and decomposition) consume during
Lanczos iterations. The last entry, “LANCZOS RUN”, refers to the duration of a
complete set of Lanczos cycles at one shift and contains within it all FBS and matrix
multiplication times, but not the shift and factor times. The sum of total times for
“SHIFT AND FACTOR” and “LANCZOS RUN” should then approximate the total
time taken by the REIGL or LANCZOS modules.

UIM 2141:
GIVENS (OR HOUSEHOLDER) TIME ESTIMATE IS X SECONDS. SPILL WILL
OCCUR FOR THIS CORE AT A PROBLEM SIZE OF X.

The reduction type methods are fairly predictable (not a characteristic of other
eigenvalue methods). The CPU time and storage estimate are given in this message.

Lanczos Diagnostics
Since the Lanczos method is the most robust and modern of the eigenvalue
extraction methods, its execution diagnostics are described here in greater detail.

The printing of diagnostic information is controlled by the MSGLVL parameter.
When left at its default value of zero, only the Table of Shifts and the Execution
Summary block are printed in addition to the eigensolution. MSGLVL values of 1,
2, 3, or 4 yield increasingly more detailed diagnostic information about the Lanczos
operations.

The MSGLVL=1 diagnostics are organized into four major sections. Section I reports
on the original problem specification and the setting of module parameters. In this
section an interval analysis check is also shown to establish the number of
eigenvalues in the range set by the user.

Most of the detailed diagnostics are self explanatory. Some of the parameter values
are detailed below:

*** USER INFORMATION MESSAGE 5403 (LNNRIGL)
 BREAKDOWN OF CPU USAGE DURING LANCZOS ITERATIONS:
 OPERATION REPETITIONS AVERAGE TOTAL
 FBS (BLOCK SIZE=...)
 MATRIX-VECTOR MULTIPLY
 SHIFT AND FACTOR
LANCZOS RUN

MODE FLAG = 1 Vibration problem

2 Buckling problem

189CHAPTER 6
Real Symmetric Eigenvalue Analysis
The LEFT and RIGHT END POINTS are the F1, F2 values set on the EIGRL entry.
The center frequency is the center (not necessarily the arithmetic center) of the
interval.

ACCURACY REQUIRED is a value automatically set by the program.

The CP TIME ALLOWED is the remainder of the time left to complete the run using
the limit set on the TIME entry.

The SHIFTING SCALE is an estimate of the smallest (in magnitude) nonzero
eigenvalue in the spectrum. This estimate can be specified by the user or
automatically calculated by the program. The INERTIA values at the specific
locations are Sturm numbers.

Section II provides diagnostics on the memory usage, the setting of the working
array sizes based on the memory available, and the maximum memory allocated.
The term RITZ VECTORS means the approximate eigenvectors. A TRUST REGION
is a segment of the frequency spectrum, bounded by two shifts where all the
eigenvalues are found. By the nature of the automatic shift algorithm, there can be
several of these segments.

Section III is the Lanczos run section. The text shown in this section can be repeated
for each new shift. This section also prints occasional user information messages (for
example, 5010 and 4158) that report the results from the decomposition module.
This section is further expanded when the user requests additional diagnostics from
the Lanczos run by setting MSGLVL = 2 or 3.

Section IV reports the conclusion of the Lanczos run. The most frequently occurring
warning flag settings are listed below:

PROBLEM TYPE = 1 Lowest ND roots in interval

2 Highest ND roots

3 All roots in interval

4 ND roots nearest to center frequency

COMPLETION FLAG = – 99 ND roots nearest to center frequency

– 26 Starting block computation error

– 25 Restoration of factorization error

– 24 Illegal parameters error

– 23 Core structure error

– 22 Internal factorization error

– 21 Insufficient storage

– 20 Factorization error at a boundary shift

 NX Nastran Numerical Methods User’s Guide

190
MSGLVL = 2 provides detailed information about the shift logic, the spectrum
distribution, and the cause of the termination of a Lanczos run. This
TERMINATION CRITERION may have the following values:

Finally, MSGLVL = 3 describes the Lanczos run including norms, condition
numbers, convergence criterion, shifted eigenvalues, and their residuals.

– 5 Incorrect frequency range

– 2 No eigenvalues found in range

0 Required number of roots found

1 All roots in interval found

2 Not all roots in interval found

3 Insufficient time to finish

4 – 7 Same as 1– 3; however, the inertia count error
(see SFM 5407) occurred during the iteration

0 Preset maximum number of Lanczos steps reached

1 Cost of eigenvalue calculation increasing

2 Number of needed eigenvalues was found

3 Shift is too close to an eigenvalue

4 Lanczos block is singular

5 Running out of time

– 1 Insufficient workspace

– 2 QL algorithm does not converge

– 3 Too many eigenvalues found

– 4 File I/O error

– 5 Singular value decomposition error

191CHAPTER 6
Real Symmetric Eigenvalue Analysis
6.8 Real Lanczos Estimates and Requirements
The time estimates for the Lanczos method are the following:

Shifting time (sec):

Eq. 6-99

Recursion time (sec):

Eq. 6-100

Orthonormalization time (sec):

Eq. 6-101

Packing time (sec):

Eq. 6-102

where:

The minimum storage requirements are as follows:

where is the factor disk space requirement.

The number of shifts in most Lanczos runs is 2, occasionally 1, sometimes 3 or more.
The number of Lanczos steps is 10 on the average.

= number of shifts

= number of Lanczos steps

= block size used

= number of modes desired

= decomposition time (see “Decomposition Estimates and Requirements”
on page 71 for details)

= solution time (see “FBS Estimates and Requirements” on page 87 for
details)

= matrix multiply time (see “MPYAD Estimates and Requirements” on
page 47 for details)

Disk:

Memory:

Td Nshifts⋅

Nsteps Nshifts 2TM Ts+()⋅

2 Nshift Nsteps
2 M⋅ ⋅

2 Ndes Nsteps+() N P⋅ ⋅

Nshifts

Nsteps

B

Ndes

Td

Ts

TM

Ndes N IPREC Dfactor+⋅ ⋅

2 Nsteps B⋅()2 IPREC 4 B N IPREC⋅ ⋅+⋅

Dfactor

 NX Nastran Numerical Methods User’s Guide

192
6.9 References
Cullum, J. K.; Willoughby, R. A. Lanczos Algorithms for Large Symmetric

Eigenvalue Computations. Birkhäuser, 1985.

Givens, W. Numerical Computation of the Characteristic Values of a Real
Symmetric Matrix. Oak Ridge National Lab., ORNL-1574, 1954.

Grimes, R. G., et al. A Shifted Block Lanczos Algorithm for Solving Sparse
Symmetric Generalized Eigenproblems. SIAM, J. Mat. Analysis Appl., 13,
1992.

Householder, A.S.; Bauer, F.L. On Certain Methods for Expanding the
Characteristic Polynomial. Numerische Mathematik, Volume 1, 1959, pp.
29-37.

Lanczos, C. An Iteration Method for the Solution of the Eigenvalue Problem of
Linear Differential and Integral Operators. Journal of the Research of the
National Bureau of Standards., Volume 45, 1950, pp. 255-282.

Lewis, J. G.; Grimes, R. G. Practical Lanczos Algorithms for Solving Structural
Engineering Eigenvalue Problems. Sparse Matrices, and Their Uses, edited by
I. E. Duff, Academic Press, London, 1981.

MacNeal, R. H.; Komzsik, L. Speeding Up the Lanczos Process. RILEM, Kosice,
Slovakia, 1995.

Ortega, J. M.; Kaiser, H. F. The LR and QR Methods for Symmetric Tridiagonal
Matrices. The Computer Journal, Volume 6, No. 1, Jan. 1963, pp. 99-101.

Parlett, B. N. The Symmetric Eigenvalue Problem. Prentice Hall, Englewood Cliffs,
1980.

Smith, B. T. et al. Matrix Eigensystem Routines - EISPACK Guide. Springer Verlag,
1974.

Wilkinson, J. H. The Algebraic Eigenvalue Problem. Oxford University Press, 1965.

Wilkinson, J. H. The Calculation of the Eigenvectors of Codiagonal Matrices. The
Computer Journal, Volume 1, 1958, p. 90.

NX Nastran Numerical Methods User’s Guide

CHAPTER

7 Complex Eigenvalue Analysis

■ Damped Models

■ Theory of Complex Eigenvalue Analysis

■ Solution Method Characteristics

■ User Interface

■ Method Selection

■ Option Selection

■ Complex Eigenvalue Diagnostics

■ Complex Lanczos Estimates and Requirements

NX Nastran Numerical Methods User’s Guide

194
7.1 Damped Models
The solution of complex eigenvalue problems is important for damped models. The
solution method is applied when either viscous or structural (or both) damping is
used.

The basic equation of the damped free vibration problem is

Eq. 7-1

where:

The matrix may be null, and the and matrices may be real or complex,
symmetric or unsymmetric.

The eigenvalue is given by

Eq. 7-2

The solution u in terms of the complex eigenvalue and eigenvector is of the form:

Eq. 7-3

= mass matrix

= damping matrix

= stiffness matrix

Mu·· Bu· Ku 0=+ +

M[]

B[]

K[]

B M K

λ

λ a iω+=

u eλ tΦ=

195CHAPTER 7
Complex Eigenvalue Analysis
7.2 Theory of Complex Eigenvalue Analysis

Canonical Transformation to Mathematical Form
The complex eigenvalue analysis problem is derived from:

Eq. 7-4

where is the displacement vector. is the acceleration of the grid points, i.e., the
second time derivative of . refers to the velocity or first time derivative. The
solution of this homogeneous system (the free, but damped vibrations) is of the
form

Eq. 7-5

where is a vector of complex numbers and the eigenvalue is also complex in
general. By substituting Eq. 7-5 into Eq. 7-4 we get:

Eq. 7-6

In order to solve this quadratic eigenvalue problem, first a linearization
transformation is executed. This transformation converts the original quadratic
problem to a linear problem of twice the size.

It is obtained by simply rewriting Eq. 7-6 as a 2 × 2 block matrix equation:

Eq. 7-7

where:

Eq. 7-8

as in Eq. 7-7. This equation is now linear; however, there are shortcomings.
Independently of the eigenvalue solution method, one would need to invert both
the mass and damping matrices and an unsymmetric, indefinite matrix built from
the damping and stiffness matrices, in order to reach a solution. Although the
explicit inverses are not needed, the numerical decompositions on either of these
matrices may not be well defined.

An advancement is possible by executing a spectral transformation, i.e.,
introducing an appropriate shift as:

Eq. 7-9

Mu·· Bu· Ku 0=+ +

u u··
u u·

u eλ t Φ=

Φ λ

Mλ2 Bλ K+ +()Φ 0=

λ M 0
0 I

Φ
·

Φ

B K
I– 0

Φ
·

Φ
0=+

Φ
·

λΦ=

λ λ0 μ+=

NX Nastran Numerical Methods User’s Guide

196
With the shift (whose appropriate selection in the complex case is rather heuristic)
the linear equation may be rewritten as:

Eq. 7-10

Another recommended improvement is to invert the problem by introducing:

Eq. 7-11

By substituting and reordering we get:

Eq. 7-12

The latter equation is a canonical form of

Eq. 7-13

where:

Eq. 7-14

and

The form allows the singularity of the mass matrix. However, the zero subspaces of
, , and may not coincide. This is a much lighter and more practical restriction

than requiring both the mass and the damping matrices to be nonsingular, as in
Eq. 7-7. Eq. 7-12 is the formulation used in the Lanczos methods.

If is nonsingular, then a simplified formulation of

Eq. 7-15

also results in a canonical form of

B λ0M–– K–

I λ0I–
Φ
·

Φ
μ M 0

0 I
Φ
·

Φ
=

Λ 1
μ
---=

Λ Φ
·

Φ

B λ0M–– K–

I λ0I–

1–
M 0

0 I
Φ
·

Φ
=

Λx Ax=

A
B λ0M–– K–

I λ0I–

1–
M 0

0 I
=

x Φ
·

Φ
=

K B M

M

M 1– B λ0I+()– M 1– K–

I λ0I–

Φ
·

Φ
μ Φ

·

Φ
=

197CHAPTER 7
Complex Eigenvalue Analysis
Eq. 7-16

Eq. 7-15 is the formulation used in the Hessenberg methods.

When is null, then the double-size representation can be avoided.

The problem then becomes

Eq. 7-17

Using the following:

Eq. 7-18

We can write

Eq. 7-19

Premultiplying Eq. 7-19 by gives

Eq. 7-20

Therefore, from Eq. 7-15 and Eq. 7-20, the dynamic matrix for the case of
nonsingular matrix is as follows:

Eq. 7-21

Because of the unsymmetric nature of the problem, the following left-handed
solution also exists:

Eq. 7-22

For the special case when is null, the left-handed solution of the form:

Eq. 7-23

also exists.

In Eq. 7-22 and Eq. 7-23, the superscript stands for complex conjugate transpose.

The left-handed eigenvectors of the problems will only be found in the Lanczos
(page 214) and QZ Hessenberg (page 212) methods. The left-handed eigenvectors
are useful in establishing convergence quality.

Ax μx=

B

Mλ2 K+[]Φ 0=

λ2 λ0 μ+=

λ0M K+[]– Φ μMΦ=

M 1–

M 1– K λ0I+[] Φ– μΦ=

A
M

 when B 0=

A

M 1– B λ+ 0I()– M 1– K–
I λ0 I –

M 1– K λ0 I+[] –⎩
⎪
⎪
⎨
⎪
⎪
⎧

=
 when B 0≠

ψH λ2M λB K+ +() 0=

B

ψH λ2M K+() 0=

H

NX Nastran Numerical Methods User’s Guide

198
The physical eigenvalues may easily be recovered from the shift and invert
operations in Eq. 7-9 and Eq. 7-11:

Eq. 7-24

In order to find the relationship between the mathematical and physical
eigenvectors, let us rewrite Eq. 7-7 in the following block notation:

Eq. 7-25

where again

Eq. 7-26

The block matrices are simply:

Eq. 7-27

and

Eq. 7-28

Substituting Eq. 7-24 into Eq. 7-25 and reordering yields:

Eq. 7-29

which is the same as Eq. 7-12 in block notation. This proves that the right
eigenvectors are invariant under the shifted, inverted transformations, i.e., the right
physical eigenvectors are the same as their mathematical counterparts, apart from
the relevant partitioning.

For the left-handed problem of Eq. 7-22, we rewrite Eq. 7-22 using block notation:

Eq. 7-30

with a left-handed physical eigenvector of:

Eq. 7-31

λ 1
Λ
---- λ0+=

λM K+() x 0=

x Φ
·

Φ
=

K B K
I– 0

=

M M 0
0 I

=

K λ0+ M()
1–
M ΛI+[] x 0=

yH λM K+() 0=

yH ψ·
H

ψH,[]=

199CHAPTER 7
Complex Eigenvalue Analysis
Substituting Eq. 7-24 again gives:

Eq. 7-32

Factoring,

Eq. 7-33

which is equivalent to:

Eq. 7-34

Thus, the mathematical problem we solve is:

Eq. 7-35

where

Eq. 7-36

This means that the left-handed physical eigenvectors are not invariant under the
transformation. Expanding Eq. 7-36 into the solution terms

Eq. 7-37

and finally

Eq. 7-38

The cost of this back-transformation is not very large since the factors of the
dynamic matrix are available and we need a forward-backward substitution only.
The importance of this back-transformation is rather academic since there is no
physical meaning associated with the left physical eigenvectors. On the other
hand, these are the eigenvectors output in the DMAP data block PSI, and they are
not orthogonal to PHI unless properly converted.

yH M Λ K λ0 M+()+[] 0=

yH K λ0 M+() K λ0 M+()
1–
M ΛI+[] 0=

K λ0 M+()
H

y[]
H

K λ0 M+()
1–
M ΛI+[] 0=

yH K λ0 M+()
1– M ΛI+[] 0=

yH K λ0 M+()
H

y[]
H

=

y
B – λ0M– K–

I λ0I–

H

y–=

y
B– λ0M– K–

I λ0I–

H–

y–=

NX Nastran Numerical Methods User’s Guide

200
Dynamic Matrix Multiplication
In any eigenvalue solution method, the dynamic matrix times vector (block)
multiplication is the most time consuming. From Eq. 7-12 and Eq. 7-13, the
dynamic matrix is

Eq. 7-39

From its structure it is clear that the matrix does not need to be built explicitly. In
the following, the implicit execution of the dynamic matrix multiplication for both
the transpose and non-transpose case is detailed.

For the non-transpose case, any operation in the recurrence will be
equivalent to solving the following system of equations:

Eq. 7-40

Partitioning and accordingly:

Eq. 7-41

Developing the first row:

Eq. 7-42

Developing the second row and rearranging, we obtain:

Eq. 7-43

Substituting the latter into the first row gives:

Eq. 7-44

Which, after reordering, becomes:

Eq. 7-45

This formulation has significant advantages. Besides avoiding the explicit
formulation of , the decomposition of the 2N size problem is also avoided.

A

A
B λ0– M– K–

I λ0I–

1–
M 0

0 I
=

z Ax=

B λ0– M– K–

I λ0I–
z

M 0

0 I
x=

z x

B λ0 M– – K–

I λ0I–

z1

z2

M 0

0 I

x1

x2

=

B– λ0M–() z1 K z2 M x1=–

z1 λ0 z2 x2+=

B– M λ0–() λ0 z2 x2+() K z2 M x1=–

K λ0 B λ0
2 M+ +()– z2 M x1 B λ0 M+() x2+=

A

201CHAPTER 7
Complex Eigenvalue Analysis
It is important that the transpose operation be executed without any matrix
transpose. Any operation in the recurrence will be equivalent to solving
the following equation for :

Eq. 7-46

Let us introduce an intermediate vector :

Eq. 7-47

Now partitioning these vectors accordingly and transforming we obtain:

Eq. 7-48

Developing the first row:

Eq. 7-49

Developing the second row, we have:

Eq. 7-50

Solving for from the first equation, substituting into the second and reordering

yields:

Eq. 7-51

or solving for :

Eq. 7-52

Now, the lower part of the z vector is recovered from Eq. 7-49 by:

Eq. 7-53

Finally,

yT xTA=
yT

yT xT B λ0M– – K–

I λ0I–

1–
M 0

0 I
=

z

zT xT B λ0M–– K–

I λ0I–

1–

=

x1

x2

B λ0M–– K–

I λ0 I–

T
z1

z2

=

x1 B λ0M––()Tz1 z2+=

x2 KTz1– λ0 z2–=

z2

x2 λ0 x1 KT λ0 BT λ0
2 MT+ +()z1–=+

z1

z1 KT λ0 BT λ0
2 MT+ +()

1–
x2 λ0 x1+()–=

z2 x1 B λ0 M+()Tz1+=

NX Nastran Numerical Methods User’s Guide

202
Eq. 7-54

Physical Solution Diagnosis
From the eigenvalue solution, it will be guaranteed that the left and right
mathematical eigenvectors are bi-orthonormal:

Eq. 7-55

where is an identity matrix in essence with computational zeroes as off diagonal
terms.

Based on the physical eigenvalues recovered by the shift formulae and the physical
eigenvectors, another orthogonality criterion can be formed. Using the left and
right solutions, the following equations hold for the problem:

Eq. 7-56

Eq. 7-57

By appropriate pre- and post-multiplications, we get:

Eq. 7-58

Eq. 7-59

A subtraction yields:

Eq. 7-60

Assuming , we can divide by and obtain a mass orthogonality criterion:

Eq. 7-61

Thus, the matrix given by Eq. 7-61 has (computational) zeroes as off diagonal
terms (when) and nonzero (proportional to) diagonal terms (corresponding
to).

To obtain another orthogonality condition, we premultiply Eq. 7-56 by ,
postmultiply Eq. 7-57 by and subtract to obtain:

yT zT M 0

0 I
=

YHX I XYH= =

I

λi
2M λiB K+ +()φi 0=

ψj
H λj

2M λjB K+ +() 0=

ψj
H λi

2M λiB K+ +()φi 0=

ψj
H λj

2M λjB K+ +()φi 0=

λi
2 λj

2–()ψj
H

Mφi λi λj–()ψj
HBφi+ 0=

λj λi≠ λi λj–

O1[]j i λi λj+()ψj
HMφi ψj

H+ Bφi=

O1

i j≠ 2λi
i j=

λj ψj
H

λi φi

203CHAPTER 7
Complex Eigenvalue Analysis
Eq. 7-62

By expanding and simplifying we get:

Eq. 7-63

Assuming again that we can divide by and obtain another
orthogonality condition recommended mainly for the structural damping option
as:

Eq. 7-64

The related orthogonality matrix will also have zero off-diagonal terms, and
nonzero (proportional to) diagonal terms.

Hessenberg Method
The method utilized in NX Nastran uses the Householder reduction to upper
Hessenberg form followed by Francis’s QR steps and a direct eigenvector
generation scheme. To distinguish from the QZ method, this is called the QR
Hessenberg method.

Householder Transformations. An by matrix with the following form:

Eq. 7-65

was introduced in “Theory of Real Eigenvalue Analysis” on page 125 as a
Householder transformation or reflection. These matrices are symmetric and
orthogonal, and are capable of zeroing out specified entries or any block of vector
components. We generate a Householder matrix for a given nonzero vector :

Eq. 7-66

so that for the elements from to of the transformed vector are
zero; i.e.,

Eq. 7-67

The procedure is as follows. We calculate

Eq. 7-68

and build

λjψj
H λi

2M λiB K+ +()φi λiψj
H– λj

2M λjB K+ +() φi 0=

λi λj–()λi λjψj
HMφi λj λi–()ψj Kφi 0=+

λj λi≠ λi λj–

O2[]j i λiλj ψj
HMφi ψj

HK φi–=

O2

λi
2

n n

P I 2vvT

vTv
------------–=

x

xT x1 … xn, ,[]=

1 k j n≤ ≤ ≤ k 1+ j

Px x1 … xk 0 … 0 xj 1+ … xn, , , , , , , ,[]
T

=

a2 xk
2 … xj

2+ +=

NX Nastran Numerical Methods User’s Guide

204
Eq. 7-69

It can be shown that if is defined as in Eq. 7-65, then

Eq. 7-70

which is the form described in Eq. 7-67. The matrix update is similar:

Eq. 7-71

It is clear that need not be formed explicitly if and are available.

Implicit Matrix Update. For given values of , , and , the following algorithm
in NX Nastran overwrites with , where

For

For

End loop .

End loop .

Householder Reduction to the Hessenberg Form. Let be the general matrix
on which the transformation must be executed. Consider the following
transformation:

Eq. 7-72

where:

vT 0 … 0 xk a sign xk()+{ } xk 1+ … xj 0 … 0, , , , , ,, , ,[]=

P

Px x1 … xk 1–, , sign– xk()a{ } 0 … 0 xj 1+ … xn, , , , , ,[]= T

PA I βvvT–()A A β v ATv()
T

–= =

P v β 2 vTv⁄=

A v β
A PA

P I βvvT–()=

p 1 … n, ,=

s v k()A k p,() … v j()A j p,()+ +←
s βs←

i k … j, ,=

A i p,() A i p,() s v i()–←

i

p

Note: above. An analogous algorithm is used for the

update.

vT 0 … vk … vj 0 … 0, , , , , , ,[]= AP

=

A

Ar Pr Ar 1– Pr=

A0 A

205CHAPTER 7
Complex Eigenvalue Analysis
The elements of are chosen so that has zeroes in the positions 1 through
in the r-th row. The configuration and partitioning of can be shown as:

where:

The transformation matrix can be partitioned as follows:

where is a unit vector of order .

By executing the multiplication given in the right-hand side of Eq. 7-72, the
following is obtained:

where .

If is chosen so that is null except for its first component, then of the order
 takes the Hessenberg form.

= (symmetric)

= 1

= a submatrix of order

= of upper Hessenberg form

= a square matrix order (part of original matrix)

= a vector having components

Pr I 2wr wr
T–

wr
Twr

wr Ar r 2–
Ar 1–

r

n r–

x x x x x x
x x x x x x
 x x x x x
 x x x x
 x x x x
 x x x x

Hr 1– Cr 1–
0 br 1– Br 1–

=Ar 1– =

Cr 1– r

Hr 1–

Br 1– n r–

br 1– n r–

r I 0

0 Qr

I 0

0 I 2vrvr
T–

=Pr =
n r–

vr n r–

Ar

r Hr 1–
 Cr 1– Qr

0 cr QrBr 1– Qr
T

Ar =
n r–

cr Qr br 1–=

vr cr Hr
r 1+

NX Nastran Numerical Methods User’s Guide

206
In-Memory Algorithm. This formulation can be developed by writing as
follows:

Eq. 7-73

where is a unit vector of order with zeroes as the first elements. By further
changes:

Eq. 7-74

where:

Because of the lack of symmetry, the pre- and post-multiplications in Eq. 7-72 must
be considered separately. The premultiplication takes the following form:

Eq. 7-75

The postmultiplication is as follows:

Eq. 7-76

Because has zero elements in the 1 through positions, it is seen that the
premultiplication leaves the first rows of unchanged, while the
postmultiplication leaves the first columns unchanged. By introducing new
intermediate vectors, the following may be written:

Eq. 7-77

=

=

=

=

=

Pr

Pr I 2wrwr
T–=

wr n r

Pr I
urur

T

2Kr
2

-----------–=

uir 0 i 1 2 … r , , ,=,

ur 1 r,+ ar r 1+, Sr±

uir air i r 2 … n, ,+=,

Sr
2 air

2

i r 1+=

n

∑

2Kr
2 Sr

2 ar 1+ r, Sr±

Pr Ar 1– I
urur

T

2Kr
2

-----------–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

Ar 1– Ar 1–
ur ur

TAr 1–()

2Kr
2

-------------------------------- Fr=–= =

Ar Fr Pr Fr I
ur ur

T

2Kr
2

-------------–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

= Fr
Fr ur()ur

T

2Kr
2

-------------------------–= =

ur r
r Ar 1–
r

ur
TAr 1– pr

T=

207CHAPTER 7
Complex Eigenvalue Analysis
where has its first elements as zero. This results in

Eq. 7-78

For the postmultiplication, the vector is introduced

Eq. 7-79

which has no zero components. Finally,

Eq. 7-80

Two-Level Storage (Spill) Algorithm. If the execution of memory transfers is a
significant requirement, the following formulation is more convenient. The vector

 is again defined as in Eq. 7-77:

Eq. 7-81

However, is now defined as follows:

Eq. 7-82

By scaling elements of , the following is obtained:

Eq. 7-83

Finally, introducing the scalar as follows:

Eq. 7-84

Eq. 7-72 now can be written in the following form:

Eq. 7-85

QR Iteration Using the Householder Matrices
It is proven (Wilkinson, 1965) that the general matrix can be factored into the
product of a unitary matrix and an upper triangular matrix . The algorithm at
the r-th stage is as follows:

pr
T r 1–()

Fr Ar 1–
ur

2Kr
2

⎝ ⎠
⎜ ⎟
⎛ ⎞

pr
T–=

qr

Fr ur qr=

Ar Fr qr
ur

2Kr
2

⎝ ⎠
⎜ ⎟
⎛ ⎞ T

–=

pr

pr
T ur

T Ar 1–=

qr

qr Ar 1– ur=

ur

vr
ur

2Kr
2

----------=

ar

ar pr
Tvr=

Ar Ar 1– vr pr
T– qr vr

T pr
Tvr()ur vr

T+–=

Ar 1– vr pr
T– qr ar ur–() vr

T–=

A
Q R

NX Nastran Numerical Methods User’s Guide

208
Eq. 7-86

By including the successive iterates, we obtain

Eq. 7-87

From the following form of Eq. 7-86:

Eq. 7-88

it is seen that is unitarily similar to . In general, tends towards an upper
triangular form. The matrix is the product of elementary unitary
transformations necessary to reduce to the upper triangular form . The
transformation matrices can be Givens rotations or Householder reflections.

In NX Nastran the latter Householder reflections are used. A shift may be
incorporated into the single step logic as follows:

Eq. 7-89

If the matrix has complex conjugate eigenvalues, the most economical way is to
execute two steps (double step). For example, the first double shift with shifts
and can be written as follows:

Eq. 7-90

Note that Eq. 7-87 still holds in the shifted case, so we have

Eq. 7-91

By introducing

Eq. 7-92

the following can be shown:

Eq. 7-93

or

Ar Qr Rr=

Ar 1+ Qr
HAr Qr Qr

H Qr Rr Qr Rr Qr= ==

Ar 1+ Qr
HAr Qr Qr

HQr 1–
H …Q1

H()A1 Q1Q2…Qr()==

Q1Q2…Qr() Ar 1+ A1 Q1Q2…Qr()=

Ar A1 Ar
Qr n 1–()

Ar Rr

kr
QR

Ar kr I Qr Rr=–

Ar 1+ Rr Qr kr I+=

k1

k2

A1 k1 I Q1 R1=–

A2 k2 I Q2 R2=–

 A2 R1 Q1 k1I+=

A3 R2 Q2 k2I+=

A3 Q1 Q2()HA1 Q1 Q2=

Q Q1 Q2=

R R2 R1=

QR A1 k1I–() A1 k2I–()=

209CHAPTER 7
Complex Eigenvalue Analysis
Eq. 7-94

which means that is the orthogonal matrix that reduces to
the upper triangular form. Note that if is real and the complex shifts are
chosen as a conjugate pair, then the factorization in Eq. 7-93 can be performed
using only real arithmetic.

Implicit QR Step. Using the Householder matrices again,

Eq. 7-95

where

The derivation of can be produced as follows. First we create a Householder
matrix which provides the following:

Eq. 7-96

where:

Then we compute the following:

Eq. 7-97

(See the update with Householder matrices in “Theory of Real Eigenvalue
Analysis” on page 125.)

The matrix no longer takes Hessenberg form. Therefore, this matrix must be
reduced by new Householder matrices:

Eq. 7-98

Now the question is how to formulate the matrices. The nonzero elements of the
 Householder matrices are determined by for and by for ,

. A convenient representation of (see also “Theory of Real
Eigenvalue Analysis” on page 125 on Householder method) for the current case is
as follows:

=

=

=

=

= first unit vector

QT A1 k1I–() A1 k2I–() R=

QT A1 k1I–() A1 k2I–()
A1 k1 k2,

Pr I 2wrwr
T–=

wr = 0 0 … 0 x … x, , , , , ,()

A3

P1 x ke1=

xT x1 y1 z1 0 … 0, , , , ,()

x1 a11 k1–() a11 k2–() a12 a21+

y1 a21 a11 k2–() a22 k1–()a21+

z1 a32 a21

e1

C1 P1 A1 P1=

C1

Pn 2– …P2P1A1P1P2…Pn 2– A3=

Pr
Pr x1 y1 z1, , P1 xr yr zr, , Pr
r 2 … n 2–, ,= Pr

NX Nastran Numerical Methods User’s Guide

210
Eq. 7-99

Then

Eq. 7-100

For the update, the algorithm described in “Theory of Real Eigenvalue Analysis”
on page 125 is used.

Eigenvector Computation
The Hessenberg form is convenient for generating eigenvectors when the
eigenvalues are known. An eigenvector of the Hessenberg matrix can be found
by solving the following:

Eq. 7-101

where is the corresponding eigenvalue.

This equation in detailed form is as follows:

Eq. 7-102

The matrix of the system is singular, but the minor corresponding to the upper right
corner element is not. Therefore, we normalize the vector so that the last
element in it is equal to 1.

Eq. 7-103

Pr I
2vrvr

T

vr
Tvr

--------------–=

vr
T 0 … 0 1 ur vr 0 … 0, , , , , , , ,()=

ur
yr

xr ar±()
-----------------------=

vr
zr

xr ar±()
-----------------------=

2

vr
Tvr

----------- 2

1 ur
2 vr

2+ +()
----------------------------------- βr= =

Pr I vr βr vr
T()–=

H

H λ I–()y 0=

λ

h11 λ– h12 h13 h1n
h21 h22 λ– h23 h2n
 hi i 1–, hi i, λ– hin

 hn n 1–, hnn λ–

y1

yi

yn 1–
yn

0=
.

.
.

h1n y

yn 1=

211CHAPTER 7
Complex Eigenvalue Analysis
The next to the last element in this case is given by solving the following:

Eq. 7-104

which yields the following:

Eq. 7-105

The other elements can be evaluated in recursive form from:

Eq. 7-106

Then the -th element, is as follows:

Eq. 7-107

The practical implementation of the above procedure also takes care of the cases
where decoupling occurs, i.e., when . This process is still very unstable
and an alternative iterative solution of Eq. 7-101 exists in NX Nastran, which is
similar to the procedure detailed in “Theory of Real Eigenvalue Analysis” on
page 125.

Transformation of the Vectors. If Eq. 7-72 is extended, the following is
obtained:

Eq. 7-108

By introducing

Eq. 7-109

the following is obtained:

Eq. 7-110

or

Eq. 7-111

If Eq. 7-111 is post-multiplied by an eigenvector of the matrix, the following is
obtained:

hn n 1–, yn 1– hnn λ–()yn 0=+

 yn 1–
1

hn n 1–,
-------------------- λ hnn–()=

hi i 1–, yi 1– hi i, λ–() yi hi l, yl
l i 1+=

n

∑ 0=+ +

i 1–() i n 1 n 2 … 2, ,–,–=

yi 1–
1

hi i 1–,
------------------ λ hi i,–() yi hi l, yl

l i 1+=

n

∑–=

hi i 1–, 0=

H Pn 2– Pn 1– …P1 A1 P1…Pn 2–=

Z P1 … Pn 2–=

H ZTAZ=

AZ ZH=

H

NX Nastran Numerical Methods User’s Guide

212
Eq. 7-112

Note from Eq. 7-101 that

Eq. 7-113

The result is the following equation:

Eq. 7-114

which indicates that an eigenvector of can be obtained by the following:

Eq. 7-115

This calculation is also straightforward if the matrix is accumulated during the
transformation from to . However, it is not practical to explicitly form the
matrix when the matrices are not formed. An effective implicit formulation is
given below.

Implicit Vector Transformation. Write Eq. 7-115 as follows:

Eq. 7-116

where represents the Householder transformation matrices. Considering
Eq. 7-116 as a series of orthogonal transformations with and ,
write the following:

Eq. 7-117

and substitute to get

Eq. 7-118

With this formulation, only the vectors need to be accumulated during the to
 transformation and saved in secondary storage for the vector transformations.

QZ Hessenberg Method

The QZ method is a robust algorithm for computing eigenvalues and eigenvectors
of the eigenvalue problem

and, as such, is applicable to the case. If , the appropriate canonical
transformation to linear form is executed. There are no restrictions on or . For
details, see Golub and Van Loan, p. 375.

AZy ZHy=

Hy λy=

AZy λZy=

x A

x Zy=

Z
A H Z

Pr

x P1 P2…Pn 2– y=

Pi
y y n 2–()= x y 0()=

y r 1–() Pr y r()=

y r 1–() y r() ur
T y r()

2Kr
2

------------------ur–=

ur A
H

Ax λ Cx=

B 0= B 0≠
A C

213CHAPTER 7
Complex Eigenvalue Analysis
Hessenberg-Triangular Form

The first stage of the QZ algorithm is to determine unitary matrices and so
that the matrix is upper triangular and is upper Hessenberg.

This is accomplished by first computing a unitary matrix such that is upper
triangular. Next, the matrix is reduced to an upper Hessenberg matrix by
premultiplying by a series of unitary matrices and postmultiplying by a series
of unitary matrices , .

The matrices and are carefully chosen so that

is upper Hessenberg, while

remains upper triangular.

The QZ Step

The derivation of the QZ step is motivated by the case where is nonsingular
(although it generalizes the singular case). If is nonsingular, we could form
and apply the Francis QR algorithm. Rather than forming explicitly, the QZ
algorithm updates and using unitary matrices and :

The matrices and are chosen so that the matrix is essentially the same as
if a QR step had been explicitly applied to . However, since we operate with
and rather than , it is not necessary for to be invertible.

The QZ iteration continues until the matrix converges to upper triangular form.

Eigenvalue Computation

Once has converged to upper triangular form, the QZ algorithm will have
determined unitary matrices and so that both

 and are upper triangular. Denote the diagonal entries of by
, and the diagonal entries of by .

Then, for each , the matrix is singular. It follows that there
exists a vector so that .

Substituting for and and pre-multiplying by , we have .

Q Z
T QHCZ= S QHAZ=

U UHC
UHA S

Qj
Zj j 1 … k,,=

Qj Zj

Sj Qj
HQj 1–

H …Q1
H UHA()Z1Z2…Zj QHAZ==

Tj Qj
HQj 1–

H …Q1
H UHC()Z1Z2…Zj QHCZ==

T
T ST 1–

ST 1–

S T Q Z

Sj QHSZ=

Tj QHTZ=

Q Z SjTj
1–

ST 1– S
T ST 1– T

S

S
Q Q1 Q2 … Qj, , ,= Z Z1 Z2 … Zj, , ,=

S QHAZ= T QHCZ= S
α1 α2 … αn, , , T β1 β2 … βn, , ,

j 1= 2 … n, , , βj S αjT–
uj βjSuj αjTuj=

S T Q βjAZuj αjCZuj=

NX Nastran Numerical Methods User’s Guide

214
Hence, if , we set and to get , as desired.
However, if , then we have two cases to consider:

The Complex Lanczos Method
The main steps of the complex Lanczos Method are: reduction to tridiagonal form,
solution of the tridiagonal problem, and eigenvector computation.

NX Nastran currently supports two complex Lanczos methods: the single vector
method and the adaptive, block method.

The Single Vector Method

Reduction to Tridiagonal Form. The recurrence procedure introduced in
“Theory of Real Eigenvalue Analysis” on page 125 can also be used to reduce a
general matrix to tridiagonal form. This is the so-called biorthogonal Lanczos
method. Find a nonsingular matrix such that:

Eq. 7-119

or

Eq. 7-120

Then with , the following relation holds:

Eq. 7-121

Eq. 7-119 and Eq. 7-121 can be written as:

Eq. 7-122

where and for , and are complex columns of the
 and matrices.

1. In this case, is said to be an infinite eigenvalue.

2. Here is indeterminate.

βj 0≠ λj αj βj⁄= xj Zuj= Axj λjCxj=
βj 0=

βj 0 αj 0≠,= λj

βj 0 αj 0=,= λj

V

AV VT=

V 1– AV T

α1 γ2

β2 α2 γ3

 γn
 Bn αn

 = = .
.

.

U V T–=

ATU UTT=

Avj γj vj 1– αj vj βj 1+ vj 1++ +=

ATuj βj uj 1– αj uj γj 1+ uj 1++ +=

γ1v0 β1u0 0== j 1 2 … n, 1–, ,= uj vj
U V

215CHAPTER 7
Complex Eigenvalue Analysis
Reordering Eq. 7-122 results in the following recurrence relations:

Eq. 7-123

There is some flexibility in choosing the scale factors of . One possibility is to
select , which results in an unsymmetric matrix with ones on the
subdiagonal. This form is advantageous for a direct eigenvector generation
scheme.

Another possibility is to select , which results in a complex but symmetric
matrix. This matrix has significant advantages in the eigenvalue extraction from

the tridiagonal form, and NX Nastran uses this method in the implementation. In
this case, Eq. 7-123 becomes

Eq. 7-124

which corresponds to the matrix form (see Eq. 7-120):

Eq. 7-125

The explicit form of the coefficients of T can be derived from the biorthonormality
of vectors and . Biorthonormality means that

Eq. 7-126

The premultiplication of Eq. 7-124 by , and , respectively, results in
the following (using Eq. 7-126):

and

Eq. 7-127

βj 1+ vj 1+ Avj αj vj γj vj 1–––=

γj 1+ uj 1+ ATuj αj uj βj uj 1–––=

βj γj,
βj 1= T

γj βj=
T

βj 1+ vj 1+ Avj αj vj βj vj 1–––=

βj 1+ uj 1+ ATuj αj uj βj uj 1–––=

UTAV T

α1 β2

β2 α2

 αn 1– βn
 βn αn

 = = .
.

.

u v

ui
Tvj

0 if i j≠
1 if i j=⎩

⎨
⎧

=

uj
T uj 1+

T, vj
T vj 1+

T,

αj
u ui

TAvj or αj
v vj

TAuj==

βj 1+
u uj 1+

T Avj or βj 1+
v vj 1+

T ATuj==

NX Nastran Numerical Methods User’s Guide

216
The two versions of and should be the same in exact arithmetic. In the
actual implementation, the average of the two versions is used.

The algorithm can be developed as follows:

Eq. 7-128

where . The algorithm starts with as well as with
biorthonormal random starting vectors for and .

The procedure will break down if becomes equal to zero. In that case, the
process is restarted with new vectors. In our implementation this is done
when

Eq. 7-129

where is a small number (related to the machine precision).

Solution of Tridiagonal Problem. The method for extracting the eigenvalues of
the complex tridiagonal form is a variant of the basic procedure, mentioned
previously in “Theory of Real Eigenvalue Analysis” on page 125. At each iteration
the basic procedure factors a shifted version of the current iterate as follows:

Eq. 7-130

where is a lower triangular matrix, is orthogonal and obeys the following:

Eq. 7-131

The next iterate is obtained as follows:

Eq. 7-132

Premultiplying by and postmultiplying by in Eq. 7-130 gives

Eq. 7-133

αj βj 1+

αj
u uj

TA= vj ; αj
v vj

TAuj ; αj αj
u αj

v+() 2⁄==

vj 1+ Avj αj vj βj vj 1–––=

uj 1+ ATuj αj uj– βj uj 1––=

βj 1+
u()

2
uj 1+

T A vj ; βj 1+
v()

2
vj 1+

T ATuj ; βj 1+ βj 1+
u βj 1+

v+() 2⁄= = =

vj 1+
vj 1+
βj 1+
------------=

uj 1+
uj 1+
βj 1+
------------=

j 1= … m n<, , u0 v0 0 β1 0=,= =
u1 v1

βj 1+
uj 1+ vj 1+,

βj 1+ εαj<

ε

QL

QL

T ωI QL=–

L Q

QTQ I=

Ti 1+

T1 LQ= ωI+

QT Q

T1 QTTQ=

217CHAPTER 7
Complex Eigenvalue Analysis
By repeatedly applying Eq. 7-130 and Eq. 7-133, is finally converted into a
diagonal matrix whose elements are the eigenvalues of the original tridiagonal
matrix; that is,

Eq. 7-134

Note that if the matrix is complex, then the matrix is also complex.

The computation of is performed by a sequence of complex Givens
transformation matrices . Each is the identity matrix except for the entries

 where . These terms are defined as follows:

Eq. 7-135

 and are complex scalars (to be defined later). Each matrix satisfies

Eq. 7-136

The matrix is built as follows:

Eq. 7-137

First, is determined from the n-th column of . Applying this
transformation matrix to , a new nonzero term is introduced in the
position. Subsequent are defined so that the nonzero introduced by is
forced up and out of the matrix, thereby preserving the complex symmetric
tridiagonal structure.

The algorithm given below does not perform the explicit shifting, factorization,
and recombination of Eq. 7-130 and Eq. 7-132. Explicit shifting can result in
significant loss of accuracy. Instead, one iteration step (generating from), is
replaced by the following sequence:

Eq. 7-138

where , the original matrix.

Finally, the following is obtained:

Eq. 7-139

Ti

Tn Λ=

T Q

Q
Pk Pk

Pk i j,() k i j k 1+≤,≤

Pk– k k,() Pk k 1+ k 1+,() Ck= =

Pk k 1+ k,() Pk k k 1+,() Sk= =

Ck
2 Sk

2+ 1=

Ck Sk Pk

Pk
T Pk Pk

1–= =

Q

Q Pn 1– Pn 2– …P1=

Pn 1– T ωI–
T n 2 n,–()

Pj Pn 1–

Ti 1+ Ti

Ti
k() Pk Ti

k 1–()Pk k n 1 … 1, ,–=,=

T0
k() T=

Ti 1+
n() Ti

1()=

NX Nastran Numerical Methods User’s Guide

218
The process is repeated for or until the matrix becomes diagonal.
Note that this diagonalization occurs by successive decoupling of 1 × 1 and 2 × 2
submatrices of . Decoupling occurs when an off-diagonal term is less than the
product of an and the sum of the absolute values of the two corresponding
diagonal entries.

The selection of the parameters can now be described. For , we
must first determine the shift , which is chosen to be the eigenvalue of the upper
2 × 2 submatrix of closest to . Then the parameters are as follows:

Eq. 7-140

Eq. 7-141

where

Eq. 7-142

Note again that by executing this transformation, the term becomes
nonzero. For the subsequent rotations , the parameters are selected as
follows:

Eq. 7-143

where

This step is reviewed in the following figure by using (the sub- and
superscripts of the are ignored).

i 1= 2 … m, , , Ti

Ti
ε

Ck Sk, k n 1–=
ω

Ti
n() Ti

n() 1 1,()

Cn 1–
Ti

n() n n,() ω–
an 1–

-------------------------------------=

Sn 1–
Ti

n() n 1– n,()
an 1–

------------------------------------=

an 1– Ti
n() n n,() ω–()

2
Ti

n() n 1– n,()
2

+=

Ti
n() n 2– n,()

k n 1–<

Ck
Ti

k 1+() k 1+ k 2+,()
ak

--=

Sk
Ti

k 1+() k k 2+,()
ak

---=

ak Ti
k 1+() k 1+ k 2+,()

2
Ti

k 1+() k k 2+,()
2

+=

k n 2–=
T

219CHAPTER 7
Complex Eigenvalue Analysis
Figure 7-1 Chasing of Nonzero Offdiagonals.

As shown in Figure 7-1, the k-th transformation zeroes out , which was
introduced by the th transformation, but generates a new nonzero term in

.

Using Eq. 7-143 the new terms of the matrix are calculated as follows. Let

Eq. 7-144

Then

Eq. 7-145

New term introduced
by the stepk n 2–=

Term to be eliminated by
the stepk n 2–=

New term introduced
by the stepk n 1–=

T k 1– k,() T k 1– k 1+,()

T k k, 1+()

or
T k k 2+,()

T n 2– n,()

or

T k 1+ k 1+,()

T n 1– n 1–,()

or

T k 1+ k 2+,()

T n 1– n,()

T n n,()

T k k 2+,()
k 1+()

T k 1– k 1+,()

Ti
k()

bk 2CkTi
k 1+() k k 1+,() Sk+ Ti

k 1+() k k,() Ti
k 1+() k 1+ k 1+,()–()=

Ti
k() k k,() Ti

k 1+() k k,() Sk bk–=

Ti
k() k 1+ k 1+,() Ti

k 1+() k 1+ k 1+,() Sk bk–=

Ti
k() k k 1+,() Ti

k 1+() k k 1+,() Ck bk–=

Ti
k() k 1– k,() CkTi

k() k 1– k,()=

Ti
k() k 1– k 1+,() SkTi

k() k 1– k,()=

NX Nastran Numerical Methods User’s Guide

220
Finishing the calculation of Eq. 7-145, set and repeat from Eq. 7-144.
When Eq. 7-145 is finished for , then use Eq. 7-142 and start the process from
Eq. 7-144 again.

Breakdown of the Procedure. The calculation of and is performed using a
denominator with the following form:

Eq. 7-146

which can be very small without either or being small. For example, for
and . When this situation occurs, the process breaks down. The
condition of this problem can be formulated as follows. If

Eq. 7-147

then the procedure will terminate. in Eq. 7-147 is a small number related to the
machine precision.

The storage and computational efficiency of this algorithm is excellent since it
needs storage and operations.

Error Bounds. Theoretically, the solutions of the following reduced
eigenproblem

Eq. 7-148

are approximations to the solutions of the original problem.

To estimate the accuracy of the solution, we use

Eq. 7-149

Eq. 7-149 is a generalization of a similar error bound in the current symmetric
Lanczos code.

The error bound for the original eigenvalues of Eq. 7-6 can be found as follows:

Eq. 7-150

k k 1–←
k 1=

Ck Sk

a2 b2+

a b a 1=
b 1– a2 b2 0=+,=

a2 b2+ ε a 2 b 2+()≤

ε

O n() O n2()

Tsi λi si=

λi λi– βm 1+ si m()≤

λi λi–

λi

βm 1+ si m()

λi
-------------------------------------≤

for B 0: ≠
pi λ0–
pi λ0–

---------------------- 1–
βm 1+ si m()

λi
-------------------------------------≤

for B 0: =
pi

2 λ0–

pi
2 λ0–

----------------------- 1–
βm 1+ si m()

λi
-------------------------------------≤

221CHAPTER 7
Complex Eigenvalue Analysis
Eigenvector Computation. To calculate the eigenvectors of the tridiagonal form,
an inverse power iteration procedure is used. First, a random right-hand side is
generated for the inverse iteration. Then an decomposition of the tridiagonal
matrix is performed by Gaussian elimination with partial pivoting. After a back
substitution pass, the convergence of the approximate eigenvector is checked by its
norm. If the norm is greater than one, then the eigenvector is accepted. This norm
shows sufficient growth, assuming that the procedure began with a random
right-hand side vector with elements less than one. Otherwise, the eigenvector is
normalized, and the process is repeated with this vector as the right-hand side. The
iteration is repeated up to three times.

Practice indicates that most of the time one iteration pass is sufficient. The
computation is very stable, especially with partial pivoting. The process can be
summarized as follows.

1. Decomposition

Eq. 7-151

where:

2. Iteration

Eq. 7-152

where:

If and the iteration count is less than 3, then

Eq. 7-153

and the iteration continues; otherwise, is the eigenvector.

3. Converting the Solution

= the tridiagonal matrix

= an eigenvalue

= permutation matrix (row interchanges)

= factor matrices

= random starting vector

= approximate eigenvector

LU

P T λi I–() LU=

T

λi

P

L U,

LUu2 u1=

u1

u2

u2 1<

u1
u2
u2

------------←

u2

NX Nastran Numerical Methods User’s Guide

222
The conversion of eigenvalues is performed by the following equations:

Eq. 7-154

The eigenvector conversion requires the computation of the following:

, for the right vectors

or

, for the left vectors

where:

4. Initialization

The Lanczos recurrence is started with orthonormalized random vectors.
Any numerical procedure can be used that generates sufficiently long
pseudorandom number sequences. Suppose the random vectors are as
follows:

Orthonormalization can be performed in the following form:

Eq. 7-155

These vectors are now suitable to start the Lanczos iteration.

= eigenvector of Eq. 7-148 corresponding to

=

=

= number of roots found by the procedure at the particular shift

pi λi λ0 B 0≠,+=

pi
2 λi λ0 B 0=,+=

xi Vsi=

yi Usi=

si λi

U u1 … um, ,[]

V v1 … vm, ,[]

m

u1 v1,

u1
u1

u1
Tv1()

1 2⁄
---------------------------=

v1
v1

u1
Tv1()

1 2⁄
---------------------------=

223CHAPTER 7
Complex Eigenvalue Analysis
5. Outer Orthogonalization

It is well known that repeated occurrence of eigenvectors can be
prevented by assuring orthogonality between the already accepted
eigenvectors and the Lanczos vectors. This outer orthogonality can be
maintained using the following iteration process (i.e. modified
Gram-Schmidt):

Eq. 7-156

This process should be executed similarly with the vectors.

The respective orthogonalization formula is as follows:

In the above formulae, are already accepted eigenvectors and
.

6. Inner Orthogonalization

When the Lanczos process is carried out in practice using finite precision
arithmetic, strict biorthogonality of the sequences is lost. The
biorthogonality can be maintained if is reorthogonalized with
respect to , and is reothogonalized with respect to

 using the following formulae:

Eq. 7-157

For numerical stability, the subtraction is performed immediately after
each term is calculated (modified Gram-Schmidt), and the sum is not
accumulated.

Inner orthogonality monitoring is performed by the following:

vi
j vi

j xk
T vi()xk

k 1=

c

∑–←

for j 1 2 … l, , ,= until

xk
T vi

l ε< for max k 1 … c, ,=

ui

ui
j ui

j yk
Tui()yk

k 1=

c

∑–←

xk yk,
k 1 2 … c, , ,=

u v,
uj 1+

v1 … vj 1+, , vj 1+
u1 … uj 1+, ,

vj 1+ vj 1+ ui
Tvj 1+ vi

i 1=

j

∑–←

uj 1+ uj 1+ vi
Tuj 1+ ui

i 1=

j

∑–←

NX Nastran Numerical Methods User’s Guide

224
Eq. 7-158

No orthogonalization is necessary when

If necessary, the orthogonalization is performed against all previous
vectors. If the orthogonalizations are kept in the core, this fact implies a
limit on .

7. Shift Strategy

The default logic begins with a shift at (0.1, 1.0). The Lanczos recurrence
process is performed until breakdown. Then the eigensolutions of the
reduced problem are evaluated as approximations. If the user desires, the
shifts are executed at user-specified locations as shown in Figure 7-2.

Figure 7-2 Recommended Shift Points for Complex Lanczos

The shifts are used until the required number of eigenvalues are found.
Unfortunately, there is no analogue to the Sturm sequence theory used for
the real eigensolution. As a result, there is no assurance that no gaps exist
between the eigenvalues found.

ωj
u uj 1+

T vj=

ωj
v vj 1+

T uj=

max ωj
u ωj

v,() ε<

m

Default Shift

Re

Im

α1β1()

α2β2()

α β()

αkβk()

225CHAPTER 7
Complex Eigenvalue Analysis
The Adaptive Block Lanczos Method
The solution of the mathematical eigenproblem in its canonical form shown in
Eq. 7-13 will be more efficiently accomplished with the block Lanczos method.

The block Lanczos method (see Bai, et al., 1996) generates two sets of
biorthonormal blocks of vectors and such that:

Eq. 7-159

when and zero otherwise. Note that we are using superscript H to denote
the complex conjugate transpose. These vector sets reduce the system matrix to

 block tridiagonal matrix form:

Eq. 7-160

where the matrices

Eq. 7-161

and

Eq. 7-162

are the collections of the Lanczos blocks. The structure of the tridiagonal matrix is:

Eq. 7-163

The block Lanczos process is executed by the following three term recurrence
matrix equations:

Eq. 7-164

and

Eq. 7-165

Note that in both of these equations the transpose of the system matrix is
avoided.

Pj Qj

Pi
HQj I=

i j=
A

Tj

Tj Pj
H

AQj=

Pj P1 P2 … Pj, , ,=

Qj Q1 Q2 … Qj, , ,=

Tj

A1 B2

C2 A2

 Bj
 Cj Aj

=

Bj 1+ Pj 1+
H Pj

HA Aj Pj
H Cj Pj 1–

H––=

Qj 1+ Cj 1+ AQj Qj Aj Qj 1– Bj––=

A

NX Nastran Numerical Methods User’s Guide

226
In order to find the mathematical eigenvalues and eigenvectors, we solve the block
tridiagonal eigenvalue problems posed as:

Eq. 7-166

and

Eq. 7-167

where the order of the reduced tridiagonal matrix is times , assuming a fixed
block size for now. The eigenvalues of the tridiagonal problem (the so-called
Ritz values) are approximations to the eigenvalues of the mathematical problem
stated in Eq. 7-13. The approximations to the eigenvectors of the original problem
are calculated from the left and right eigenvectors of the tridiagonal problem
(Ritz vectors) by:

Eq. 7-168

and

Eq. 7-169

where are the matrices containing the first Lanczos blocks of vectors.
Finally, are the right and left approximated eigenvectors of the mathematical
problem.

A beautiful aspect of the Lanczos method (exploited also in the READ module) is
that the error norm of the original problem may be calculated from the tridiagonal
solution, without calculating the eigenvectors. Let us introduce a rectangular
matrix having an identity matrix as the bottom square block. Using this, a
residual vector for the left-handed solution is:

Eq. 7-170

which means that only the bottom (if the current block size is) terms of the new
Ritz vector are required due to the structure of . Similarly for the right-handed
vectors:

Eq. 7-171

An easy acceptance criterion (an extension of the one used in the real case) may be
based on the norm of the above residual vectors as:

Eq. 7-172

wHTj θwH=

Tj z θz=

j p
p θ

Λ

w z,

y Pj w=

x Qj z=

Pj Qj, j
x y,

Ej

sH yHA θyH– wHEj()Bj 1+ Pj 1+
H= =

p p
w Ej

r Ax θx Qj 1+ Cj 1+ Ej
Hz()=–=

min sH
2 r 2•() εcon≤

227CHAPTER 7
Complex Eigenvalue Analysis
where the value to accept convergence is either user given or related to an
automatically calculated machine epsilon. The denotes the Euclidean norm.

Based on a detailed error analysis of these quantities, we modify this criterion by
considering the spectral gap:

Eq. 7-173

where . With this, the recommended criterion is

Eq. 7-174

In the above, we assumed that the Lanczos blocks have a uniform size of . It is
possible to generalize this to allow for the j-th iteration to have variable block
size. Such flexibility may be advantageous in the case of clustered eigenvalues or
to avoid the breakdown of the Lanczos process.

Let us assume at the -st iteration, the block size is increased by some and
the -st Lanczos vectors are augmented as:

Eq. 7-175

and

Eq. 7-176

where the * vectors are the still undefined augmentations. It is easy to see that
appropriate augmentations will maintain the validity of the three member
recurrence of Eq. 7-164 and Eq. 7-165 as follows:

Eq. 7-177

and

Eq. 7-178

The Lanczos process can therefore formally continue with the following
substitutions:

Eq. 7-179

εcon
. 2

gap θ Tj,() min θ θi–=

θi θ≠

min sH
2 r 2•()

sH
2 r 2•

gap θ Tj,()
---------------------------------- εcon≤

p
pj

j 1+() k
j 1+()

Pj 1+ Pj 1+[]

Qj 1+ Qj 1+[]

Bj 1+ 0[]
Pj 1+

H

Pj 1+
H

Pj
HA Aj Pj

H Cj Pj 1–
H––=

Qj 1+ Qj 1+[] Cj 1+
0

AQj Qj Aj– Qj 1– Bj–=

Bj 1+ Bj 1+ 0[]←

NX Nastran Numerical Methods User’s Guide

228
Eq. 7-180

and

Eq. 7-181

Eq. 7-182

The conditions of successful continuation with augmented blocks are the
orthogonality requirements of:

Eq. 7-183

and

Eq. 7-184

It is of course necessary that the inner product of the newly created, augmented pair
of Lanczos vector blocks

is not singular, since its decomposition will be needed by the algorithm.
Specifically, we need the smallest singular values of the inner product matrix to be
larger than a certain small number. A possible choice for the augmentations is to
choose pairs of random vectors and orthogonalize them against the earlier
vectors by using a modified Gram-Schmidt procedure. The orthogonalization may
be repeated several times to assure that the smallest value is above the threshold.

The most prevalent usage of the block size adaptation is to cover existing clusters
of eigenvalues. In the real block implementation, we were not able to change the
block size on the fly (adaptively). Therefore, an estimate of the largest possible
cluster was needed a priori. For typical structural applications, the default block
size of 7 (anticipating 6 as the highest multiplicity) was used.

The multiplicity of a cluster may be found on the fly with the help of the Ritz values.
The number of expected multiplicities in a cluster is the number of elements of the
set satisfying:

Eq. 7-185

Cj 1+
Cj 1+

0
←

Pj 1+ Pj 1+ Pj 1+[]←

Qj 1+ Qj 1+ Qj 1+[]←

P
H

j 1+ Qj 0=

Pj
H

 Qj 1+ 0=

Pj
H Qj 1+

k

θi θk– εclu max θi θk,()≤

229CHAPTER 7
Complex Eigenvalue Analysis
where is the user specified cluster threshold. The order of the largest cluster of
the Ritz values is calculated every time a convergence test is made and the block
size is appropriately adjusted. This procedure is not very expensive, since it is done
on the tridiagonal problem.

Preventing Breakdown. It is easy to see that the Lanczos process breaks down in
some circumstances. These are:

• Either or or both are rank deficient.

• Neither are rank deficient, but is rank deficient.

The breakdown of the first kind prevents the execution of the QR decomposition
of the j-th blocks. This is fairly easy to overcome by an orthogonalization
procedure also applied in the current complex Lanczos implementation.

Specifically, if is rank deficient, then we restart the Lanczos process with a
random made orthogonal to all previous left Lanczos vectors as:

Eq. 7-186

If is just nearly rank deficient (detected by the QR decomposition of
), then we reorthogonalize this to the previous left Lanczos

vectors, as shown in the above equation.

Rank deficiency (full or near) of is treated similarly with respect to the right
Lanczos vectors.

The breakdown of the second type (a serious breakdown) manifests itself in the
singular value decomposition of . In this type of breakdown, some or all
of the singular values are zero, as follows:

Eq. 7-187

where is nonsingular if it exists. This problem may also be overcome using the
augmentation techniques shown earlier. First, calculate and partition as follows:

Eq. 7-188

and

Eq. 7-189

εclu

Rj Sj

Rj
H Sj

Sj
Qj 1+ Pj

Pj
H

 Qj 1+ 0=

Sj
Sj Qj 1+ Cj 1+= Qj 1+

Rj

Pj 1+
H Qj 1+

Pj 1+
H Qj 1+ Uj

Σ 0
0 0

Vj
H=

Σ

Pj 1+ Uj P 1() P 2()=

Qj 1+ Vj Q 1() Q 2()=

NX Nastran Numerical Methods User’s Guide

230
where the number of columns in the second partition is equal to the number of zero
singular values. Create the following projector matrix:

Eq. 7-190

Bai et al., 1996 proves that the choice of vectors:

Eq. 7-191

and

Eq. 7-192

in the following augmentation:

Eq. 7-193

and

Eq. 7-194

will always result in a nonsingular product.

It is possible to extend this procedure to the case of near-breakdown when the
singular values may not be exact zeroes, but smaller than desired. In this case, it is
recommended to increase the block size for those singular values that are below a
specified threshold. Finally, one may only use random vectors instead of the
projection matrix.

Maintaining Biorthonormality. The maintenance of the biorthonormality of the
 and vectors is the cornerstone of the Lanczos algorithm. Local

biorthonormality, i.e. maintaining the condition between the consecutive Lanczos
vectors, is fairly simple by executing the following steps:

Eq. 7-195

Eq. 7-196

These steps use data only available in memory, therefore they are cost effective
even when executed repeatedly. Unfortunately, this method does not ensure that
converged eigenvectors will not reappear. This may be prevented by a full
reorthonormalization scheme using a modified Gram-Schmidt process. This is

Πj Qj Pj
H

=

P 2() I Πj–()H Q 2()=

Q 2() I Πj–()H P 2()=

Pj 1+ P 1() P 2() P 2()=

Qj 1+ Q 1() Q 2() Q 2()=

Pj 1+
H Qj 1+

Pj Qj

Rj Rj Pj Qj
HRj()–←

Sj Sj Qj Sj
HRj()–←

231CHAPTER 7
Complex Eigenvalue Analysis
implemented in the single vector complex Lanczos method of NX Nastran. A
measure of the orthogonality of the current Lanczos vectors, with respect to the
already accepted eigenvector, is:

Eq. 7-197

where is the matrix column norm. This quantity is usually compared to a

machine computational accuracy indicator as:

Eq. 7-198

where is the automatically calculated machine epsilon. The appropriateness
of the choice of the square root was proven in the real Lanczos method (called
partial orthogonality there) and was already successfully employed in the READ
module.

That measure, however, is very expensive, both in CPU and I/O regards.
Specifically, the numerator requires the retrieval of the and vector blocks
from secondary storage and a multiplication by them. A method of maintaining
partial orthogonality with a limited access of the and matrices, uses

Eq. 7-199

where is now the matrix row norm. The norms of the denominator may be
updated in every iteration step without retrieving the eigenvectors. This method
calculates the above numerator terms

Eq. 7-200

and

Eq. 7-201

utilizing the fact that these satisfy the three term recurrence equations perturbed
by rounding errors as follows:

Eq. 7-202

where

dj 1+ max
Pj

HQj 1+ 1

Pj 1 Qj 1+ 1

Qj

H
Pj 1+ 1

Qj 1 Pj 1+ 1

---------------------------------------,
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

. 1

dj 1+ εmac≤

εmac

Pj Qj

Pj Qj

dj 1+ max
Xj 1+ inf

Pj 1 Qj 1+ 1

Yj 1+ inf

Qj 1 Pj 1+ 1

---------------------------------------,
⎝ ⎠
⎜ ⎟
⎛ ⎞

=

. inf

Xj 1+ Pj
H

 Qj 1+=

Yj 1+ Pj 1+
H

 Qj=

Xj 1+ Tj
Xj
0

Xj
0

Aj

Xj 1–

W1
l

Bj
0

Bj 1+ W2
l+––=

NX Nastran Numerical Methods User’s Guide

232
Eq. 7-203

and

Eq. 7-204

The superscript refers to the left side. Similarly, for the right side:

Eq. 7-205

where

Eq. 7-206

and

Eq. 7-207

with superscript referring to the right side. After these steps, the matrices are
perturbed to simulate the round-off effect as:

Eq. 7-208

and

Eq. 7-209

where is a random matrix having a norm of . If the test

Eq. 7-210

fails, then a retroactive modified Gram-Schmidt procedure (similar to the local one
above) is needed. The cost of this procedure is , the dominant cost being the
inner products of the Lanczos blocks producing the vector blocks. This assumes
that the block structure of is taken into consideration.

W1
l Pj

H Qj 1+=

W2
l PH

j 1+ Qj=

l

Yj 1+ Xj 0 Tj Aj Yj 0 Cj Yj 1– W1
r

0

W2
r Cj 1+

+––=

W1
r Pj

HQj 1+=

W2
r Pj 1+

H Qj=

r

Xj 1+ Xj 1+ Fj+()Cj 1+
1–=

Yj 1+ Bj 1+
1– Yj 1+ Fj

H+()=

Fj εmac

dj 1+ εmac≤

O n()
W

Tj

233CHAPTER 7
Complex Eigenvalue Analysis
Mathematical Algorithm. A simplified summary of the mathematical algorithm
follows:

Figure 7-3 Block Lanczos Logic

Singular Value Decomposition (SVD)
Since a crucial element of the algorithm in Figure 7-3 is the singular value
decomposition, step (c) in Figure 7-3, this section gives more detail.

Given any matrix , there exist unitary matrices and such that

1. Initialization

a. Choose starting vector blocks such that

b. Calculate and

2. Iteration for

a. Compute:

b. QR decomposition:

c. SV decomposition:

d. Compute recurrence:

e. Start recurrence:

P1 Q1, P1
HQ1 I=

R1 P1
HA()

H
= S1 AQ1=

j 1 2 … , , ,=

Aj Pj
HSj=

Rj Rj Pj Aj
H–←

Sj Sj Qj Aj–←

Rj 1+ Pj 1+ Bj 1+
H=

Sj Qj 1+ Cj 1+=

Pj 1+
H Qj 1+ Uj Σj Vj

H=

Bj 1+ Bj 1+ Uj Σj
1 2⁄=

Cj 1+ Σj
1 2⁄ Vj

HCj 1+=

Pj 1+ Pj 1+ Uj Σj
1 2⁄–=

Qj 1+ Qj 1+ Vj Σj
1 2⁄–=

Rj 1+ Pj 1+
H A Cj 1+ Pj

H–()
H

=

Sj 1+ AQj 1+ Qj Bj 1+–=

n m× A n m≥() U V

A UΣVH=

NX Nastran Numerical Methods User’s Guide

234
where has the same dimensions as , but is in the form

where is a diagonal matrix with real diagonal entries . The
diagonal entries of are the singular values of , and are mathematically defined
to be the positive square roots of the eigenvalues of .

The singular value decomposition of is computed without forming . The first
step is to compute unitary matrices and such that

is bidiagonal.

The main step of the SVD algorithm implicitly performs the Francis QR iteration on
the matrix .

It is also possible to define an "economy" size SVD. Let be the matrix consisting
of the first columns of . Then

is an alternate form of the SVD.

The method is also available directly to the user from the CEAD module, as shown
in “User Interface” on page 237.

The Iterative Schur-Rayleigh-Ritz Method (ISRR)
The Iterative Schur-Rayleigh-Ritz Method (ISRR) is a procedure which extracts a
specified number of roots which lie within a circle in the complex plane centered at
the origin. The ISSR method computes a Schur factorization of the canonical matrix

such that:

where has dimension n x n, is n x m, and is m x m. The reduced
eigenproblem:

is then solved. Transformation of with recovers the eigenvectors
corresponding to the eigenvalues .

Σ A

Σ Σ
ˆ

0
=

Σ
ˆ

σ1 σ2 … σm 0≥ ≥ ≥ ≥
Σ
ˆ A

AHA

A AHA
U1 V1

B U1
HAV1=

BHB

U ˆ

m U

A U ˆ Σ
ˆ
VH=

A

AQ QT=

A Q T

Ty λy=

y Q
λ

235CHAPTER 7
Complex Eigenvalue Analysis
The advantages of this approach are that a much smaller m x m problem is solved
spanning the subspace of the first m eigenvalues of , and a Schur decomposition
is constructed which, within the limits of a numerical method, provides a greater
degree of confidence than the complex Lanczos method that all modes have been
found.

A

NX Nastran Numerical Methods User’s Guide

236
7.3 Solution Method Characteristics
The available methods in NX Nastran are the Hessenberg methods, the complex
Lanczos methods, SVD, and ISRR. The Hessenberg method is a reduction method,
as is the SVD, while the Lanczos method and ISRR are iterative methods. The
characteristics of these methods are:

Method Type Identifier Application Restriction

Hessenberg Reduction HESS All roots, few
vectors

 nonsingular

QZ Hessenberg Reduction QZHESS All roots, few
vectors

None

Complex
Lanczos

Iterative CLAN Few roots

SVD Reduction SVD Singular value
and/or
vectors of

 must be purged

ISRR Iterative ISRR Roots closest
to origin

 nonsingular

M

K[] λs B[] λs
2 M[] 0≠+ +

K

B M,

M

237CHAPTER 7
Complex Eigenvalue Analysis
7.4 User Interface

Input Data Blocks:

Output Data Blocks:

Parameters:

CEAD KXX,BXX,MXX,DYNAMIC,CASECC,VDXC,VDXR/
CPHX,CLAMA,OCEIG,LCPHX,CLAMMAT/
S,N,NEIGV/UNUSED2/SID/METH/EPS/ND1/ALPHAJ/OMEGAJ/
MAXBLK/IBLK/KSTEP/NDJ $

KXX Stiffness matrix.

BXX Viscous damping matrix.

MXX Mass matrix.

DYNAMIC Table of Bulk Data entry images related to dynamics.

CASECC Table of Case Control command images.

VDXC Partitioning vector with 1.0 at rows corresponding to null
columns in K, B, and M.

VDXR Partitioning vector with 1.0 at rows corresponding to null rows in
K, B, and M.

CPHX Complex eigenvector matrix, or right singular vectors
(SVD method with ND1 > 0).

CLAMA Complex eigenvalue summary table.

OCEIG Complex eigenvalue extraction report.

LCPHX Left-handed complex eigenvector matrix (Lanczos only), or

left singular vectors (SVD method with ND1 > 0).

CLAMMAT Diagonal matrix with complex eigenvalues on the diagonal,

or diagonal matrix of singular values (SVD method). See
Remark 8.

NEIGV Output-integer-no default. NEIGV indicates the number of
eigenvalues found. If none were found, NEIGV is set to -1.

UNUSED2 Input-integer-default=1. Unused.

V

U

Σ

NX Nastran Numerical Methods User’s Guide

238
SID Input-integer-default=0. Alternate set identification number.

If SID=0, the set identification number is obtained from the
CMETHOD command in CASECC and used to select the EIGC entry
in DYNAMIC.

If SID>0, then the CMETHOD command is ignored and the EIGC
entry is selected by this parameter value. Applicable for all methods.

If SID<0, then both the CMETHOD command and all EIGC entries are
ignored and the subsequent parameter values (E, ND1, etc.) will be
used to control the eigenvalue extraction. Applicable for single vector
Lanczos, block Lanczos, QZ Hessenberg, QR Hessenberg, and SVD
(Singular Value Decomposition).

METH Input-character-default='CLAN'. If SID<0, then METH specifies the
method of eigenvalue extraction:

CLAN Complex Lanczos (block or single vector),

HESS QZ Hessenberg or QR Hessenberg,

SVD Singular Value Decomposition,

ISRR Iterative Schur-Rayleigh-Ritz Method.

EPS Input-real-default=1.E-5. Used only when SID<0.

ND1 Input-integer-default=0. The number of desired eigenvectors. Used
only when SID<0.

ALPHAJ Input-real-default=0.0. Real part of shift point. Used only when
SID<0.

OMEGAJ Input-real-default=0.0. Imaginary part of shift point. Used only when
SID<0.

MAXBLK Input-integer-default=7. Maximum block size. Used only when
SID<0.

IBLK Input-integer-default= see Remark 10. Initial block size. Used only
when SID<0.

KSTEP Input-integer-default=ND1 / (10*IBLK) + 2. Frequency of solve. Used
only when SID<0.

NDJ Input-integer-default=0. The number of desired eigenvectors at
desired shift point for pre-Version 70.5 Lanczos method. Used only
when SID<0.

239CHAPTER 7
Complex Eigenvalue Analysis
7.5 Method Selection

Defines the data needed to perform complex eigenvalue analysis.

Format:

The following continuation is repeated for each desired search region. (J = 1 to n,
where n is the number of search regions.)

Alternate Format for Continuation Entry for Block Complex Lanczos:

Alternate Format for Continuation Entry for ISRR:

Examples:

EIGC Complex Eigenvalue Extraction Data

1 2 3 4 5 6 7 8 9 10

EIGC SID METHOD NORM G C E ND0

ALPHAAJ OMEGAAJ ALPHABJ OMEGABJ LJ NEJ NDJ

ALPHAAJ OMEGAAJ MBLKSZ IBLKSZ KSTEPS NJi

ALPHACJ OMEGACJ ISRRFLG NJi

EIGC 14 CLAN

+5.6 4

-5.5 3

EIGC 15 ISRR

-1.0 0.0 3 4

EIGC 16 HESS 6

Field Contents

SID Set identification number. (Unique Integer > 0)

METHOD Method of complex eigenvalue extraction. (Character:
“INV,” “HESS,” “CLAN” or “ISRR”)

NX Nastran Numerical Methods User’s Guide

240
NORM Method for normalizing eigenvectors. (Character: “MAX”
or “POINT”; Default = “MAX”). See “Normalization
Options” on page 245.

G Grid or scalar point identification number. Required if and
only if NORM = “POINT”. (Integer > 0).

C Component number. Required if and only if
NORM=“POINT” and G is a geometric grid point.
(0 < Integer < 6)

E Convergence criterion. (Real > 0.0. Default values are: 10-4
for METHOD = “INV”, 10-15 for METHOD = “HESS”, E is
machine dependent for METHOD = “CLAN”.)

MBLKSZ Maximum block size. (Default = 7, Integer > 0) Block
Lanczos only.

IBLKSZ Initial block size. (Default = See Remark 10., Integer > 0)
Block Lanczos only.

KSTEPS Frequency of solve. (Default = 5, Integer > 0) Block Lanczos
only.

ISRRFLG Used only for ISRR (see “ISRR Option” on page 248).

ALPHACJ Used only for ISRR (see “ISRR Option” on page 248).

OMEGACJUsed only for ISRR (see “ISRR Option” on page 248).

Field
METHOD Field

HESS INV CLAN ISRR

NDj
(Integer > 0)

Desired
number of
eigenvectors.
(No default)

Desired
number of
roots and
eigenvectors
in j-th search
region.
(Default = 3*
NEj)

Desired
number of
roots and
eigenvectors
to be
extracted at j-
th shift point.
(No default)

Desired
number of
eigenvectors.
(No default)

ALPHAAj
OMEGAAj
Real and
imaginary
parts of Aj in
radians/
time (Real).

Not used End point Aj
of j-th search
region in
complex
plane.
(Default = 0.0)

j-th shift
point.
(Default = 0.0
)

Fields have
alternate
meaning
(See “ISRR
Option” on
page 248.)

Field Contents

241CHAPTER 7
Complex Eigenvalue Analysis
Remarks:

Figure 7-4 Sample Search Regions

ALPHABj
OMEGABj
Real and
imaginary
parts of Bj in
radians/
time (Real).

Not used End point Bj
of j-th search
region in
complex
plane.
(Default = 0.0)

See alternate
definition

below.

Not used

Lj
(Real > 0.0)

Not used Width of j-th
search region.
(Default = 1.0)

See alternate
definition

below.

Not used

NEj
(Integer > 0)

Not used Estimated
number of
roots in j-th
search region.
(Default = 0)

Not used Not used

MBLKSZ
For block
CLAN only

Not used Not used Maximum
Block Size
Default = 7

Not used

IBLKSZ
For block
CLAN only

Not used Not used Initial Block
Size
Default = 2

Not used

Field
METHOD Field

HESS INV CLAN ISRR

OMEGA

ALPHA

A1

A2
B1

B2

L1

L2

NX Nastran Numerical Methods User’s Guide

242
1. The EIGC entry must be selected in the Case Control Section with the
command CMETHOD = SID. Methods of solution are also controlled by
SYSTEM(108); see “Hessenberg and Lanczos Options” on page 245.

2. The “HESS” method is generally more reliable and economical for small and
moderate-size problems. It computes all eigenvalues and ND eigenvectors.

3. The “ISRR” method works well on sparse matrices, confines the search region to
a circle centered on the origin of the complex plane, and provides some reliability
that all modes within the circle have been found.

4. The EIGC entry may or may not require continuations as noted below.

• For the “HESS” method, continuations are not required; and their
contents are ignored when present, except for ND1. However, it is
recommended that continuations are not used.

• For the “CLAN” method, when the continuation entry is not used a shift
is calculated automatically. When a shift is input on the first continuation
entry it is used as the initial shift. Only one shift is used. Data on other
continuation entries is ignored.

• For METHOD = “INV”, each continuation defines a rectangular search
region. Any number of regions may be used and they may overlap.
Roots in overlapping regions will not be extracted more than once.

• For METHOD = “ISRR” continuation, see “ISRR Option” on page 248.

• For all methods, if no continuation is present, then ND0 must be specified
on the first entry. If a continuation is present, then NDj must be specified
on the continuation and not on the first entry.

5. The units of ALPHAAJ, OMEGAAJ, ALPHABJ, and OMEGABJ are radians per
unit time.

6. See The NASTRAN Theoretical Manual, Sections 10.4.4.5 and 10.4.4.6, for a
discussion of convergence criteria and the search procedure with the INV
method.

7. DIAG 12 prints diagnostics for the inverse power method, the complex Lanczos
method, the QZ HESS method and the ISRR method.

8. If METHOD = “HESS” and the LR or QR methods (non-default methods) are
selected by system cell 108 the mass matrix must be nonsingular.

9. When using METHOD = CLAN, the following should be noted. The modern
CLAN method (default for METHOD entry of CLAN) has been enhanced to
include a block complex Lanczos approach. This method is more reliable and
will not accept inaccurate roots which the old method had a tendency to do.
Thus, given the same input, the new method may often accept fewer roots. For
continuity the old method has been maintained and may be selected by setting
SYSTEM(108).

10. The initial block size (IBLKSZ) default is as follows:
If N < 1000, IBLKSZ = 1.
If N < 50,000, IBLKSZ = 2.
If N < 100,000, IBLKSZ = 4.
If N >100,000, IBLKSZ = 5.

243CHAPTER 7
Complex Eigenvalue Analysis
Alternate EIGC Bulk Data Entry

The following alternate format is valid for all methods except for the inverse power
method:

where KEYWORD may be any of the parameters from the original entry except
SID, as well as:

Examples:

Remarks about alternate entry options:

1. The first of the keyword-driven continuation entry must be blank.

1 2 3 4 5 6 7 8 9 10

EIGC SID METHOD NORM G C E ND0

KEYWORD1=<value> KEYWORD2=<value> KEYWORD3=<value>

NDj Number of desired roots at shift j. (Integer > 0).

SHIFTRj The real part of shift j. (Real)

SHIFTIj The imaginary part of shift j. (Real)

KSTEPSj Block tridiagonal solution frequency at shift j; (only
block Lanczos).(Integer > 0)

MBLKSZj Maximum block size at shift j (only block Lanczos).
(Integer > 0)

IBLKSZj Initial block size at shift j (only block Lanczos). (Integer >
0)

Note: In the parameters above, the value of j ranges from 1 to 10.

EIGC 1 CLAN

eps=1.E-12, nd1=12, shiftr1=0, shifti1=2.4E2

EIGC 2 HESS

ND1=10

EIGC 3 CLAN

shiftr1=0.0, shifti1=20., nd1=5, iblksz1=2, mblksz1=5

shiftr2=0.0, shifti2=50., nd2=5, iblksz2=2, mblksz2=5

shiftr3=0.0, shifti3=100., nd3=5, iblksz3=1, mblksz3=5

NX Nastran Numerical Methods User’s Guide

244
2. If any of the parameters METHOD, NORM, G, C, EPS, or ND1 are specified on
the continuation entry, the corresponding field on the original entry must be
blank.

3. A maximum of 10 shifts may be specified.

245CHAPTER 7
Complex Eigenvalue Analysis
7.6 Option Selection
Complex eigenvalue analysis in NX Nastran supports general damping and
normalization options as well as specific Hessenberg and Lanczos options.

Damping Options
The presence of the matrix indicates the viscous damping option when the
following equation is solved:

Eq. 7-211

This problem is transformed into a linear problem that is twice the size of the
original matrices and provides eigenvalue solutions in complex conjugate pairs.

When the matrix is not present and damping is introduced via imaginary
stiffness terms (structural damping), then the following problem is solved:

Eq. 7-212

In this case the roots are not complex conjugate pairs. The mixed case of having
both viscous and structural damping is also possible.

Normalization Options
The default normalization (and the only method available for the Hessenberg and
Lanczos methods) is MAX. This option normalizes the component of the
eigenvector with the largest magnitude to one for the real part and zero for the
imaginary part.

The POINT normalization option uses G for a grid and C for a component to set
the component to a value of (1.0, 0.0). This option is not currently available for the
complex eigenvalue methods.

Hessenberg and Lanczos Options

Hessenberg Spill Option. The spill option of the Hessenberg method (with QR)
is less robust than the default (with QZ), but the latter has no spill. Since the spill
option requires a much smaller amount of memory to run a problem, larger
problems can be solved on a given computer.

Single Vector Lanczos Option. The adaptive block option of the Lanczos
method is very robust and efficient even for large, direct complex eigenvalue
analysis jobs, and is the default. Thus, the single vector option must be specified,
to override the default.

B[]

M λ2 Bλ+ K+[]u 0=

B[]

λ2M K+[]u 0=

NX Nastran Numerical Methods User’s Guide

246
These options are selected via NEWHESS = SYSTEM(108).

Since the cell is binary, appropriate combinations are also valid. For example,
SYSTEM(108) = 12 is a proper setting for the block method with debug output.

Internal Block Lanczos Options. There are several internal detailed options
available for the block Lanczos method (also in SYSTEM(108)) as shown in the
following table:

SYSTEM(108)

Bit Decimal EIGC Entry Selection

0 0 HESS QZ Hessenberg without spill (default)

1 1 HESS QR Hessenberg with spill

2 2 CLAN Single vector complex Lanczos

3 4 CLAN Adaptive, block complex Lanczos (default)

4 8 CLAN Debug output for both complex Lanczos

9 256 HESS Force LR Hess (aka old Hessenberg without
spill)

10 512 HESS Force QZ Hess

Option Action

16 Turn off block size reduction in block Lanczos

32 Turn off block size augmentation in block Lanczos

64 Enforce full orthogonality in block Lanczos

128 Turn off initial vector preprocessing in block Lanczos

1024 Override defaults for small problems in block Lanczos

2048 Output XORTH matrix in place of ROOTS matrix

4096 Turn off block FBS for complex matrices in block Lanczos

8192 Turn off symmetric decomposition in block Lanczos

16384 Turn off real reduction phase (always use complex arithmetic)

32768 Force spill of Lanczos vectors (testing purposes only)

65536 Old semi-algebraic sorting criterion

131072 Force spill during eigenvector computation (testing purposes only)

247CHAPTER 7
Complex Eigenvalue Analysis
Alternative Methods

SVD Option. The singular value decomposition of the matrix is produced if
and are purged. If used in SOLs 107 or 110, and mass or damping terms are
present, a user fatal exit is taken. The SVD operation decomposes the input
stiffness matrix K into the factors U, , and V as described in “Solution Method
Characteristics” on page 236. The ND1 value is interpreted differently for the SVD
than for an eigensolution.

Linear Solution Option. The new BLOCK method and the QZHESS method
enable the solution of the problem also. This option is
automatically selected when the M matrix is purged.

262144 Turn off autoshift logic

2097152 Turn off warning message 5411 if mass matrix has negative diagonal
entries

Option Action

ND1 Output

>0 All vectors of U and V are output.

=0 U and V are returned in a purged state, that is, only the
singular value matrix is computed..

<0 is returned as a square matrix whose number of
columns is equal to the minimum number of rows or
columns of the input matrix. U and V are truncated to be
commensurate with . This is a method to reduce the
costs of solving very rectangular input matrices by
providing a partial solution for the most interesting
vectors.

K B
M

Σ

Σ

Σ

Σ

Bλ K+[]u 0=

NX Nastran Numerical Methods User’s Guide

248
ISRR Option. Using the METHOD=ISRR alternate continuation card, field 7
(ISRRFLG) can be used to define the following instructions;

The above ISRRFLG values may be summed to obtain a combination of settings.
For example ISRRFLG = 323 would indicate options “1”, “2” and a maximum
subspace of 10 vectors (1 + 2 + (10*32) = 323).

ISRRFLG Instruction

1 Reserves fields 2 (ALPHACJ) and 3 (OMEGACJ) for a
user supplied shift. Shift does not redefine search region,
but is only used during decomposition to avoid a
singularity. The use of the shift is recommended for
better performance.

2 Forces the out-of-core path in the code.

4 Overrides system cell 405.

8 Forces balanced iteration for real unsymmetrical
problems only.

16 Forces generation of starting vectors for quadratic
problems from the values found for the linear case when
damping is ignored. In all other cases, the starting
vectors are randomly generated.

M * 32 Sets the maximum size of the subspace to M vectors.

249CHAPTER 7
Complex Eigenvalue Analysis
7.7 Complex Eigenvalue Diagnostics

Hessenberg Diagnostics
The Hessenberg method has no internal diagnostics when the no spill option is
used. The spill option has the following diagnostics:

• NEW HESSENBERG ROUTINE

• TIME OF TRANSFORMATION TO HESS FORM: X (REDUCTION
TIME)

• STARTING QR ITERATION WITH NINC = X

The NINC value is the number of columns that are in memory.

• INFINITY NORM = X

This is the maximum term (in magnitude) in the Hessenberg matrix.

• FINAL EPSILON =

The E convergence criterion (from the EIGC entry) is adjusted for the
problem.

• TIME OF FINDING EIGENVALUES=X (QR ITERATION TIME)

• VECTOR GENERATION WITH NINC=X

The number of columns of the Hessenberg matrix held in core.

• TIME OF VECTOR GENERATION=X

• VECTOR REVERSE TRANSFORMATION WITH NINC=X

The number of eigenvectors held in core is NINC.

• TIME OF VECTOR TRANSFORMATION = X (MULTIPLICATION BY
HOUSEHOLDER VECTORS).

Hessenberg diagnostics contain both numerical and performance information. The
performance is low if NINC N at any phase where N is the problem size.

The adjusted convergence criterion is

Eq. 7-213

where is the infinity norm of the Hessenberg matrix and is the user-given
(or default) convergence criterion.

Complex Lanczos Internal Diagnostics
Here, the newer block method diagnostics is shown.

ε

«

ε N H ∞• E•=

H ∞ E

NX Nastran Numerical Methods User’s Guide

250
Complex Lanczos Diagnostics DIAG 12. The two levels of internal diagnostics
of complex Lanczos are requested via DIAG 12 and SYSTEM(108) = 8. The structure
of the DIAG 12 diagnostics is as follows:

The accuracy required is an echo of on the EIGC entry or the default if is not
used. Default . The number of shifts equals to the number of the continuation
entries. The damping mode flag is 0 when damping matrix is present; otherwise, it
is 1.

CURRENT SHIFT IS AT X,Y
CURRENT BLOCK SIZE IS X
NUMBER OF MODES REQUIRED AT THIS SHIFT IS XX

The most important parts of the debugging diagnostics (requested by SYSTEM(108)
= 8) are as follows:

This message may appear any number of times. It indicates the end of an internal
Lanczos process.

At the end of the Lanczos run, the following table is printed:

Eq. 7-214

Mathematical Solution. This table contains the shifted solutions where is the
reduced size at shift .

*** USER INFORMATION MESSAGE 6361 - COMPLEX LANCZOS DIAGNOSTICS

THIS DIAGNOSTICS IS REQUESTED BY DIAG 12.

INITIAL PROBLEM SPECIFICATION

DEGREES OF FREEDOM = XXX ACCURACY REQUIRED = XXX

REQUESTED MODES = XXX NUMBER OF SHIFTS = XXX

DAMPING MODE FLAG = XXX SIZE OF WORKSPACE = XXX

BLOCK SIZE = XXX STEP SIZE = XXX

E E
10 6–=

MATHEMATICAL EIGENVALUE ESTIMATED ACCURACY

EIGENVALUE # REAL IMAGINARY LEFT RIGHT

.

.

λi real() λi imag() i 1 … NRj, ,=

MATHEMATICAL EIGENVALUES

NRj
j

251CHAPTER 7
Complex Eigenvalue Analysis
Besides the diagnostics detailed above, additional information is printed for
debugging purposes, such as the dynamic matrix calculation and the eigenvectors
of the tridiagonal form. These outputs are not explained here. This part of the
diagnostics may be extensive, therefore the user should not use SYSTEM(108) = 8
on large problems.

The acceptance of these approximate roots is documented in the following table,
again requested by DIAG12:

When the error value is less than the convergence criterion set by the user on the
EIGC entry, then the i-th approximate eigenvalue is accepted as a physical
eigenvalue. These accepted eigenvalues are printed in the following table:

Eq. 7-215

where is the number of acceptable roots found at shift .

The final acceptance is documented by the state equation summary table as
follows:

Any rejected roots are printed in a similar table preceded by the following
message:

THE FOLLOWING ROOTS HAD AN UNACCEPTABLY LARGE
STATE EQUATION RESIDUAL

The accepted physical eigenvalues are also printed in the regular complex
eigenvalue summary output of the CEAD module: CLAMA. Finally, an eigenvalue
summary table is always printed as follows:

MATHEMATICAL SOLUTION DIRECT RESIDUALS

REAL IMAGINARY LEFT RIGHT

PHYSICAL SOLUTION STATE EQUATION RESIDUALS

REAL IMAGINARY LEFT RIGHT

λi real() λi imag() yi
T A λi I–() A λi I–()xi

E

λk real() λk imag() k 1 … NFj, ,=

PHYSICAL EIGENVALUES

NFj j

λi real() λi imag() ψi
T M λi

2 B λi K+ +() M λi
2 B λi

2 K+ +()Φi

NX Nastran Numerical Methods User’s Guide

252
EIGENVALUE ANALYSIS SUMMARY (COMPLEX LANCZOS METHOD)

Complex Lanczos Messages and Errors

To help the user monitor the process (especially in the case of multiple shifts), the
complex Lanczos method may issue the following messages:

UWM 5451:
NO ROOTS FOUND AT THIS SHIFT.

UIM 5453:
FEWER ROOTS THAN REQUIRED HAVE BEEN FOUND.

UWM 5452:
NO ROOTS ACCEPTED AT THIS SHIFT.

UIM 5445:
NO ROOTS FOUND AT ALL.

UIM 5444:
ALL ROOTS HAVE BEEN FOUND.

The following message may be repeated up to three times:

UIM 5443:
DYNAMIC MATRIX IS SINGULAR AT THE SHIFT OF X, Y.

The program attempts to perturb the shift point (up to three times) to obtain an
acceptable decomposition.

SWM 6938,*:
BREAKDOWN IN BLOCK LANCZOS METHOD.

This message is given on the various (*) breakdown conditions of the Lanczos
process along with a recommendation.

UFM 5446:
COMPLEX LANCZOS NEEDS X MORE WORDS.

This message could come from various places.

The user must provide more memory.

NUMBER OF MODES FOUND X

NUMBER OF SHIFTS USED X

NUMBER OF DECOMPOSITIONS X

NUMBER OF VECTORS IN CORE X

253CHAPTER 7
Complex Eigenvalue Analysis
SIM 6941:
INVARIANT SUBSPACE DETECTED IN BLOCK LANCZOS.

This message indicates the need for augmenting the current block.

SFM 6939.*:
UNABLE TO READ EIGENVECTORS FROM SCRATCH FILE.
USER ACTION: CLEAN UP DEVICE.

These I/O related messages should not occur normally. If they do occur, the user
should clean up the disk, verify the database allocations, etc. (* = 0, 1 or 2)

NX Nastran Numerical Methods User’s Guide

254
Performance Diagnostics

Block CLAN Performance Analysis

Orthogonality Analysis

Two additional orthogonality criteria (see theory in “Theory of Complex
Eigenvalue Analysis” on page 195) that can be used for solution testing purposes
are the matrices.

The matrices created by these criteria should be diagonal. The off-diagonal terms
are supposed to be computational zeroes. The absolute magnitude of the
off-diagonal terms is a good indicator of the correctness of the solution.

The user can use the following DMAP to calculate these matrices in connection with
the CEAD module:

The EIGENV matrix is a matrix containing the eigenvalues on the diagonal. This
matrix can be created as a conversion of the CLAMA table by

*** USER INFORMATION MESSAGE 5403 (CLASD*)
BREAKDOWN OF CPU USAGE DURING COMPLEX LANCZOS ITERATIONS:
OPERATION REPETITIONS TIMES (SEC): AVERAGE TOTAL
SHIFT AND FACTOR 5 .8 3.9
MATRIX-VECTOR MULTIPLY & FBS 908 .1 93.2
REORTHOGONALIZATION 574 .1 38.3
SOLVE BLOCK TRIDIAGONAL PROBLEM 74 .5 34.5
EIGENVECTORS AND RESIDUALS 5 13.8 69.2

*** SYSTEM INFORMATION MESSAGE 6940 (CLRRDD)
SPILL OCCURRED WHEN CALCULATING LANCZOS VECTORS.
X OUT OF A TOTAL OF Y LANCZOS VECTORS HAVE BEEN STORED OUT OF CORE.
USER ACTION: TO PREVENT SPILL, INCREASE OPEN CORE SIZE BY AT LEAST Z WORDS

*** SYSTEM INFORMATION MESSAGE 6940 (CLRVRD)
SPILL OCCURRED WHEN CALCULATING PHYSICAL EIGENVECTORS.
USER ACTION: TO PREVENT SPILL, INCREASE MAXIMUM BLOCK SIZE BY AT LEAST Z

SMPYAD LCPHX,K,CPHX,,,/PTKP/3////1 $

MPYAD CPHX,EIGENV,/PL $

MPYAD LCPHX,EIGENV,/PTL $

SMPYAD PTL,M,PL,,,PTKP/O2/3//-1//1 $

SMPYAD LCPHX,B,CPHX,,,/PTBP/3////1 $

SMPYAD LCPHX,M,PL,,,PTBP/SUM2/3////1 $

SMPYAD PTL,M,CPHX,,,SUM2/O1/3//+1//1 $

LAMX ,,CLAMA/EIGENV/-2 $

O1 O2,

255CHAPTER 7
Complex Eigenvalue Analysis
The user can filter out the small terms by using:

The filtered matrices will only contain those off-diagonal terms greater than
in magnitude. Terms greater than point to those eigenpairs that do not satisfy
the orthogonality criterion.

The DMAP statement

can be used to print out the matrices.

MATMOD O1,O2,,,,/ORTHO1F,ORTHO2F/2////1.-6 $

MATPRN ORTHO1F,ORTHO2F// $

10 6–

10 6–

NX Nastran Numerical Methods User’s Guide

256
7.8 Complex Lanczos Estimates and Requirements
The time estimates for single vector complex Lanczos are detailed below.

Shifting time (sec) is

Eq. 7-216

Recursion time (sec) is

Eq. 7-217

Normalization time (sec) is

Eq. 7-218

Packing time (sec) is

Eq. 7-219

where:

The minimum storage requirements are as follows:

where:

The rest of the available memory is used for temporary storage of accepted
eigenvectors to reduce the I/O cost of outer orthogonalization.

Td

4 Nsteps N C M Ts+⋅ ⋅()⋅

2 IPREC⋅()Ndes N2 M⋅ ⋅

2 IPREC⋅()Ndes N P⋅ ⋅

= number of modes desired

= number of Lanczos steps

= decomposition time (see “Decomposition Estimates and Requirements” on
page 71 for details)

= solution time (see “Decomposition Estimates and Requirements” on page 71
for details)

= average front size

Ndes

Nsteps

Td

Ts

C

Memory: 2 IPREC⋅() 6 MBLKSZ2 8 N MBLKSZ 8 MBLKSZ MSZT⋅ ⋅+⋅ ⋅+⋅()

= maximum block size

= maximum size of matrix

= problem size

MBLKSZ

MSZT Tj

N

257CHAPTER 7
Complex Eigenvalue Analysis
7.9 References
Bai, Z., et al. ABLE: An Adaptive Block Lanczos Method for Non-Hermitian

Eigenvalue Problems. Department of Mathematics, University of
Kentucky, 1996.

Cullum, J. K.; Willoughby, R. A. Lanczos Algorithms for Large Symmetric
Eigenvalue Computations. Birkhäuser, 1985.

Cullum, J.; Willoughby, R. A. Large Scale Eigenvalue Problems. North-Holland,
1986.

Golub, G. H.; Van Loan, C. F. Matrix Computations. John Hopkins University
Press, 1983.

Householder, A.S.; Bauer, F.L. On Certain Methods for Expanding the
Characteristic Polynomial. Numerische Mathematik, Volume 1, 1959, pp.
29-37.

Komzsik, L. Implicit Computational Solution of Generalized Quadratic
Eigenvalue Problems. Journal of Finite Element Analysis and Design, 2000.

Kowalski, T. Extracting a Few Eigenpairs of Symmetric Indefinite Matrix Pairs.
Ph.D. Thesis, University of Kentucky, 2000.

Smith, B. T. et al. Matrix Eigensystem Routines - EISPACK Guide. Springer Verlag,
1974.

Wilkinson, J. H. The Algebraic Eigenvalue Problem. Oxford University Press, 1965.

NX Nastran Numerical Methods User’s Guide

258

NX Nastran Numerical Methods User’s Guide

Glossary of Terms

 NX Nastran Numerical Methods User’s Guide

260
AVG Average.

BUFFER An area of memory reserved for data transfer between
secondary storage and memory.

BUFFPOOL A pool of buffers used by the executive system.

BUFFSIZE Buffersize in words (in machine precision).

C Average front size.

CEAD Complex eigenvalue analysis module.

cell An element of the SYSTEM common block of NX Nastran.

CLAN Complex Lanczos method identifier.

DECOMP Matrix decomposition functional module.

Dense A matrix or vector is dense when it has few or no zero
elements.

DIAGs Diagnostic flags of NX Nastran.

DOF(s) Degree(s)-of-freedom.

EXECUTIVE The portion of NX Nastran controlling the execution of the
program.

FACTOR Triangular matrix, computed in the DECOMP module.

FBS Forward-backward substitution functional module.

GINO General input-output system.

GIV Givens method identifier.

HESS Hessenberg method identifier.

HOU Householder method identifier.

ID Identification.

IPREC Machine precision: 1 for short-word machines.
2 for long-word machine.

Kernel Internal numerical and I/O routines used heavily by
functional modules.

Keyword A word specific to a particular function or operation in NX
Nastran.

LHS Left-hand side.

M M value, unit numerical kernel time in msec.

MAXRATIO A diagnostics parameter to show ill-conditioning.

MEM Memory area reserved for memory files.

261Glossary of Terms
MPC Multipoint constraint.

MPYAD Matrix multiply and add functional module.

N Problem size.

NZ Nonzero words in matrix.

P P value, unit data packing time using columns.

PARALLEL Keyword to specify multiple CPU execution.

Pi Pi value, unit data packing time using terms.

Ps Ps value, unit data packing time using strings.

RAM Random access memory area used by the executive system.

READ Real eigenvalue analysis module.

RHS Right-hand side.

RMS Root mean squared.

SEQP Sequencing module.

SOLVIT Iterative equation solution module.

Sparse A matrix or vector is sparse when it has many zero elements.

SPARSE Keyword to specify indexed kernel usage.

String A sequence of consecutive nonzero terms in a matrix column.

STRL Average string length.

STURM Number Number of negative terms on the factor diagonal.

Trailer An information record following (trailing) a matrix, which
contains the main characteristics.

Matrix density.ρ

 NX Nastran Numerical Methods User’s Guide

262

NX Nastran Numerical Methods User’s Group

Bibliography

 NX NASTRAN Numerical Methods User’s Guide

264
Babikov, P. & Babikova, M. An Improved Version of Iterative Solvers for
Positive Definite Symmetric Real and Non-Hermitian Symmetric
Complex Problems. ASTE, JA-A81, INTECO 1995.

Bai, Z., et al. ABLE: An Adaptive Block Lanczos Method for Non-Hermitian
Eigenvalue Problems. Department of Mathematics, University of
Kentucky, 1996.

Brown, J. Price/Performance Analysis of MSC/NASTRAN. Proc. of the Sixteenth
MSC Eur. Users’ Conf., Paper No. 17, September, 1989.

Bunch, J. R.; Parlett, B. N. Direct Methods for Solving Symmetric Indefinite
Systems of Linear Equations. Society for Industrial and Applied
Mathematics Journal of Numerical Analysis, Volume 8, 1971.

Caldwell, Steve P.; Wang, B.P. An Improved Approximate Method for
Computing Eigenvector Derivatives in MSC/NASTRAN. 1992 MSC
World Users’ Conf. Proc., Vol. I, Paper No. 22, May, 1992.

Chatelin, F. Eigenvalues of Matrices. Wiley, 1993.

Chan, T.; Wan, W. L. Analysis of Projection Methods for Solving Linear Systems
with Multiple Right Hand Sides. CAM Report #26, UCLA, 1994.

Chiang, K. N.; Komzsik, L. The Effect of a Lagrange Multiplier Approach in
MSC/NASTRAN on Large Scale Parallel Applications. Comp. Systems in
Engineering, Vol 4, #4-6, 1993.

Conca, J.M.G. Computational Assessment of Numerical Solutions. ISNA ’92,
Praque, 1992

Cullum, J. K.; Willoughby, R. A. Lanczos Algorithms for Large Symmetric
Eigenvalue Computations. Birkhäuser, 1985.

Cullum, J.; Willoughby, R. A. Large Scale Eigenvalue Problems. North-Holland,
1986.

Duff, I. S.; Reid, J. K. The Multifrontal Solution of Indefinite Sparse Symmetric
Linear Systems. Harwell Report CSS122, England, 1982.

Efrat, I.; Tismenetsky, M. Parallel iterative solvers for oil reservoir models. IBM
J. Res. Dev. 30 (2), 1986.

Francis, J. G. F. The QR Transformation, A Unitary Analogue to the LR
Transformation. The Computer Journal, Volume 4, No. 3, Oct. 1961, and
No. 4, Jan. 1962.

George, A.; Liu, J. W. Computer Solutions of Large Sparse Positive Definite
Systems. Prentice Hall, 1981.

Givens, W. Numerical Computation of the Characteristic Values of a Real
Symmetric Matrix. Oak Ridge National Lab., ORNL-1574, 1954.

265Bibliography
Goehlich, D.; Komzsik, L. Decomposition of Finite Element Matrices on Parallel
Computers. Proc. of the ASME Int. Computers in Engineering Conf., 1987.

Goehlich, D.; Fulton, R.; Komzsik, L. Application of a Parallel Equation Solver to
Static FEM Problems. Int. J. for Computers and Structures, 1989.

Gockel, M. A. Handbook for Dynamic Analysis. The MacNeal-Schwendler Corp.,
Los Angeles, 1983.

Golub, G. H.; Van Loan, C. F. Matrix Computations. John Hopkins University Press,
1983.

Grimes, R. G.; Lewis, J. G.; Simon, H. D.; Komzsik, L.; Scott, D. S. Shifted Block
Lanczos Algorithm in MSC/NASTRAN. MSC/NASTRAN Users’ Conf. Proc.
Paper No. 12, March, 1985.

Grimes, R. G., et al. A Shifted Block Lanczos Algorithm for Solving Sparse
Symmetric Generalized Eigenproblems. SIAM, J. Mat. Analysis Appl., 13,
1992.

Hageman, L., Young, D. Applied Iterative Methods. Academic Press, 1981.

Hendrickson, B., Rothberg, E. Improving the Runtime and Quality of Nested
Dissection Ordering. Silicon Graphics, Inc., Mountain View, CA, April 11,
1996.

Householder, A.S.; Bauer, F.L. On Certain Methods for Expanding the
Characteristic Polynomial. Numerische Mathematik, Volume 1, 1959, pp.
29-37.

Karypis, G., Kumar, V. METIS©, A Software Package for Partitioning Unstructured
Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of
Sparse Matrices, Version 3.0.3, University of Minnesota, Department of
Computer Sciences/Army HPC Research Center, Minneapolis, MN,
November 5, 1997. (http://www.cs.umn.edu/~karypis)

Komzsik, L. Implicit Computational Solution of Generalized Quadratic Eigenvalue
Problems. Journal of Finite Element Analysis and Design, 2000.

Komzsik, L. New Features of the Lanczos Module in Version 67 of MSC/NASTRAN.
Proc. of the 18th MSC Eur. Users’ Conf., Paper No. 13, June, 1991, Rome.

Komzsik, L. Optimization of Finite Element Software Systems on Supercomputers.
Supercomputing in Engineering Analysis, ed. Hojjat Adeli, Marcel-Dekker,
1991.

Komzsik, L. Parallel Processing in Finite Element Analysis. Finite Element News,
England, June, 1986.

Komzsik, L. Parallel Static Solution in Finite Element Analysis. The MSC 1987
World Users Conf. Proc., Vol. I, Paper No. 17, March, 1987.

 NX NASTRAN Numerical Methods User’s Guide

266
Komzsik, L; Rose, T. Substructuring in MSC/NASTRAN for Large Scale Parallel
Applications. Computing Systems in Engineering, Vol 2, #1, 1991.

Kowalski, T. Extracting a Few Eigenpairs of Symmetric Indefinite Matrix Pairs.
Ph.D. Thesis, University of Kentucky, 2000.

Lanczos, C. An Iteration Method for the Solution of the Eigenvalue Problem of
Linear Differential and Integral Operators. Journal of the Research of the
National Bureau of Standards., Volume 45, 1950, pp. 255-282.

Lewis, J. G.; Grimes, R. G. Practical Lanczos Algorithms for Solving Structural
Engineering Eigenvalue Problems. Sparse Matrices, and Their Uses,
edited by I. E. Duff, Academic Press, London, 1981.

Levy, R.; Wall, S. Savings in NASTRAN Decomposition Time by Sequencing to
Reduce Active Columns. NASTRAN: Users’ Exper., pp. 627-632,
September, 1971, (NASA TM X-2378).

MacNeal, R. H.; Komzsik, L. Speeding Up the Lanczos Process. RILEM, Kosice,
Slovakia, 1995.

MacNeal, R. H. The NASTRAN Theoretical Manual. The MacNeal-Schwendler
Corp., Los Angeles, 1972.

Manteuffel, T. A. An Incomplete Factorization Technique for Positive Definite
Linear Systems, Math. of Computation, Vol 34, #150, 1980.

McCormick, C.W. Review of NASTRAN Development Relative to Efficiency of
Execution. NASTRAN: Users’ Experience, pp. 7-28. September, 1973.
(NASA TM X-2893)

Mera, A. MSC/NASTRAN’s Numerical Efficiency for Large Problems on CYBER
Versus Cray Computer. Proc. of the MSC/NASTRAN Eur. Users’ Conf.,
June, 1983.

Newmark, N. M. A Method of Computation for Structural Dynamics.
Proceedings of the Americal Society of Civil Engineers, 1959.

Ortega, J. M.; Kaiser, H. F. The LR and QR Methods for Symmetric Tridiagonal
Matrices. The Computer Journal, Volume 6, No. 1, Jan. 1963, pp. 99-101.

Parlett, B. N. The Symmetric Eigenvalue Problem. Prentice Hall, Englewood
Cliffs, 1980.

Petesch, D.; Deuermeyer, D.; Clifford, G. Effects of Large Memory on
MSC/NASTRAN Performance. Proc. of the 18th MSC Eur. Users’ Conf.,
Paper No. 12, June, 1991.

Pissanetzsky, S. Sparse Matrix Technology. Academic Press, 1984.

Poschmann, P.; Komzsik, L. Iterative Solution Technique for Finite Element
Applications. Journal of Finite Element Analysis and Design, 19, 1993.

267Bibliography
Poschmann, P.; Komzsik, L., Sharapov, I. Preconditioning Techniques for Indefinite
Linear Systems. Journal of Finite Element Analysis and Design, 21, 1997.

Rothberg, E. Ordering Sparse Matrices Using Approximate Minimum Local Fill,
Silicon Graphics, Inc., Mountain View, CA, April 11, 1996.

Saad, Y. Numerical Methods for Large Eigenvalue Problems. Halsted Press, 1992.

Shamsian, S.; Komzsik, L. Sparse Matrix Methods in MSC/NASTRAN. The MSC
1990 World Users Conf. Proc., Vol. II, Paper No. 64, March, 1990.

Sinkiewicz, J. E. Numerical Stability of Fine Mesh Torus Models. Proc. of the
MSC/NASTRAN Users’ Conf., March, 1979.

Smith, B. T. et al. Matrix Eigensystem Routines - EISPACK Guide. Springer Verlag,
1974.

Wilkinson, J. H. The Algebraic Eigenvalue Problem. Oxford University Press, 1965.

Wilkinson, J. H. The Calculation of the Eigenvectors of Codiagonal Matrices. The
Computer Journal, Volume 1, 1958, p. 90.

 NX NASTRAN Numerical Methods User’s Guide

268

I N D E X
NX Nastran Numerical Methods User’s Guide

A
accuracy

required, 189
analysis

performance, 19
analytic

data, 16

B
backward

substitution, 76
buckling, 124
BUFFPOOL, 3
BUFFSIZE, 3

C
canonical

form, 124, 127
cells

system, 3
constants

timing, 13
criterion

convergence
Hessenberg, 249

termination
Lanczos, 190

D
damping

options, 245
density, 36
deselection

MPYAD method, 40
DIAG

flags, 7

DISTRIBUTED PARALLEL, 3

E
eigenvalues

complex, 194
real, 124

EIGRL
entry, 174

empirical
data, 16

estimates, 47, 71, 191, 256
executive

system, 18

F
filtered

matrix, 255
forward

substitution, 76

G
Givens, 169

H
Hessenberg

method, 236
HICORE, 3
Householder

method, 169

I
identifiers

method, 36

NX Nastran Numerical Methods User’s Guide270
ill-conditioning, 66
incompatible

matrices, 45
IORATE, 3
ISRR, 234, 236
iterative, 124

K
kernel

functions, 11

L
Lanczos, 124, 188, 236
left-handed, 76
loop

inner
outer, 14

outer, 15

M
matrix

condition, 66
decomposition, 50
multiplication, 22
trailers, 8

MAXRATIO
parameter, 67

memory estimates, 18
MPYAD

module, 38

N
negative

terms on factor diagonal, 67
normalization, 176, 245

O
orthogonality

test, 254

P
PARALLEL, 3
performance

analysis, 19
pivot

threshold, 65

Q
QZ algorithm, 212
QZ step, 213
QZHESS, 236, 246

R
REAL, 3
REDMULT, 177
REDORTH, 177
reduction

method, 124
RITZ

vectors, 189

S
selection

MPYAD method, 41
shifting scale, 189
singularity, 66
SMPYAD

module, 38
space

saver, 177
SPARSE, 3
sparse

decomposition, 67
spill

algorithm, 245
storage

requirements, 18
STURM

number, 67
SVD, 233, 236
system cells, 3

271INDEX
T
THRESH, 65
trailer

matrix, 8

U
USPARSE, 3

V
vector

kernels, 11

NX Nastran Numerical Methods User’s Guide272

	Preface
	About this Book

	1
	Utility Tools and Functions
	1.1 Utility Tools
	1.2 System Cells
	1.3 Diagnostic (DIAG) Flags
	1.4 Matrix Trailers
	Indexed Matrix File Structure

	1.5 Kernel Functions
	1.6 Timing Constants
	1.7 Time Estimates
	1.8 Storage Requirements
	1.9 Performance Analysis
	1.10 Parallel Processing

	2
	Matrix Multiply-Add Module
	2.1 Multiply-Add Equation
	2.2 Theory of Matrix Multiplication
	Method One (Dense x Dense)
	Method Two (Sparse x Dense)
	Method Three (Sparse x Sparse)
	Method Four (Dense x Sparse)
	Sparse Method
	Triple Multiply Method
	Parallel Multiply Method

	2.3 MPYAD Methods
	2.4 DMAP User Interface
	2.5 Method Selection/Deselection
	Automatic Selection
	Automatic Deselection
	User-Specified Deselection
	User-Specified Selection

	2.6 Option Selection
	2.7 Diagnostics
	Performance Diagnostics
	Submethod Diagnostics
	Error Diagnostics

	2.8 MPYAD Estimates and Requirements

	3
	Matrix Decomposition
	3.1 Decomposition Process
	3.2 Theory of Decomposition
	Symmetric Decomposition Method
	Mathematical Algorithm
	Symbolic Phase
	Numeric Phase
	Numerical Reliability of Symmetric Decomposition
	Unsymmetric Decomposition
	Partial Decomposition
	Distributed Decomposition
	Diagonal Scaling Option

	3.3 User Interface
	3.4 Method Selection
	3.5 Option Selection
	Minimum Front Option
	Reordering Options
	Compression Options
	Non-Sparse SDCOMP Options
	Non-Sparse UDCOMP Option
	Perturbation Options
	High Rank Options
	Diagnostic Options

	3.6 Diagnostics
	Numerical Diagnostics
	Singularity
	Singularity Test
	Ill-Conditioning
	Negative Terms on Factor Diagonal

	Performance Diagnostics
	Statistical Diagnostics
	Error Diagnostics

	3.7 Decomposition Estimates and Requirements
	3.8 References

	4
	Direct Solution of Linear Systems
	4.1 Solution Process
	4.2 Theory of Forward-Backward Substitution
	Right-Handed Method
	Left-Handed Method
	Sparse Method
	Parallel Method

	4.3 User Interface
	4.4 Method Selection
	FBS Method Selection

	4.5 Option Selection
	Right-handed FBS Options
	Left-handed FBS Option
	Parallel FBS Solution

	4.6 Diagnostics
	Numerical Diagnostics
	Performance Messages
	Error Diagnostics

	4.7 FBS Estimates and Requirements
	Sparse FBS Estimates

	4.8 References

	5
	Iterative Solution of Systems of Linear Equations
	5.1 Iterative Solutions
	Methods

	5.2 Theory of the Conjugate Gradient Method
	Convergence Control
	Block Conjugate Gradient Method (BIC)
	Real and Complex BIC

	5.3 Preconditioning Methods
	Scaling
	Numerical Reliability of Equation Solutions

	5.4 User Interface
	5.5 Iterative Method Selection
	5.6 Option Selection
	Preconditioner Options
	Convergence Criterion Options
	Diagnostic Output Options
	Element Iterative Solver Options
	In-core Frequency Response Options
	Incomplete Cholesky Density Options
	Extraction Level Options for Incomplete Cholesky
	Recommendations

	5.7 Global Iterative Solution Diagnostics
	Accuracy Diagnostics
	Performance Diagnostics

	5.8 Global Iterative Solver Estimates and Requirements
	5.9 Element Iterative Solver Memory Requirements
	5.10 References

	6
	Real Symmetric Eigenvalue Analysis
	6.1 Real Eigenvalue Problems
	6.2 Theory of Real Eigenvalue Analysis
	Reduction (Tridiagonal) Method
	Transformation to Canonical Form
	Tridiagonal Method
	Givens Tridiagonalization Method
	Householder Tridiagonalization Method
	Modified Tridiagonal Methods
	QR Method of Eigenvalue Extraction
	Computation of Eigenvectors
	Shared Memory Parallel Householder Method

	Real Symmetric Lanczos Method
	Basic Lanczos Recurrence
	Shifted Algorithm
	Block Method
	Orthogonalization
	Shift Strategy
	Summary of Procedure
	Segmented Lanczos Method
	Frequency Domain Decomposition-Based Distributed Parallel Lanczos Method
	Geometric Domain Decomposition-Based Distributed Parallel Lanczos Method
	Hierarchic Domain Decomposition-Based Distributed Parallel Lanczos
	Recursive Domain Decomposition-Based Distributed Parallel Lanczos

	6.3 Solution Method Characteristics
	6.4 DMAP User Interface
	6.5 Method Selection
	6.6 Option Selection
	Normalization Options
	Frequency and Mode Options
	Performance Options
	Miscellaneous Options
	Parallel Options

	Mass Matrix Analysis Options
	Indefinite Test
	Rank Test
	Density Control
	QL Householder Option

	6.7 Real Symmetric Eigenvalue Diagnostics
	Execution Diagnostics
	Table of Shifts
	Numerical Diagnostics
	Error Diagnostics

	Performance Diagnostics
	Lanczos Diagnostics

	6.8 Real Lanczos Estimates and Requirements
	6.9 References

	7
	Complex Eigenvalue Analysis
	7.1 Damped Models
	7.2 Theory of Complex Eigenvalue Analysis
	Canonical Transformation to Mathematical Form
	Dynamic Matrix Multiplication
	Physical Solution Diagnosis
	Hessenberg Method
	QR Iteration Using the Householder Matrices
	Eigenvector Computation
	QZ Hessenberg Method
	Hessenberg-Triangular Form
	The QZ Step
	Eigenvalue Computation

	The Complex Lanczos Method
	The Single Vector Method
	The Adaptive Block Lanczos Method
	Singular Value Decomposition (SVD)
	The Iterative Schur-Rayleigh-Ritz Method (ISRR)

	7.3 Solution Method Characteristics
	7.4 User Interface
	7.5 Method Selection
	7.6 Option Selection
	Damping Options
	Normalization Options
	Hessenberg and Lanczos Options
	Alternative Methods

	7.7 Complex Eigenvalue Diagnostics
	Hessenberg Diagnostics
	Complex Lanczos Internal Diagnostics
	Complex Lanczos Messages and Errors

	Performance Diagnostics
	Block CLAN Performance Analysis
	Orthogonality Analysis

	7.8 Complex Lanczos Estimates and Requirements
	7.9 References

	Glossary of Terms
	Bibliography
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

