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About this Book

NX Nastran is a general-purpose finite element program which solves a wide variety 
of engineering problems. This book is intended to help you choose among the 
different numerical methods and to tune these methods for optimal performance.  
This guide also provides information about the accuracy, time, and space 
requirements of these methods.

This edition covers the major numerical methods available in NX Nastran Version 
5, including parallel eigenvalue analysis for use in high-performance normal modes 
analysis, frequency response, and optimization. Further details about configuring 
and running such jobs can be found in the NX Nastran Parallel Processing Guide.

Introduction
This guide is designed to assist you with method selection and time estimation for 
the most important numerical modules in NX Nastran.  The guide is separated into 
seven chapters:

• “Utility Tools and Functions” on page 1 

• “Matrix Multiply-Add Module” on page 21

• “Matrix Decomposition” on page 49

• “Direct Solution of Linear Systems” on page 75

• “Iterative Solution of Systems of Linear Equations” on page 89

• “Real Symmetric Eigenvalue Analysis” on page 123

• “Complex Eigenvalue Analysis” on page 193

These topics are selected because they have the biggest impact on the performance 
of the software.  To obtain the most accurate solutions, you should read this guide 
carefully.  Some of the numerical solutions exhibit different characteristics with 
different problems.  This guide provides you with tools and recommendations for 
how to select the best solution.

Using This Guide
This guide assumes that you are familiar with the basic structure of NX Nastran, as 
well as with methods of linear statics and normal modes.  A first-time reader of this 
guide should read Chapter 1 to become familiar with the utility tools and functions.  
After that, you can move directly to the chapters containing the topic you’re trying 
to apply and tune (see Chapters 2 through 7).  Each chapter contains general time 
estimates and performance analysis information as well as resource estimation 
formulae for some of the methods described in the chapter.
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Since this guide also discusses the theory of numerical methods, it is intended as a 
stand-alone document except for a few references to the NX Nastran Quick Reference 
Guide.
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1.1 Utility Tools
In this chapter the following utility tools are described:

• System cells

• DIAG flags

• Matrix trailers

• Kernel functions

• Timing constants

Since these utilities are of a general nature, they are used in the same way on 
different computers and solution sequences.  They are also used to select certain 
numerical methods and request diagnostics information and timing data.  For 
these reasons, the utility tools are overviewed here before any specific numerical 
method is discussed.
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1.2 System Cells
One of the most important communication utilities in NX Nastran is the SYSTEM 
common block.  Elements of this common block are called system cells.  Some of the 
system cells have names associated with them.  In those cases, the system cell can be 
referred to by this name (commonly called a keyword).  

Performance Cells.  Some of the system cells related to general performance and 
timing issues are

Method Cells.  System cells directly related to some numerical methods are

Execution Cells.  System cells related to execution types are

The binary system cells are organized so that the options are selected by the decimal 
values of the powers of 2.  This organization makes the selection of multiple options 
possible by adding up the specific option values.  The decimal cells use integer 
numbers.  The mixed cells use both decimal and binary values.

The following several system cells are related to machine and solution accuracy:

where MCHEPSS and MCHEPD are the machine epsilons for single- and double-
precision, respectively, MCHINF is the exponent of the machine infinity, and 
MCHUFL is the exponent of machine underflow.

BUFFSIZE = SYSTEM(1)

HICORE = SYSTEM(57)

REAL = SYSTEM(81)

IORATE = SYSTEM(84)

BUFFPOOL = SYSTEM(119)

SOLVE = SYSTEM(69) – mixed
MPYAD = SYSTEM(66) – binary
FBSOPT = SYSTEM(70) – decimal

SHARED PARALLEL = SYSTEM(107) – mixed
SPARSE = SYSTEM(126) – mixed
DISTRIBUTED PARALLEL = SYSTEM(231) – decimal
USPARSE = SYSTEM(209) – decimal

MCHEPSS = SYSTEM(102)
MCHEPSD = SYSTEM(103)
MCHINF = SYSTEM(100) on LP-64, SYSTEM(98) on ILP-64
MCHUFL = SYSTEM(99) on LP-64, SYSTEM(97) on ILP-64
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Note that these system cells are crucial to proper numerical behavior; their values 
should never be changed by the user without a specific recommendation from 
UGS support.

Setting System Cells

The following are several ways a user can set a system cell to a certain value:

The first pair of techniques is used on the NASTRAN entry, and the effect of these 
techniques is global to the run.  The second pair of techniques is used for local 
settings and can be used anywhere in the DMAP program; PUTSYS is the 
recommended way.

To read the value of a system cell, use:

VARIABLE = GETSYS (TYPE, CELL)
or

VARIABLE = GETSYS (VARIABLE, CELL)

SPARSE and USPARSE Keywords.  The setting of the SPARSE keyword 
(SYSTEM(126)) is detailed below:

Combinations of values are valid.  For example, SPARSE = 24 invokes a sparse 
run, except for SPMPYAD.

Value Meaning

1 Enable SPMPYAD T and NT

2 Deselect SPMPYAD NT

3 Force SPMPYAD NT

4 Deselect SPMPYAD T

5 Force SPMPYAD T

6 Deselect SMPMYAD T and NT

7 Force SPMPYAD T and NT

8 Force SPDCMP

16 Force SPFBS

NASTRAN SYSTEM (CELL) = value
NASTRAN KEYWORD = value

PUTSYS (value, CELL)
PARAM //’STSR’/value/ − CELL

NASTRAN Entry

DMAP Program
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In the table below, the following naming conventions are used:

The default value for SPARSE is 25.

Another keyword (USPARSE = SYSTEM(209)) is used to control the unsymmetric 
sparse decomposition and FBS.  By setting USPARSE = 0 (the default is 1, meaning 
on), the user can deselect sparse operation in the unsymmetric decomposition and 
forward-backward substitution (FBS).

Shared Memory Parallel Keyword.  The SMP (or PARALLEL) keyword controls 
the shared memory (low level) parallel options of various numerical modules.

The setting of the SMP keyword (SYSTEM(107)) is as follows:

Combinations are valid.  For example, PARALLEL = 525314 means a parallel run 
with two CPUs, except with FBS methods.

Module Naming Conventions.  In the table above, the following naming 
conventions are used:

SPMPYAD SPARSE matrix multiply

SPDCMP SPARSE decomposition (symmetric)

Value Meaning

1 − 1023 No. of Processors

1024 Deselect FBS

2048 Deselect PDCOMP

4096 Deselect MPYAD

8192 Deselect MHOUS

16384 Unused

32768 Deselect READ

262144 Deselect SPDCMP

524288 Deselect SPFBS

FBS Forward-backward substitution

PDCOMP Parallel symmetric decomposition

MHOUS Parallel modified Householder method

READ Real eigenvalue module

SPFBS Sparse FBS
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Distributed Parallel Keyword.  For distributed memory (high level) parallel 
processing, the DISTRIBUTED PARALLEL or DMP (SYSTEM (231)) keyword is 
used. In general, this keyword describes the number of subdivisions or 
subdomains (in geometry or frequency) used in the solution. Since the value of 
DMP in the distributed memory parallel execution of NX Nastran defines the 
number of parallel Nastran jobs spawned on the computer or over the network, its 
value may not be modified locally in some numerical modules. 

MPYAD Multiply-Add

SPDCMP Sparse decomposition
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1.3 Diagnostic (DIAG) Flags
To request internal diagnostics information from NX Nastran, you can use DIAG 
flags.  The DIAG statement is an Executive Control statement.  

DIAG Flags for Numerical Methods.  The DIAG flags used in the numerical and 
performance areas are:

For other DIAG flags and solution sequence numbers, see the "Executive Control 
Statements" in the NX Nastran Quick Reference Guide.

Always use DIAG 8, as it helps to trace the evolution of the matrices throughout the 
NX Nastran run, culminating in the final matrices given to the numerical solution 
modules.

The module-related DIAGs 12, 16, 19 are useful depending on the particular 
solution sequence; for example, DIAG 12 for SOL 107 and 111, DIAG 16 for SOL 103, 
and DIAG 19 for SOL 200 jobs.

DIAG 58 is to be used only at the time of installation and it helps the performance 
timing of large jobs.

DIAG 8 Print matrix trailers

12 Diagnostics from complex eigenvalue 
analysis

13 Open core length

16 Diagnostics from real eigenvalue 
analysis

19 FBS and Multiply-Add time estimates

58 Print timing data
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1.4 Matrix Trailers
The matrix trailer is an information record following (i.e., trailing) a matrix 
containing the main characteristics of the matrix.

Matrix Trailer Content.  The matrix trailer of every matrix created during an NX 
Nastran run is printed by requesting DIAG 8.  The format of the basic trailer is as 
follows:

• Name of matrix

• Number of columns:  (COLS)

• Number of rows:  (ROWS)

• Matrix form (F)

= 1 square matrix

= 2 rectangular

= 3 diagonal

= 4 lower triangular

= 5 upper triangular

= 6 symmetric

= 8 identity matrix

= 10 Cholesky factor

= 11 partial lower triangular factor

= 13 sparse symmetric factor

= 14 sparse Cholesky factor

= 15 sparse unsymmetric factor

• Matrix type (T)

= 1 for real, single precision

= 2 for real, double precision

= 3 for for complex, single precision

= 4 for complex, double precision

• Number of nonzero words in the densest column:  (NZWDS)

• Density (DENS)

Calculated as:

number of terms
COLS ROWS•

-------------------------------------------- 10,000•
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Trailer Extension.  In addition, an extension of the trailer is available that contains 
the following information:

• Number of blocks needed to store the matrix (BLOCKS)

• Average string length (STRL)

• Number of strings in the matrix (NBRSTR)

• Three unused entries (BNDL, NBRBND, ROW1)

• Average bandwidth (BNDAVG)

• Maximum bandwidth (BNDMAX)

• Number of null columns (NULCOL)

This information is useful in making resource estimates. The terms in parentheses 
match the notation used in the DIAG8 printout of the .f04 file.

The matrices of NX Nastran were previously stored as follows:

The matrix header record was followed by column records and concluded with a 
trailer record.  The columns contained a series of string headers, numerical terms of 
the string and optionally a string trailer.  The strings are consecutive nonzero terms.  
While this format was not storing zero terms, a must in finite element analysis, it 
had the disadvantage of storing topological integer information together with 
numerical real data.

Currently, the following indexed matrix storage scheme is used on most matrices:  

Indexed Matrix Structure.  An Indexed Matrix is made of three files, the Column, 
String and Numeric files.

Each file consists of only two GINO Logical Records:

• HEADER RECORD.  For the Column file, it contains the Hollerith name of 
the data block (NAME) plus application defined words.  For the String file, 
it contains the combined data block NAME and the Hollerith word 
STRING.  For the Numeric file, it contains the combined data block NAME 
and the Hollerith word NUMERIC.

• DATA RECORD.  It contains the Column data (see Indexed Matrix 
Column data Descriptions) for the Column file, the String data for the 
String file and the numerical terms following each other for the Numeric 
file.
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Indexed Matrix File Structure

Column File String File Numeric File

Header

Record 0 as written by 
application (Data block NAME 
+ application defined words)

Data block NAME + 
“STRING”

Data block
NAME +
“NUMERIC”

Data Record

*6\3 words per Column Entry

Word 1\first 1/2 of 1:

Column Number, negative if the 
column is null

Word 2\second 1/2 of 1:

Number of Strings in Column

Word 3 and 4\2:

String Relative
Pointer to the first String of 
Column

Word 5 and 6\3:

Relative Pointer to the first Term 
of Column

Note:  If null column, then 
word(s) 3 to 4\2 points to the 
last non null column

String Pointer, word(s) 5 to 6\3 
points to the last non-null 
column Numeric Pointer

*2\1 word(s) per String 
Entry

Word 1\first 1/2 of 1:

Row number of first term in 
String

Word 2\second 1/2 of 1:

Number of terms in String

All matrix 
numerical 
terms following 
each
other in one Logical
GINO Record

*n1\n2 words, where

• n1 is the number of words on short word machines

• n2 is the number of words on long words machines
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1.5 Kernel Functions
The kernel functions are internal numerical and I/O routines commonly used by the 
functional modules.

Numerical Kernel Functions.  To ensure good performance on a variety of 
computers, the numerical kernels used in NX Nastran are coded into regular and 
sparse kernels as well as single-level and double-level kernels.  The regular (or 
vector) kernels execute basic linear algebraic operations in a dense vector mode.  
The sparse kernels deal with vectors described via indices.  Double-level kernels are 
block (or multicolumn) versions of the regular or sparse kernels.

The AXPY kernel executes the following loop:

where:

The sparse version (called AXPl) of this loop is

 

where 

In these kernels,  and  are vectors.  INDEX is an array of indices describing the 

sparsity pattern of the  vector.  A specific NX Nastran kernel used on many 
occasions is the block AXPY (called XPY2 in NX Nastran).

where:

Here ,  are blocks of vectors (rectangular matrices),  is an array of scalar 
multipliers, and  is the number of vectors in the block.

Similar kernels are created by executing a DOT product loop as follows:

=

= a scalar

= the vector length

=

=

Y i( ) s= X i( )• Y i( )+

i 1 2 … n, , ,

s

n

Y INDEX i( )( ) s= X i( )• Y INDEX i( )( )+

i 1 2 … n, , ,=

X Y
Y

Y i j,( ) S j( )= X i j,( )• Y i j,( )+

i 1 2 … n, , ,

j 1 2 … b, , ,

X Y S
b

DOT:   Sum X i( )

i 1=

n

∑= Y i( )•
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where:

Indexed versions of the XPY2 and DOT2 kernels also exist.

To increase computational granularity and performance on hierarchic (cache) 
memory architectures, the heavily used triangular matrix update kernels are 
organized in a triple loop fashion.

The DFMQ kernel executes the following mathematics:

where  is a triangular or trapezoidal matrix (a portion of the factor matrix) and 
 are vectors.

The DFMR kernel executes a high rank update of the form

where now  and  are rectangular matrices.  All real, complex, symmetric, and 
unsymmetric variations of these kernels exist, but their description requires 
details beyond the scope of this document.

Triple Loop Kernels.  Additional triple loop kernels are the triple DOT (DOT3) 
and SAXPY (XPY3) routines.  They are essentially executing matrix-matrix 
operations.  They are also very efficient on cache-machines as well as very 
amenable to parallel execution.

I/O Kernel Functions.  Another category of kernels contains the I/O kernels.  The 
routines in this category are invoked when a data move is requested from the 
memory to the I/O buffers.

Support Kernels.  Additional support kernels frequently used in numerical 
modules are ZEROC, which zeroes out a vector; MOVEW, which moves one 
vector into another; and SORTC, which sorts the elements of a vector into the user-
requested (ascending or descending) order.

= the block size

=

DOT1:  Sum X i( )

i 1=

n

∑ Y i( )•=

DOT2:  Sum j( ) X i j,( )

i 1=

n

∑= Y i j,( )•

b

j 1 2 … b, , ,

A A= uvT+

A
u v,

A A= UVT+

U V
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1.6 Timing Constants

Single Loop Kernel Performance.  Timing constants are unit (per term) execution 
times of numerical and I/O kernels.  A typical numerical kernel vector performance 
curve shows unit time T as a function of the loop length.  A loop is a structure that 
executes a series of similar operations.  The number of repetitions is called the loop 
length.
 

Figure 1-1  Single-Level Kernel Performance Curve

The kernel performance curve can be described mathematically as

Eq. 1-1

where the constant  is characteristic of the asymptotic performance of the curve 
since

Eq. 1-2

The constant  represents the startup overhead of the loop as

Eq. 1-3

These constants for all the NX Nastran numerical kernels can be printed by using 
DIAG 58.

Loop (vector)
Length s

Unit
Time: T

1 2 . . . 1024

T A= B
s
---+

A

T s ∞→( ) A→

B

T s 1=( ) A= B+
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Sometimes it is impossible to have a good fit for the datapoints given by only one 
curve.  In these cases, two or more segments are provided up to a certain break 
point in the following format:

where X is the number of segments and Y is the name of the particular kernel.

Double Loop Kernel Performance.  In the case of the double loop kernels, the 
unit time is a function of both the inner loop length and the number of columns, 
which is the outer loop length.  The unit time is described by a surface as shown 
in Figure 1-2.

Figure 1-2  Double-Level Kernel Performance Surface

The surface on Figure 1-2 is built from curves obtained by fixing a certain outer 
loop length and varying the inner loop length.  Intermediate values are found by 
interpolation.  Another set of curves is obtained by fixing the inner loop length and 
varying the outer loop length.

X Segments for Kernel Y

Segment 1 Segment 2

Break Point Break Point

A1 A2

B1 B2

Unit Time: T

Outer Loop Length

Inner Loop Curves

Outer Loop Curves

1

2

1024

Inner Loop Length

. .
.
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I/O Kernels.  There are also many I/O kernels in NX Nastran.

The unit time for these kernels for string or term operations is

Eq. 1-4

For column operations (PACK, UNPACK),

Eq. 1-5

and the two values are given for real and complex  and  values.

Triple Loop Kernels.  The triple loop kernels are now included in the time estimate 
(GENTIM) process of NX Nastran.

While difficult to show diagramatically, the timing model for the triple loop kernels 
can be thought of as families of double loop surfaces as shown in Figure 1-2. A 
family is generated for specified lengths of the outermost loop. Values intermediate 
to these specified lengths are determined by interpolation.

Many of the numerical kernels are standard BLAS/LAPACK library routines, such 
as the AXPY kernels (described earlier) and the generalized matrix-multiply GEMM 
kernels. On certain platforms, vendor specific non-BLAS library routines are used 
as well. The speed and accuracy of these kernels has a large effect on numerical 
performance and stability. Therefore, NX Nastran may be linked against external 
libraries for best performance. Which external libraries are required will vary across 
hardware platforms, operating systems, and NX Nastran versions. The correct 
versions of all external libraries must be installed as part of the NX Nastran 
installation procedure.

Ts number of strings= A• number of nonzeroes+ B•

Tc Ts= rows+ columns• A•

A B
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1.7 Time Estimates
Calculating time estimates for a numerical operation in NX Nastran is based on 
analytical and empirical data.  The analytical data is an operation count that is 
typically the number of multiply (add) operations required to execute the 
operation.  In some cases the number of data movements is counted also.

The empirical data is the unit time for a specific kernel function, which is taken 
from the timing tables obtained by DIAG 58 and explained in “Timing Constants” 
on page 13. These tables are generated on the particular computer on which the 
program is installed and stored in the database.

The operation count and the execution kernel length are calculated using 
information contained in the matrix trailers.  Sometimes trailer information from 
the output matrix generated by the particular operation is required in advance.  
This information is impossible to obtain without executing the operation.  The 
parameters are then estimated in such cases, resulting in less reliable time 
estimates.

Available Time.  Time estimates in most numerical modules are also compared 
with the available time (TIME entry).  Operations are not started or continued if 
insufficient time is available.

I/O time estimates are based on the amount of data moved (an analytical data 
item) divided by the IORATE and multiplied by the I/O kernel time.  Since the 
user can overwrite the default value of the IORATE parameter, it is possible to 
increase or decrease the I/O time calculated, which also results in varying the 
method selection.

In most numerical modules, NX Nastran offers more than one solution method. 
You can select the method used. The method automatically selected by NX 
Nastran is based on time estimates.  The estimated (CPU) execution time is 
calculated by multiplying the number of numerical operations by the unit 
execution time of the numerical kernel executing the particular operation.  In 
addition, an estimation is given for the (I/O) time required to move information 
between the memory and secondary storage.  After the estimates for the CPU 
execution time and the I/O time are added together, NX Nastran selects the 
method that uses the least time.

Matrix Methods.  Several methods are offered because each of them is best suited 
to certain types of matrices.  The difference in cost among the methods for specific 
cases can be an order of magnitude or more.  As each matrix is generated, the 
parameters describing its size and the distribution of nonzero terms are stored in 
a matrix trailer.  (The parameters that define the properties of the matrices were 
described in “Matrix Trailers” on page 8.)  For each matrix, these parameters 
include the number of rows and columns, the form (for example, square or 
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symmetric), the type (for example, real or complex), the largest number of nonzero 
words in any column, and the density.  Some of the newer methods also record the 
number of strings in the matrix.  Other descriptive parameters may be added in the 
future.

The only empirical data used in deriving the timing equations is the measurement 
of the time per operation for the kernels.  These measurements are computed at the 
time of installation on each computer and are stored in the delivery database for 
later use.  After the system is installed, the measurements may be updated if faster 
hardware options are installed on the computer.  The remaining terms in the 
equations are derived from careful operation counts, which account for both 
arithmetic and data storage operations.

Timing Equations.  Timing equations are derived for all major numerical modules.  
Conservative upper bounds are the best estimates that can be calculated.  At 
present, these estimates are not used for method selection.  Instead, the user is 
required to input the total amount of available CPU time to solve the total run.  The 
amount of time remaining at the start of the numerical solution modules is 
compared with the estimate.  The run is terminated before the numerical module 
starts execution if the amount of time remaining is less than the estimate.  The goal 
is to minimize wasted computer resources by terminating expensive operations 
before they start, rather than terminating them midway before any output is 
available.

The many types of machine architecture which NX Nastran supports and the great 
differences in operation between scalar, vector, and parallel computing operations 
result in a challenge to the numerical method developers to provide correct 
estimation and method selection.  There are a number of diagnostic tools which can 
be used to print out the estimates and the other parameters affecting computation 
cost.  These tools are generally activated by the DIAG flags described earlier.
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1.8 Storage Requirements
Main storage in NX Nastran is composed of the space used for the code, the space 
used for the Executive System, and the actual working space used for numerical 
operations.  

Working Space.  The actual working space available for a numerical operation 
can be obtained using DIAG 13.

Disk storage is needed during the execution of an NX Nastran job to store 
temporary (scratch) files as well as the permanent files containing the solution.

Memory Sections.  The Executive System provides the tools needed to optimize 
the execution using a trade-off between memory and disk usage.  The main 
memory is organized as follows:

RAM, MEM, BUFFPOOL.  The RAM area holds database files, while the MEM 
area holds scratch files.  The BUFFPOOL area can act as a buffer memory.  The 
user-selectable sizes of these areas have an effect on the size of the working storage 
and provide a tool for tuning the performance of an NX Nastran job by finding the 
best ratios.

A general (module-independent) user fatal message associated with storage 
requirements is:

UFM 3008:
INSUFFICIENT CORE FOR MODULE XXXX

This message is self explanatory and is typically supported by messages from the 
module prior to message 3008.

Working Storage

Executive

RAM

MEM

BUFFPOOL

Printed on DIAG 13

User-Controllable
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1.9 Performance Analysis

.f04 Event Statistics.  The analysis of the performance of an NX Nastran run is 
performed using the .f04 file. 

Disk Usage.  The final segment of the .f04 file is the database usage statistics.  The 
part of this output most relevant to numerical modules is the scratch space usage 
(the numerical modules are large consumers of scratch space).  SCR300 is the 
internal scratch space used during a numerical operation and is released after its 
completion.  The specific SCR300 table shows the largest consumer of internal 
scratch space, which is usually one of the numerical modules.  The output 
HIWATER BLOCK shows the maximum secondary storage requirement during the 
execution of that module. 

Memory Usage.  Another table in this final segment shows the largest memory 
usage in the run.  The output HIWATER MEMORY shows the maximum memory 
requirement combining working storage and executive system areas, described in 
“Storage Requirements” on page 18.
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1.10 Parallel Processing
Parallel processing in NX Nastran numerical modules is a very specific tool.  It is 
very important in enhancing performance, although its possibilities in NX Nastran 
and in specific numerical modules are theoretically limited.

The parallelization possibilities in NX Nastran consist of three different categories:

• High level

Frequency domain

• Medium level

Geometry domain

• Low level

Block kernels (high rank updates)

The currently available methods of parallel processing in NX Nastran numerical 
modules are:

• Shared memory parallel

Medium, low level

MPYAD, DCMP, FBS modules

• Distributed memory parallel

High, medium level

SOLVIT, DCMP, FBS, READ modules

Details of the various parallel methods are shown in the appropriate Modules’ 
sections throughout.
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2.1 Multiply-Add Equation
The matrix multiply-add operation is conceptually simple.  However, the wide 
variety of matrix characteristics and type combinations require a multitude of 
methods.

The matrix multiply-add modules (MPYAD and SMPYAD) evaluate the 
following matrix equations:

(MPYAD)

Eq. 2-1

or

(SMPYAD)

Eq. 2-2

The matrices must be compatible with respect to the rules of matrix 
multiplication. The  stands for (optional) transpose.  The signs of the matrices 
are also user parameters.  In Eq. 2-2, any number (between 2 and 5) of input 
matrices can be present.

The detailed theory of matrix multiply-add operation is described in “Theory of 
Matrix Multiplication” on page 23.  Subsequent sections provide 
comprehensive discussions regarding the selection and use of the various 
methods.

D[ ] A[ ] T( ) B[ ]   C[ ]±±=

G[ ] A[ ] T( ) B[ ] T( ) C[ ]T D[ ]TE   F±=

T( )
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2.2 Theory of Matrix Multiplication
The matrix multiplication module in NX Nastran evaluates the following matrix 
equations:

Eq. 2-3

or

where , , , and  are compatible matrices.  The calculation of Eq. 2-3 is 
carried out by the following summation:

Eq. 2-4

where the elements , , , and  are the elements of the corresponding matrices, 
and  is the column order of matrix  and the row order of matrix .  The sign of 
the matrices and the transpose flag are assigned by user-defined parameters.

NX Nastran has four major ways to execute Eq. 2-3 and performs the selection 
among the different methods automatically.  The selection is based on the density 
pattern of matrices  and  and the estimated time required for the different 
kernels.

These methods are able to handle any kind of input matrices (real, complex, single, 
or double precision) and provide the appropriate result type.  Mixed cases are also 
allowed and are handled properly.

The effective execution of multiplication is accomplished by invoking the NX 
Nastran kernel functions.

The four methods are summarized in the following table and explained in more 
detail below.

Method Combination

1 Dense × Dense

2 Sparse × Dense

3 Sparse × Sparse

4 Dense × Sparse

D A[ ] B[ ]   C[ ]±±=

D A[ ]T B[ ]   C[ ]±±=

A B C D

dij aikbkj   cij±

k 1=

n

∑±=

a b c d
n A B

A B
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Method One (Dense x Dense)
Method one consists of several submethods. The submethod designated as 
method one storage 1 is also known as basic method one.

In basic method one, enough storage is allocated to hold as many non-null 
columns of matrices  and  as memory allows.  The columns of matrix  
corresponding to the non-null columns of  are initially read into the location of 
matrix  (the result).  Matrix  is processed on a string-by-string basis.  The 
complete multiplication operation may require more than one pass when all the 
non-null columns of matrices  and  cannot fit into memory.  The number of 
passes can be calculated as follows:

Eq. 2-5

where:

The basic procedure of method one (storage 1) can be viewed as follows:

Figure 2-1  Method One

= order of problem

= number of passes

= number of non-null columns of  in memory

Note: The underlined quantities in Figure 2-1 represent vectors.

B D C
B

D A

B D

Np
N

NB
-------=

N

Np

NB B

bNB

bj

ail

BA

NB

ali

j

b1

D C=
j

i

NB

ail bj•

or
ali bj•

In Memory In Memory
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For each nonzero element of , all corresponding terms of  currently in memory 
are multiplied and accumulated in .    columns of matrix  are calculated at 
the end of one complete pass of matrix  through the processor. Next, the 
completed columns of  are packed out, along with any non-null columns of  
that correspond to null columns of  skipped in this pass (as they are columns of 

). This part is saved,  non-null columns of  and the corresponding columns 
of  are loaded, and the process continues.  The effective execution of the 
multiplication depends on whether or not the transpose flag is set.

Nontranspose:

Eq. 2-6

Transpose:

Eq. 2-7

The other submethods provide for different handling of matrix  and for carrying 
out the multiplication operations.  The main features of the submethods vary 
depending on the different ways of handling the strings (series of consecutive 
nonzero terms in a matrix column).  A comparison of the main method and the 
submethods is shown as follows:

Table 2-1  Nontranspose Cases

Storage A: Unpacked columns of  and 
Processing  string by string

 is in the inner loop

Storage B: Unpacked columns of  and 
Processing  string by string

 is in the outer loop

Storage C: Unpacked partial rows of 
Processing  string by string

 is in the inner loop

Storage D: Partial rows of  in string format
Processing  string by string

 is in the outer loop

Storage E: Unpacked columns of  and 
Unpacked columns of  (band only)

 is in the outer loop

Storage F: Partial rows of  in string format
Unpacked columns of 

 is in the outer loop

A B
D NB D

A
D C

B
D NB B

C

dij ail  blj← dij+

dij ali←  blj d+ i j

A

B D
A

A

B D
A

A

B
A

A

B
A

A

B D
A

A

B
A

A
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Storage 2: Unpacked non-null columns of  and 
Unpacked columns of 
Loops are the same as in storage 1, except 
that the outermost loop is pulled inside 
the kernel (triple loop kernel)

Storage 3: Unpacked non-null columns of  and 
Unpacked columns of 
Loops are the same as in storage 1, except 
that the outermost loop is pulled inside 
the kernel (BLAS level 3)

B D
A

B D
A
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Table 2-2  Transpose Cases

The effective execution of the multiplication operation in method one subcases 
(and other methods with the exception of method three) is accomplished by 
involving the NX Nastran kernel functions.  In method one submethods, except 
for storage 2, the double loop kernels of DOT2 and XPY2 are used. In storage 2, the 
triple loop kernels of DOT3 are used.

Depending on whether the length of the current string of  is  or , the  string 
is in the inner loop or in the outer loop.  This explains the comments: "  is in the 
inner loop" or "  is in the outer loop" in Table 2-1.  The selection between the 
previous two possible usages of the kernel functions depends on the density of 
matrices  and .  If  is sparse, it is in the inner loop; otherwise,  is in the outer 
loop.

Storage A: Unpacked columns of  and 
Processing  string by string

 is in the inner loop

Storage B: Unpacked columns of 
Partial rows of 
Processing  string by string

 is in the outer loop

Storage C: Unpacked columns of  and 
Unpacked rows of  (band only)

 is in the outer loop

Storage D: Unpacked columns of 
Partial rows of 
Unpacked rows of 

 is in the outer loop

Storage 2: Unpacked non-null columns of  and 
Unpacked columns of 
Loops are the same as in storage 1, 
except that the outermost loop pulled 
inside the kernel (triple loop kernel)

Storage 3: Unpacked non-null columns of  and 
Unpacked columns of 
Loops are the same as in storage 1, 
except that the outermost loop pulled 
inside the kernel (BLAS level 3)

B D
A

A

B
D

A
A

B D
A

A

B
D

A
A

B D
A

B D
A

A N M A
A

A

A B A A
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Method Two (Sparse x Dense)
In the nontranspose case of this method, a single term of  and one full column 
of the partially formed  are in the main memory.  The remaining main memory 
is filled with as many columns of  as possible.  These columns of matrix  are 
in string format.  This method is effective when  is large and sparse; otherwise, 
too many passes of  are required.  The number of passes in  is calculated from 
Eq. 2-5.

The method can be graphically represented as follows:

Figure 2-2  Method Two

When  is in memory, the k-th column of  is processed against it and the 
result is accumulated into the k-th column of .  In the transpose case, one 
column of  is held in memory while  holds only a single term at a time.  This 
method provides an alternative means of transposing matrix  by using the 
identity matrix  and the zero matrix  when the transpose module of NX 
Nastran is inefficient.

Method Three (Sparse x Sparse)
In method three, the transpose and nontranspose cases are essentially the same 
except for the initial transpose of matrix  in the transpose case.  In both cases, 
matrix  is stored in the same way as in method two, i.e., in string format.  
Matrix  is processed on an element-by-element basis, and the products of each 

 term are calculated using the corresponding terms of  in memory.  
However, in method three, the results and storage are different from method 
two.  In method three, “storage bins” are established for the columns of matrix 

.  The number of these bins is based on the anticipated density of matrix  and 
is calculated as follows:

B
D

A A
A

B B

BA

NB

D C=

bkj  aj
bkj

NA

j

bkj  In Memory k-th Column In MemoryIn Memory

bkj A
D

B D
A

B C

A
A
B

bkj A

D D
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Eq. 2-8

where:

The size of the bins is calculated as follows:

Eq. 2-9

This manner of storing the results takes advantage of the sparsity of matrix .  
However, it requires sorting in the bins before packing out the columns of .

Method Four (Dense x Sparse)
This method has two distinct branches depending on the transpose flag.

Nontranspose Case

First, matrix  is transposed and written into the results file.  This operation is 
performed with the assumption that  is sparse.  As many columns of  as 
possible are unpacked into memory and the columns of  (rows of ) are 
interpreted on a term-by-term basis.

Figure 2-3  Nontranspose Method Four

For each nonzero term of , the scalar product with the columns of  is formed 
and written into the scratch file.  When all columns of  and rows of  are 
processed, the scratch file contains one column for each nonzero term in .  
Therefore, a final pass must be made to generate matrix .

= order of the problem

= density of  (estimated)

Number of bins Nρ=

N

ρ D

S ize of bins N
Number of bins
------------------------------------- 1

ρ
---= =

B
D

B
B A

BT B

BTA

NA

bkj

NA

j

bkj  In MemoryIn Memory

ak

bkj  aj

In Memory In Scratch

BT A
A B

B
D
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Transpose Case

In this case, a set of rows of  (columns of ) are stored in unpacked form.  
These rows build a segment.  Matrix  is processed on a string-by-string basis, 
providing the dot products of the strings and the columns of the segments.

Figure 2-4  Transpose Method Four

The results are sequentially written into the scratch file continuously.  The 
structure of this file is as follows:

The number of segments is (see Figure 2-4):

Eq. 2-10

Finally, the product matrix must be assembled from the scratch file, and matrix 
, if present, must be added.

Sparse Method
The sparse multiply method is similar to regular method three.  When the 
transpose case is requested, matrix  is transposed prior to the numerical 
operations.  This step is typically not very expensive since  is sparse when this 
method is selected.

The significance of this method is that matrix  is stored in a new sparse form.  
Specifically, all nonzero terms of a column are stored in a contiguous real 
memory region, and the row indices are in a separate integer array.  The sparse 
kernel AXPI is used for the numerical work.  The scheme of this method is shown 
on the following figure.

AT A
B

AT B
a1

ar

b1 bn

a1 b1• a1 bn•

ar b1• ar bn•

CoI 1 CoI 2 ... CoI n CoI 1 ... CoI n EOF
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r
---=
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Figure 2-5  Sparse Method

From the figure, it is clear that matrix  is processed on an element-by-element 
basis.  When all the nonzero terms of  do not fit into memory at once, multiple 
passes are executed on matrix , and only partial results are obtained in each pass. 
These results are summed up in a final pass.

The sparse method is advantageous when both matrices are sparse.

Triple Multiply Method
In NX Nastran a triple multiplication operation involving only two matrices 
occurs in several places.  The most common is the modal mass matrix calculation 
of .  Note that in this multiplication operation the matrix in the middle is 
symmetric.  Therefore, the result is also symmetric.  No symmetry or squareness 
is required for the matrices on the sides.  Historically, this operation was 
performed by two consecutive matrix multiplications which did not take 
advantage of the symmetry or the fact that the first and third matrices are the 
same.

The operation in matrix form is

Eq. 2-11

A AT,

In Memory

j

DB

 C+iki

j

Bkj         aij         dij        dijpartial
=+•

B
A

B

φTMφ

C A[ ]T B[ ] A[ ] D±=
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where:

Any element  of matrix  can be calculated as follows:

Eq. 2-12

where:

It can be proven by symmetry that

Eq. 2-13

Based on the equality in Eq. 2-13, a significant amount of work can be saved by 
calculating only one-half of matrix .

When designing the storage requirements, advantage is taken of the fact that 
matrix  is only needed once to calculate the internal sums.  Based on this 
observation, it is not necessary to have this matrix in the main memory.  Matrix 

 can be transferred through the main memory using only one string at a time.

The main memory is equally distributed among , , and three vector 
buffers.  One of the vector buffers must be a full column in length.  Therefore, the 
structure of the main memory is as follows:

= order of  

=  symmetric matrix

=  symmetric matrix

=  symmetric matrix

= the row index, 

= the column index, 
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Figure 2-6  Memory Distribution for Triple Multiply

Three I/O buffers must be reserved for the three simultaneously open files of , 
, and the scratch file containing partial results.  Therefore, the final main memory 

size is

Eq. 2-14

From Eq. 2-14, the number of  columns fitting into memory can be calculated as 
follows:

Eq. 2-15

The number of passes is calculated as follows:

Eq. 2-16

which is equal to the number of times the triple multiply operation reads through 
the matrix .

The number of times the triple multiply operation reads through the matrix  can 
be approximated as follows:
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Eq. 2-17

The triple multiply method is implemented with a block spill logic where the 
result of the matrix  is generated in  blocks. 

The above triple multiply is called the triple multiply with sparse middle matrix. 
The triple multiply with dense middle matrix is introduced below.

When both matrices  and  are dense, it is more efficient to apply dense 
multiply with BLAS, which is applied in the triple multiply with dense middle 
matrix. For the triple multiply with dense middle matrix, the main memory is 
equally distributed among , , , two vector buffers and three (or four if 
matrix D exists) I/O buffers. The stucture of main memory is similar to Figure 2-
6, except that the vector buffer for  is replaced by  columns of . The final 
main memory size is

Eq. 2-18

and the number of  columns fitting into memory can be calculated as follows:

Eq. 2-19

The estimation of the numbers of passes with the triple multiply with dense 
middle matrix operation through the matrices  and  is the same as that of 
the triple multiply with sparse middle matrix.

Parallel Multiply Method
The parallel multiply method, which is only used when parallel processing is 
requested, is basically a parallel version of method one designed to solve the 
CPU-intensive multiplication of dense matrices.

The storage structure of this method is the same as that of method one.  
However, the columns of matrix  are distributed among the processors.  
Consequently, although  is stored in the main (shared) memory, the processors 
access different portions of it.

At the beginning of each pass, subtasks are created.  These subtasks wait for the 
columns of matrix  to be brought into memory.  Once a column of  is in the 
main memory, all subtasks process this column with their portion of matrix .  
When all of the subtasks are finished, the main processor brings in a new column 
of  and the process continues.  The parallel method is advantageous when 
matrix  is very dense and multiple processors are available.
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Algorithms 1TC and 1NTE (see “MPYAD Methods” on page 36) are executed in 
parallel when parallel MPYAD is requested.  The parallel methods are represented 
in Figure 2-7.

Figure 2-7  Parallel Multiply Method

The triple loop kernels used in Method 1 Storage 2 are also parallelized by some 
machine vendors providing another way to execute parallel MPYAD.

In Memory In Memory

A C D,B

1 2 3 1 2 3
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T CPU CPU
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2.3 MPYAD Methods
The methods in the MPYAD module are divided into six main categories:  four 
methods for different density combinations, one method for parallel execution, 
and one method for sparse operations.  These methods are summarized in the 
following table:

There are no fixed density boundaries set for these methods.  Method selection 
is a complex topic.  Within method one, there are also ten submethods for the 
special handling of the matrices.

Methods two and three are only selected in special cases.  In most cases, the 
sparse method replaces both methods two and three.

The parallel multiply method is aimed at shared memory parallel computers.  It 
does not run on distributed memory parallel computers.

The method 1 submethods (A-F) are automatically deselected in some cases. One 
example is when the  and  matrices are the same; another is when any of the 
matrices are non-machine precision.

MPYAD Method Identifiers.  For selection and deselection purposes, identifiers 
are assigned to certain methods.  However, these identifiers are bit oriented, and 
in some cases their decimal equivalents are used:

Method Combination

1

2

3

4

P

S

Method Bit Decimal

1NT 0 1

1T 1 2

2NT 2 4

2T 3 8

3NT 4 16

Dense Dense×

Sparse Dense×

Sparse Sparse×

Dense Sparse×

Dense Dense×

Sparse Sparse×

A B
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In the above table, T represents transpose, NT indicates nontranspose, and A, B, 
C, D, E, F, 2 are submethod names when they appear as the last character.  For 
example, 1NTD is a method one, nontranspose case, D submethod operation.

Bit 21 (with the corresponding decimal value of 2097152) is reserved for 
submethod diagnostics.

3T 5 32

4NT 6 64

4T 7 128

1NTA 8 256

1NTB 9 512

1NTC 10 1024

1NTD 11 2048

1NTE 12 4096

1NTF 13 8192

1TA 14 16384

1TB 15 32768

1TC 16 65536

1TD 17 131072

Deselect 20 1048576

DIAG 21 2097152

22 4194304

1NT2 23 8388608

1T2 24 16777216

AutoS2 25 33554432

1NT3 26 67108864

1T3 27 134217728

Method Bit Decimal
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2.4 DMAP User Interface
The DMAP call for the MPYAD module executing the operation in Eq. 2-1 is

where:

An alternative MPYAD call is to use the SMPYAD module as follows
:

where:

This module executes the operation in Eq. 2-2.

MPYAD A,B,C/D/T/SIGNAB/SIGNC/PREC/FORM

T = 0,1: Non-transpose or transpose (see “Multiply-Add Equation” on 
page 22)

PREC = 0,1,2:  Machine, single, double, etc. (see “Matrix Trailers” on page 8)

FORM = 0,1,2:  Auto, square, rectangular, etc. (see “Matrix Trailers” on page 8)

SMPYAD A,B,C,D,E,F/G/N/SIGNG/SIGNF/PREC/TA/TB/TC/TD/FORM

N = number of matrices given

TA,TB,TC,T
D

= transpose flags

FORM = as above
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2.5 Method Selection/Deselection
MPYAD automatically selects the method with the lowest estimate of combined 
cpu and I/O time from a subset of the available methods. Also, those methods that 
are inappropriate for the user’s specific problem are automatically deselected. The 
user can override the automatic selection and deselection process by manual 
selection, subject to certain limitations. The details of both automatic and user 
selection and deselection criteria are described below.

Automatic Selection
By default, methods 1 (all submethods), 3, 4, and Sparse are available for 
automatic selection. Methods 2 and P are excluded from automatic selection 
unless bit 25 of System Cell 66 has been set (decimal value 33554432) or all of the 
default methods have been deselected. Also, if all of the default methods have 
been deselected, method 2 will be used, provided it was not deselected. If all 
methods have been deselected, a fatal error occurs.

Automatic Deselection
If a method is determined to be inappropriate for the user’s problem, it will be 
automatically deselected. Except in those cases noted below, an automatically 
deselected method will be unavailable for either automatic selection or manual 
user selection. Note that any method that has insufficient memory to execute the 
user’s problem will be deselected. The other automatic deselection criteria are 
described below for each method. In this discussion "mpassI" stands for the 
number of passes required by method I.  and  represent the densities of the 

 matrix and  matrix, respectively. Also, unless the method name is qualified by 
NT (non-transpose) or T (transpose), the criteria applies to both.

Method 1 – All Submethods If method S is not deselected and mpass1 is greater 
than 5 × mpass3 and  and  are less than 10%.

If MPYAD was called by the transpose module.

Method 1 – Storage A-F If the type of matrix  is real and either  or  is 
complex.

If the type of matrix  is complex and both  and 
 are real.

Method 1NT – Storage A, D, 
and F

Unless explicitly user selected.

Method 1T – Storage B 
and C

1TB unless 1TA deselected.
1TD unless 1TC is deselected.

Method 2 If method S is not deselected, unless user selected.

ρA ρB
A B

ρA ρB

A B C

A B
C
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User-Specified Deselection
For method deselection, the following is required:

Main Methods – Deselection

SYSTEM(66) = decimal value of method

If the  matrix is non-null and the type of  is not 
machine precision or the , , and  matrices are 
not all real or all complex.

If MPYAD was called by the transpose module.

Method 3 If method S is not deselected, unless user selected.

If matrix  is real and the  and/or  matrix is 
complex.

Method 3NT If the requested type of the  matrix is real and 
any of the input matrices are complex, or if the 
requested type of  is complex and all of the input 
matrices are real.

Method 4 If methods 1, 2, 3, and S are not deselected and  
greater than 10%, unless method 4 has been user 
selected.

If matrix  is non-null and its type is not equal to 
machine precision or the  and  matrices are not 
both real or not both complex.

Method 4T If more than 100 "front-end" (R4) passes or more 
than 10 "back-end" (S4) passes.

Method Sparse If the type of matrix  is not machine precision.

If matrix  is non-null and  and  are not both 
real or both complex.

If matrix  is complex and matrix  is real.

Method Parallel NT Unless 1NTE is not deselected.

If the number of columns per pass for 1NTE is less 
than the number of available processors.

Method Parallel T Unless 1TC is available.

If the number of columns per pass for 1TC is less 
than the number of available processors.

C C
A B C

A B C

D

D

ρA

C
B C

B

C A C

A B
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Submethods – Deselection

SYSTEM(66) = decimal value of submethod

Sparse Method – Deselection

where SYSTEM (126) is equivalent to the SPARSE keyword.

Parallel Method – Deselection

where ncpu = number of CPUs and SYSTEM (107) is equivalent to the PARALLEL. 
keyword.

The philosophy of method selection is to deselect all the methods except for the 
one being selected.

Triple Loop Method – Deselection

SYSTEM(252) = 0 or > 100:  Do not use triple loops in 1T,1NT

User-Specified Selection
For method selection, the following is required:

Main Methods – Selection

SYSTEM(66) = 255 – decimal value of method identifier

Main or Submethods – Selection

SYSTEM(66) = 1048576 + bit value of method or submethod identifier

Triple Multiply Method – Selection

SYSTEM(129) = 0 : Default, automatic selection

SYSTEM(129) = 1 : Two Multiply, i.e. pre-MSC.Nastran Version 67 method

SYSTEM(129) = 2 : Triple multiply for sparse middle matrix

SYSTEM(129) = 3 : Triple multiply for dense middle matrix

SYSTEM(126) = 0: Deselect all sparse methods
SYSTEM(126) = 2: Deselect sparse NT only
SYSTEM(126) = 4: Deselect sparse T only

SYSTEM(107) = 0:  Deselect all parallel modules
SYSTEM(107) = 4096 + ncpu:  Deselect parallel MPYAD only
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Sparse Method – Selection

Parallel Method – Selection

SYSTEM(126) = 1: Auto selection  (This is the default.)
SYSTEM(126) = 3: Force sparse NT method
SYSTEM(126) = 5: Force sparse T method
SYSTEM(126) = 7: Force either T or NT sparse

SYSTEM(107) > 0 and
SYSTEM(66) = 1048592(T) or 1048588(NT)
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2.6 Option Selection
The following table shows the type combination options that are supported (R 
stands for real, C for complex).  These options are automatically selected based on 
matrix trailer information.  When the user selects one particular method with an 
option not supported with that method, an alternate method is chosen by MPYAD 
unless all of them are deselected.

Method R • R + R C • C + C R • C + R R • C + C

1T YES YES YES YES

1NT YES YES YES YES

2T YES YES YES YES

2NT YES YES NO NO

3T YES YES NO NO

3NT YES YES NO NO

4T YES YES NO YES

4NT YES YES NO NO

S YES YES NO NO

P YES YES NO NO
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2.7 Diagnostics
The MPYAD module outputs diagnostic information in two categories:  
performance diagnostics and error diagnostics.

Performance Diagnostics

DIAG 19 Output.  The following performance diagnostics is received by setting 
DIAG 19.

Figure 2-8  Excerpt from the DIAG19 Output

In the above figure, “passes” means the number of partitions needed to create 
the result matrix.

To prevent creating huge .f04 files when many MPYAD operations are executed, 
NX Nastran has a machine-dependent time limit stored in SYSTEM(20).  When 
a time estimate is below this value, it is not printed.  To print all time estimates, 
the user should set SYSTEM(20) = 0.

Most of the diagnostics information mentioned in the above table is self 
explanatory.  Notice the presence of the MPYAD keyword (SYSTEM(66)) used 
to verify the method selection/deselection operation.

Whenever a method is deselected, its time estimate is set to 999999.

Submethod Diagnostics
For special diagnostics on the submethods, the user must add 2097152 to the 
value of SYSTEM(66) (i.e. turn on bit 21).  The format of this diagnostic is shown 
in Table 2-3.  The first column heading indicates the selected submethod, the 
DESELECT column contains either YES or NO for each submethod, and the last 
four columns contain the appropriate times.

M MATRIX A Trailer(COLS ROWS FORM TYPE NZ DENS) METHOD 1 Passes = XX CPU = XX I/O = XX Total = XX

P MATRIX B Trailer(COLS ROWS FORM TYPE NZ DENS) METHOD 2 Passes = XX CPU = XX I/O = XX Total = XX

Y MATRIX C Trailer(COLS ROWS FORM TYPE NZ DENS) METHOD 3 Passes = XX CPU = XX I/O = XX Total = XX

A Working Memory = XX SYSTEM (66) = XX METHOD 4 Passes = XX CPU = XX I/O = XX Total = XX

D Transpose Flag = XX SYSTEM (126) = XX METHOD S Passes = XX CPU = XX I/O = XX Total = XX

Table 2-3  Method One Submethods

NEW1 = B DESELECT NCPP PASSES KERNEL CPU I/O TOTAL

A YES x x x x x x
B NO x x x x x x
C NO x x x x x x
D YES x x x x x x
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where:

Error Diagnostics
Error messages are abbreviated as follows:

The following error-related messages may be received from MPYAD:

UFM 3055:
AN ATTEMPT TO MULTIPLY NONCONFORMABLE MATRICES.

The message is given if the number of columns of A is not equal to the number of 
rows in B, the number of rows of C is not equal to the number of rows of A, or the 
number of columns of C is not equal to the number of columns of B.  This message 
is also given when MPYAD is called from another module.

SFM 5423:
ATTEMPT TO MULTIPLY INCOMPATIBLEMATRICES.

The cause for this message is the same as for UFM 3055.  However, this message is 
more elaborate and prints the trailers for all matrices involved.  This message 
comes from the MPYAD module.

UFM 6199:
INSUFFICIENT CORE AVAILABLE FOR MATRIX MULTIPLY.

E YES x x x x x x
F YES x x x x x x
1 YES x x x x x x
2 YES x x x x x x

Table 2-3  Method One Submethods (continued)

NEW1 = B DESELECT NCPP PASSES KERNEL CPU I/O TOTAL

NCPP = number of columns per pass

NEW1 = B indicates that submethod B is chosen

UFM User Fatal Message

SFM System Fatal Message

UWM User Warning Messages

SWM System Warning Messages

UIM User Information Messages

SIM System Information Messages
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This message results while using the sparse multiply method when the storage 
estimate based on the trailer information is exceeded during the actual execution 
of the operation.
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2.8 MPYAD Estimates and Requirements
The CPU time estimate for the sparse multiply-add method is based on the 
following input matrix characteristics:

Eq. 2-20

Computation time (sec):

Eq. 2-21

Data move time (sec):

Eq. 2-22

The minimum storage requirements are as follows:

= density of  matrix

= one of either , , or  depending on the particular methods used

=

= workspace available in words

= machine precision (1 for short-word machines, 2 for long-word 
machines)

Note:  are defined in the Glossary of Terms.

Disk:

Memory:

A[ ]  : m n   B[ ],•  : n p   C[ ]  :  m p•   ρA,,•

m n p ρA M••••

n p• ρp• P• npass m n• ρA• P*• 2( )m p ρC D( ), P*•••+ +•

ρ*  *

P* Ps P Pi

npass
m n• ρA•

W IPREC 1+( )⁄
----------------------------------------

W

IPREC

M P  and P*, ,

m n ρA• n p ρB• 2( )m p ρD••+•+•

2 n m+( ) IPREC•
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3.1 Decomposition Process
The decomposition operation is the first step in solving large linear systems of 
equations.

For symmetric matrices:

 Eq. 3-1

where:

or

Eq. 3-2

where:

For unsymmetric matrices:

 Eq. 3-3

where:

= system matrix

= lower triangular factor

= diagonal matrix

= system matrix

= Cholesky factor

= system matrix

= lower triangular factor

= monic upper triangular factor

A[ ] L[ ] D[ ] L[ ]T=

A[ ]

L[ ]

D[ ]

A[ ] C[ ] C[ ]T=

A[ ]

C[ ]

A[ ] L[ ] U[ ]=

A[ ]

L[ ]

U[ ]
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3.2 Theory of Decomposition

Symmetric Decomposition Method
The symmetric decomposition algorithm of NX Nastran is a sparse algorithm.  This 
algorithm relies on fill-in reducing sequencing and sparse numerical kernels.  The 
specific implementation also allows for the indefiniteness of the input matrix.  This 
method is based on Duff, et al., 1982.

The factor has a specific storage scheme that can be interpreted only by the sparse 
FBS method.

Mathematical Algorithm
Permute and partition  as follows:

Eq. 3-4

where the assumption is that the inverse of the  by  submatrix  exists.  lf  is 
indefinite, appropriate pivoting is required to ensure the existence of the inverse.  
This requirement is fulfilled by the presence of the  permutation matrices in the 
above equation.  The order of E is either 1 or 2.  Then the elimination of  can be 
shown as

Eq. 3-5

Take , permute and partition again to obtain the following:

Eq. 3-6

and continue the process until

The final factored form of

Eq. 3-7

A

PAPT E CT

C B
=

s s E A

P
E

PAPT
Is 0

CE 1– In 1–

E 0

0 B CE 1– CT–
= Is E 1– CT

0 In 1–

A2 B CE 1– CT–=

PA2 PT E2 C2
T

C2 B2

=

O Bk( ) 1 or 2=

PAPT LDLT=
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is then given by building the following:

Eq. 3-8

and

Eq. 3-9

where  is built from 1 by 1 and 2 by 2 diagonal blocks.  The  identity submatrices 
are also of order 1 or 2 and the  submatrices are rectangular with one or two 
columns.  The rows of the  matrices extend to the bottom of the L matrix.

The most important step is the proper selection of the  partition.  This issue is 
addressed later in this guide.

The module consists of two distinct phases:  the symbolic phase and the numeric 
phase.

Symbolic Phase
This phase first reads the input matrix  and creates the following information: one 
vector of length NZ (where NZ is the number of nonzero terms of the upper half of 
the input matrix ) which contains the column indices, and another vector of the 
same length which contains the row indices of the nonzero terms of the upper 
triangular half of the matrix .  Both of these vectors contain integers.  Another 
responsibility of this phase is to eliminate the zero rows and columns of the input 
matrix.

The selection of the  partition (i.e., the general elimination process) can be executed 
in a variety sequences.  The performance of the elimination using different 
sequences is obviously different.  To find an effective elimination sequence, a 
symbolic decomposition is also executed in the preface.  An important criterion is to 
minimize the fill-in (off-diagonal nonzeros) created in each step of the elimination 
process, thereby reducing the numerical work and the I/O requirements.

L
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The reordering methods may be prefaced by a compression process based on grid-
dof connection or the so-called supernodal amalgamation principle (both available 
with any reordering). Both contribute by making the reordering more efficient in 
time and profile.

Several different reordering algorithms are available in the symbolic phase:  
multiple minimum degree algorithm (MMD), Metis, EXTREME, MLV (multilevel 
vertex partitioning), etc.  These are described in the references.

Each of the methods can be selected by setting system cell 206 to the desired option; 
see “User Interface” on page 58 for details.

In each of the above methods, the elimination of a chosen variable is performed 
based on severing all the edges connected to it and connecting those nodes which 
were connected through the eliminated variable.  Severing these edges leaves a 
reduced graph where the same process can continue until the reduced graph is a 
single node only.  Then using this term as the root, create a so-called assembly tree 
of the matrix.  The final elimination sequence is obtained by traversing the assembly 
tree.  Note that this sequence may be changed due to numerical reasons.

Finally, the elimination sequence is stored into an array of length  (where  
is the order of the  matrix).  Note that at this phase, the actual terms of the matrix 
are not needed.

Numeric Phase
The mathematical decomposition process was described previously except for the 
details of the pivot selection for numerical stability.  The strategy applied is a variant 
of the Bunch-Parlett method (1971) and is implemented as follows.

Let us assume that the next potential pivot row is the j-th.  The diagonal entry of that 
row is tested against all the other terms  as follows:

where t is based on an input parameter.  If the inequality is true, then the 
decomposition process uses s = 1 (1 by 1 pivot) and  as the pivot term (  matrix).  
If the inequality is not true and the  term is the largest in the pivot row, then the 
following pivotal matrix is tested for stability:

If

3 N• N
A

k = j 1 … n, ,+( )

ajj t ajk>

ajj E
ajl

E2
ajj ajl

alj all

=
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is satisfied, then  is the pivot.  Here  is the largest term in row  and  are the 
terms of .

If both of the above pivots fail, then a search is performed in the remaining possible 
pivot rows  for pivots.  When one is found, that particular row is permuted 
into the j-th row position (by putting ones into the proper locations of the P matrix), 
and the numerical elimination proceeds.

The numerical work is executed primarily by vector kernels.  The triangular kernels 
DFMR and DFMQ are also used in addition to the conventional AXPY kernel.

Numerical Reliability of Symmetric Decomposition
The numerical reliability of the matrix decomposition process is monitored via the 
matrix/factor diagonal ratio as follows:

Eq. 3-10

where  is the original diagonal term of the matrix and  is the corresponding 
diagonal term of the factor.  The maximum value of these ratios is used to indicate 
how well-conditioned the original matrix was.  The higher this ratio, the closer the 
matrix is to singularity.  As shown by the algorithm of the decomposition, small  
values are the cause of numerical instability.  Hence, in the case of unusually high 
matrix/factor diagonal ratios, the user should practice extreme care in evaluating 
the results.

In NX Nastran, a common source of high ratios are mechanisms.  A mechanism is a 
part of the structure that may move independently from the rest of the structure as 
a rigid body.

For example, when unconstrained directions allow the entire model to move (a 
mechanism) a high ratio occurs at the last grid point in the internal sequence.  
Another possible cause of high ratios is connecting flexible elements to stiff 
elements.  Finally, missing elements can also cause high ratios.

In general, ratios below  are usually acceptable; however, the safety limit is 
approximately .

Unsymmetric Decomposition
The sparse unsymmetric decomposition algorithm is another variation of the 
Gaussian elimination as follows:

maxi eij
alm
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For  (loop on all columns)

For  (loop on all rows)

If , then (elements of lower triangular factor)

If , then

Note that the diagonal entries of U are equal to 1 by construction. For numerical 
reliability, the above elimination order is modified when necessary.  The pivoting 
step is based on the following criterion:

Eq. 3-11

Thus, the  term is accepted as a possible pivot term if it is larger than the 
maximum taken in the k-th column multiplied by a ratio of t (which is based on a 
user-specified threshold parameter; see Eq. 3-12).

From the computer science aspect, the sparse unsymmetric decomposition is similar 
to the symmetric decomposition, using indexed vector operations and frontal logic 
which are not discussed here in detail.  The sparse unsymmetric decomposition also 
has a distinct symbolic and numeric phase similar to symmetric sparse 
decomposition.

Partial Decomposition
The sparse symmetric decomposition method may be used to decompose only a 
certain partition specified by a partitioning vector (PARTVEC input data block for 
DCMP). In this case the following decomposition is obtained:
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The results of  are stored in the LD output data block and the  is in the 
LSCM data block (see “User Interface” on page 58).

Distributed Decomposition
A distributed decomposition method based on domain decomposition is available 
using the DISDCMP module. This method is used, for example, in the GDSTAT 
parallel SOL 101 sequence. Essentially, each processor performs a partial 
decomposition, producing a decomposition of the local interior matrix  and a 
global Schur complement (assembled from the local Schur complements). A 
conceptually similar distributed decomposition method is used in the eigensolver; 
see “Geometric Domain Decomposition-Based Distributed Parallel Lanczos 
Method” on page 159 for details. The DISFBS module is used to perform the 
corresponding distributed forward-backward substitution.

Diagonal Scaling Option
When the input matrix is sparse and has diagonal entries of widely varying 
magnitude, the factor in symmetric decomposition may have more deferred pivots, 
therefore, obtain an excessively large front size and spend much more time for 
factorization. Diagonal scaling would achieve a smaller front size and improve 
performance of symmetric decomposition.

Diagonal scaling prescales the input matrix  into  :

where  is a diagonal matrix. Each entry of  is the magnitude of the 
corresponding diagonal term in . The decomposition of  is:

and the decompositon of  is 
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where
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3.3 User Interface

Decompose a square matrix [A] into upper and lower triangular factors [U] and [L] 
and diagonal matrix [D]. DCMP also provides extended diagnostics.

Format:

Input Data Blocks:

Output Data Blocks:

DCMP Matrix decomposition with extended diagnostics

DCMP USET,SIL,EQEXIN,A,,PARTVEC/
LD,U,LSCM/
S,N,KSYM/CHOLSKY/BAILOUT/MAXRATIO/SETNAME/F1/DECOMP/
DEBUG/THRESH/S,N,MINDIAG/S,N,DET/S,N,POWER/S,N,SING/
S,N,NBRCHG/S,N,ERR/LMTROWS $

USET Degree-of-freedom set membership table.

SIL Scalar index list.

EQEXIN Equivalence between external and internal numbers.

A A square matrix (real or complex, symmetric or unsymmetric).

PARTVEC Partitioning vector specified when A is a partition of SETNAME. Its 
rowsize is indicated by SETNAME. A is the zero-th partition from 
PARTVEC. In the partial decomposition case it defines .

LD Nonstandard lower triangular factor [L] and diagonal matrix [D] or 
Cholesky Factor. [LD] also contains [ ] for partial decomposition.

U Upper triangular factor or high ratios matrix. If A is unsymmetric, U is 
the nonstandard upper triangular factor of [A] or the Cholesky factor. If 
A is symmetric and the value of system cell 166 includes the value of 8, 
U contains the "high ratio terms of the factor diagonal ratios."

LSCM Resequencing matrix based on internal resequencing of A.

A[ ] L[ ] U[ ]    for unsymmetric  A[ ]=

A[ ] L[ ] D[ ] L[ ]T   for symmetric  A[ ]=

Aoo

Lao
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Parameters:

KSYM Input/output-integer-default=1. See “Method Selection” on page 61

CHOLSKY Input-integer-default=0. See “Method Selection” on page 61

BAILOUT Input-integer-default=0. If BAILOUT>0, then the module exits with 
error message if factor to diagonal ratio exceeds MAXRATIO. If 
BAILOUT<–1, then the module continues with warning message if 
factor to diagonal ratio exceeds MAXRATIO.

MAXRATIO Input-real-default=1.E5. See the BAILOUT and ERR parameter.

SETNAME Input-character-default=‘H’. One or two letters indicating the set 
membership of [A].

F1 Input-real-default = 0.0. Tolerance for suppressing numbers of small 
magnitude. Matrix elements with magnitudes less than F1 will be set 
to zero.

DECOMP Input-integer-default=–1. See “Option Selection” on page 62.

DEBUG Input-integer-default=–1. See “Option Selection” on page 62.

THRESH Input-integer-default=–6. See “Option Selection” on page 62.

MINDIAG Output-real double precision-default=0.0D0. 

DET Output-complex-default=(0.0,0.0). 

POWER Output-integer-default=0.

SIGN Output-integer-default=0. See “Option Selection” on page 62.

NBRCHG Output-integer-default=0. See READ module.

ERR Output-integer-default=–1. If BAILOUT=–1, this parameter always 
remains at zero. If BAILOUT=0 and the factor to diagonal ratio is 
negative or greater than MAXRATIO, ERR is reset to –1.

LMTROWS Input-integer-default=0. Number of Lagrange multipliers appended 
to the A matrix. These rows are excluded from the internal reordering 
in the DCMP module.
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Performs distributed decomposition which includes the parallel elimination of 
boundary nodes and summation of global Schur complement.

Format:

Input Data Blocks:

Output Data Blocks:

Parameters:

DISDCMP Distributed decomposition

DISDCMP USET,SIL,EQEXIN,SCHUR,,EQMAP/
LBB,DSFDSC,SCHURS/
HLPMETH////////////// $

USET Degree-of-freedom set membership table.

SIL Scalar index list.

EQEXIN Equivalence between external and internal numbers.

SCHUR Local Schur complement matrix in sparse factor format.

EQMAP Table of degree-of-freedom global-to-local maps for domain 
decomposition.

LBB Distributed boundary matrix factor in sparse factor format (contains 
the local panels of the fronts).

DSFDSC Distributed boundary matrix factor.

SCHURS Sum of all Schur matrices from all processors.

HLPMETH Input-integer-default=1. Processing option.

>0 Summation only.

=0 Complete boundary decomposition.
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3.4 Method Selection
To select decomposition methods in DCMP, the following parameters are used:

KSYM 1 Use symmetric decomposition (default).

0 Use unsymmetric decomposition.

–1 Use decomposition consistent with form of [A]. KSYM will be 
reset to 0 or 1 consistent with actual decomposition type.

3 Use symmetric partial decomposition.

CHOLSKY If KSYM=1 or KSYM=–1 and [A] is symmetric then:

1 Use Cholesky decomposition.

0 Use standard decomposition (default).

If KSYM=3, then CHOLSKY is set to the number of degrees of 
freedom in the o-set.
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3.5 Option Selection

Minimum Front Option
To increase performance of the sparse symmetric decomposition, the user may set 
SYSTEM(198), the MINFRONT keyword to a value greater than 1.  The appropriate 
value is problem and machine dependent.  Its meaning is to restrict the sparse 
strategy to above a certain minimum front size (characteristically 8 – 16).

Reordering Options
The various reordering options are selected via SYSTEM(206) as follows. Note that 
the EXTREME method has two submethods; BEND and AMF. If EXTREME is used 
when SYSTEM(206) = 0 (default), then either BEND or AMF is automatically 
selected by the software depending on the size of the model. If SYSTEM(206) = 4, 
then BEND is used.

Compression Options
The supernodal compression scheme currently is available only with EXTREME 
and Metis. Supernodal compression scheme with EXTREME is selected by 
SYSTEM(206) = 68 (64 + 4), and similarly supernodal compression scheme with 
Metis is chosen by SYSTEM(206) = 72 (64 + 8).

The grid-based compression scheme is automatically executed when the datablocks 
defining the grid-DOF connections (USET,SIL) are available to the module.

SYSTEM(206)
DCMPSEQ Method

0 (Default) EXTREME for 3D, Metis or 
MMD for 2D

1 MMD – definite matrices

2 MMD – indefinite matrices

3 No sequencing

4 EXTREME

8 Metis

9 Better of Metis and MMD

32 MLV

64 Turn on Supernodal Compression Scheme
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Non-Sparse SDCOMP Options
If bit 4 of SPARSE = SYSTEM(126) is set to 0, then sparse symmetric decomposition 
is deactivated, and the old non-sparse symmetric decomposition is used instead. If 
bit 1 of SYSTEM(166) is set and the sparse decomposition fails because of 
insufficient memory, the old non-sparse decomposition will be attempted.

TAUCS provides another option for sparse decomposition of symmetric positive 
definite matriices. The functionality is Multifrontal Supernodal Cholesky 
Factorization. It uses the BLAS to factor. For better performance, an efficient BLAS 
is necessary. TAUCS performs factorization in-core and requires larger memory 
than sparse Cholesky decomposition. Without sufficient memory, it will fail and fall 
back to sparse Cholesky decomposition. More detail about TAUCS can be found at 
http://www.tau.ac.il/~stoledo/taucs/. 

If the SPARSE setting allows sparse symmetric decomposition, Cholesky 
decomposition and TAUCS decomposition are further controlled by SPCHOL = 
SYSTEM(424) as in the following table:

Non-Sparse UDCOMP Option
If SYSTEM(209) = 0 is set, the old non-sparse unsymmetric Gaussian elimination 
option is used. 

Perturbation Options
If DEBUG (= SYSTEM(60)) is set with the old non-sparse decomposition, then an 

 replaces the zero diagonal terms. If DEBUG is not set or the sparse 
decomposition is used, then the perturbation is .

If SYSTEM(69)=16 with sparse decomposition, then a 1.0 is placed in the diagonal 
position for all null columns of the input matrix.

SYSTEM(424)
SPCHOL Cholesky Decomposition

0 Old non-sparse Cholesky only

1 Attempt sparse; if sparse fails, fall back to 
old non-sparse

2 Sparse only, do not fall back

4 TAUCS; if fails, fall back to option 0

5 TAUCS; if fails, fall back to option 1

ε 10 DEBUG–=
ε 10 10–=
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High Rank Options
An additional performance improvement is possible, with the high rank update in 
the sparse decomposition methods.  The rank of update in the various sparse 
decomposition methods is set as:

The defaults of these cells are set automatically, since they are machine dependent.

Diagnostic Options
These options of the sparse symmetric decomposition are requested as follows:

SYSTEM Sparse Decomposition

(205) Symmetric, real

(219) Symmetric, complex

(220) Unsymmetric, real

(221) Unsymmetric, complex

SYSTEM Action

(69) = 1 Stop if null column is found

(69) = 4 Stop if zero diagonal term is found

(69) = 16 Place 1.0 on diagonal of null columns 
and continue

(69) = 32 Terminate on zero diagonal term

(69) = 64 Stop after diagnostic phase
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The THRESH parameter is used to control the pivoting for the unsymmetric and the 
sparse (which also pivots) decompositions.  The pivot threshold is

Eq. 3-12

In the unsymmetric case, pivoting occurs if a factor diagonal value is less than .  In 
the symmetric case of the sparse decomposition, pivoting occurs when the ratio for 
the factor diagonal value to the largest term in the pivot row is less than .

The default value of THRESH is 6 for the sparse decomposition and 10 for the 
unsymmetric decomposition. The latter may also be defined by SYSTEM(91) for the 
unsymmetric case.

In the case where DCMP is called from eigenvalue analysis, the THRESH parameter 
may be set by SYSTEM(89).

The shared memory parallel execution of the sparse symmetric decomposition can 
be selected by

SYSTEM(126) = 8 and SYSTEM(107) > 1

and deselected by turning off either one of these system cells.

(166) =

1 Fall back due to insufficient memory

2 Provides internal diagnostics 

4 Overwrites MAXRATIO by 1.0 

8 Provides MAXRATIO vector in U 

16 Reserved for Siemens PLM internal 
use 

32 Reserved for Siemens PLM internal 
use 

64 UWM or UFM if sparse Cholesky 
fails

128 Diagonal scaling 

(294)>0 Print debugging information from 
symbolic phase

t 10THRESH=

t

t
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3.6 Diagnostics
The diagnostics given by the decomposition module are organized into numerical, 
performance, statistical, and error diagnostics.

Numerical Diagnostics
These diagnostics are related to the accuracy of the solution.

Singularity

Causes of Singularity.  A matrix is singular if its inverse cannot be calculated.  The 
SING parameter is set to –1 if the matrix is singular.  Singularity is a relative issue 
with respect to stiffness ratios.  However, some independent general reasons for 
singularity include:

• Degree of freedom without stiffness

• 2-D problem, normal rotation unconstrained

• 3-D problem, rotational DOFs at solids unconstrained

• Planar joint in space structure

Singularity Test

To avoid singularity, the user can enter the AUTOSPC keyword.  If AUTOSPC is set 
to YES, the singular degrees of freedom are automatically constrained out.  A degree 
of freedom is considered singular if 

Eq. 3-13

where  is the term in the i-th row and the j-th column of  matrix, and  is the 
largest term in  .

The default for  is  and can be changed by the keyword EPZERO.  The SPC 
entries constraining the singular DOFs are generated by setting the SPCGEN 
keyword to YES.

Parameter EPPRT (Bulk Data) (default = ) is used to set a threshold below which 
all potential singularities are listed.  If EPPRT is greater than EPZERO, then the 
printing of singularities with a ratio of exactly zero is suppressed.

Ill-Conditioning

Causes of Ill-Conditioning.  The ill-conditioning of a matrix can be caused by any 
of the following reasons:

Aij
Amax
--------------- ε≤

Aij A Amax

Aelem[ ]

ε 10 8–

10 8–
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• Low stiffness in rotation

• Large mass

• Very stiff beam

• Mechanisms

MAXRATIO Parameter.  Ill-conditioning is diagnosed by the MAXRATIO 
diagnostics parameter which is defined as

Eq. 3-14

where  is the i-th diagonal term in the  matrix.

The maximum MAXRATIO of the decomposition is printed under User Information 
Message 4158 or 4698 when its value is greater than .  This limit can be changed 
by setting the keyword MAXRATIO. Setting SYSTEM(60) = -999 will result in 
printing only the highest and lowest.

In the case of  pivoting, this ratio is not calculated.

Negative Terms on Factor Diagonal

STURM Number.  The NBRCHG parameter (DMAP call) gives the number of 
negative terms on the factor diagonal (also called the STURM number).  This 
diagnostics information message is important when decomposition is used in an 
eigenvalue module.  In this case, the number of negative terms provides the number 
of negative eigenvalues of the matrix.  Since the matrix decomposed in this case is 
usually a shifted matrix, the NBRCHG gives the number of eigenvalues to the left of 
the shift.  User Information Messages 4158 and 5010 in the eigenvalue modules print 
the value of NBRCHG.

Performance Diagnostics
For symmetric decomposition, the following message (UIM 4157) appears:

MATRIX SIZE NUMBER OF NONZEROES

NUMBER OF ZERO COLUMNS NUMBER OF ZERO DIAGONALS

CPU TIME ESTIMATE I/O TIME ESTIMATE

EST. MEMORY REQUIRED MEMORY AVAILABLE

EST. INTEGER WORDS IN FACTOR EST. NONZERO TERMS IN FACTOR

EST. MAX FRONT SIZE RANK OF UPDATE

MAXRATIO
Aii
Dii
--------=

Dii D

107

2 2×
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The integer words in factor are the row and column index information, and the real 
words are the actual terms of the factor matrix . In the sparse methods, the 
integer and real words are stored in two separate records.

The 4157 message is followed by UIM 6439 for the sparse symmetric decomposition 
as follows:

For unsymmetric sparse decomposition, UIM 4216 provides the following 
information.

This message is also followed by a UIM 6439 which gives actual values for the 
estimates in UIM 4216.

Statistical Diagnostics
The following messages are self-explanatory.

UIM 4158:
STATISTICS FOR SYMMETRIC (PARALLEL AND/OR SPARSE) 
DECOMPOSITION OF DATA BLOCK XX
NUMBER OF NEGATIVE TERMS ON FACTOR DIAGONAL.
MAXIMUM RATIO OF MATRIX DIAGONAL TO FACTOR DIAGONAL.

UIM 4367:
STATISTICS FOR UNSYMMETRIC DECOMPOSITION OF DATA BLOCK XX 
FOLLOW.
NUMBER OF PIVOT OPERATIONS = XX.

UIM 6439 (DFMSA) ACTUAL MEMORY AND DISK SPACE REQUIREMENTS 
FOR SPARSE SYMMETRIC DECOMPOSITION

SPARSE DECOMP MEMORY REQUIRED MAXIMUM FRONT SIZE

INTEGER WORDS IN FACTOR NONZERO TERMS IN FACTOR

MATRIX SIZE NUMBER OF NONZEROES

NUMBER OF ZERO COLUMNS NUMBER OF ZERO DIAGONAL 
TERMS

CPU TIME ESTIMATE I/O TIME ESTIMATE

ESTIMATED MEMORY REQUIREMENT MEMORY AVAILABLE

EST. INTEGER WORDS IN FACTOR EST. NONZERO TERMS

ESTIMATED MAXIMUM FRONT SIZE RANK OF UPDATE

L[ ]
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UWM 5221:
STATISTICS FOR DECOMPOSITION OF MATRIX XX.
THE FOLLOWING DEGREES OF FREEDOM HAVE NULL COLUMNS.

UWM 4698:
STATISTICS FOR DECOMPOSITION OF MATRIX XX.
THE FOLLOWING DEGREES OF FREEDOM HAVE FACTOR DIAGONAL 
RATIOS GREATER THAN MAXRATIO OR HAVE NEGATIVE TERMS ON THE 
FACTOR DIAGONAL.

Error Diagnostics
The following are messages from sparse decomposition and are described as 
follows:

SFM 4370:
DECOMPOSITION REQUIRES THAT PRECISION OF DATA BLOCK XX EQUAL 
SYSTEM PRECISION.

This is a general limitation of the module.

UFM 3057:
MATRIX XX IS NOT POSITIVE DEFINITE.

A Cholesky option was requested by the user on a non-positive definite matrix.

SFM 4218:
UNSYMMETRIC DECOMPOSITION IS ABORTED DUE TO INSUFFICIENT 
MEMORY.

The preface of the unsymmetric decomposition module needs more memory to 
execute.

SFM 4255:
UNSYMMETRIC DECOMPOSITION OF DATA BLOCK XX FAILS AT ROW XX.  
UNABLE TO PIVOT.

A singular matrix was given to the module.

UW(F)M 6136 (DFMSA):
INSUFFICIENT CORE FOR SYMBOLIC (NUMERIC) PHASE OF SPARSE 
DECOMPOSITION.
USER ACTION:  INCREASE CORE BY XX WORDS.

UFM 6133 (DFMSD):
SINGULAR MATRIX IN SPARSE DECOMPOSITION.
USER ACTION:  CHECK MODEL
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UFM 6134 (DFMN):
MATRIX IS NOT POSITIVE DEFINITE IN SPARSE DECOMPOSITION AT ROW = 
XX:
USER ACTION: CHECK MODEL

Sparse Cholesky decomposition failed because the matrix is not positive definite.

SWM 6731 (SDCBOD):
ROW XX OF LOWER TRIANGULAR FACTOR HAS DIAGONAL TERM = 0 (OR 
.LT. 0 IF CHOLESKY)

Non-sparse decomposition failed, usually because a Cholesky decomposition was 
requested and the matrix is not positive definite.

UFM 6137 (DFMSD):
INPUT MATRIX IS RANK DEFICIENT, RANK = XX.
USER ACTION:  CHECK MODEL
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3.7 Decomposition Estimates and Requirements
The CPU time estimate for the sparse symmetric decomposition method includes:

Computation time (sec):

Eq. 3-15

Data move time (sec):

Eq. 3-16

where:

Storage Requirements.  The minimum storage requirements are as follows:

where:

The CPU time estimate for the sparse unsymmetric decomposition method is

Computation time (sec):

= order of problem

= average number of connected DOFs

= approximate number of nonzeroes in the upper triangle of the original 

matrix 

= density of the original matrix

Note:  and  are defined in the Glossary of Terms.

Disk:

Memory:

NWP
T

= number of words per term

1 for 32 bit word real arithmetics

2 for 32 bit word complex arithmetics

2 for 64 bit word real arithmetics

4 for 64 bit word complex arithmetics

1
2
--- N Nfront

2 M⋅ ⋅ ⋅

1
2
--- N Nfront Ps 2  Ps  Nz⋅ ⋅+⋅ ⋅ ⋅

N

Nfront

Nz

N2 ρ 2⁄ N+•

ρ

M Ps

1 NWPT+( )Nfront N N+⋅

6 2 NWPT⋅+( ) N⋅
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Eq. 3-17

Data move time (sec):

Eq. 3-18

N Nfront
2  M⋅

N Nfront Ps 4 Ps Nz+⋅
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4.1 Solution Process
Solution of linear systems is an important and time-consuming component of NX 
Nastran runs.  Mathematically, the solution process represents a right-handed

Eq. 4-1

or a left-handed

Eq. 4-2

direct solution.  

The iterative solution directly solves Eq. 4-1 and is described in “Iterative Solution 
of Systems of Linear Equations” on page 89.

The direct solution method contains two distinct parts, a forward and a backward 
substitution, hence the name forward-backward substitution.

The forward-backward substitution is a follow-up operation to the decomposition 
process (see “Matrix Decomposition” on page 49). 

The right-handed direct solution step is executed using the triangular factors 
calculated in the decomposition as a forward step of

Eq. 4-3

The backward step in the case of symmetric decomposition uses the intermediate 
result  as follows:

Eq. 4-4

In the case of unsymmetric decomposition, the backward step is

Eq. 4-5

The left-handed forward step to solve Eq. 4-2 is

Eq. 4-6

and

Eq. 4-7

In Eq. 4-6 and Eq. 4-7, the decomposition is assumed to be a Cholesky method. In 
the  case, Eq. 4-7 is modified as

Eq. 4-8

A[ ] X[ ] B[ ]=

X[ ]T A[ ] B[ ]T=

L[ ] Y[ ] B[ ]=

Y[ ]

L[ ]T X[ ] D[ ] 1– Y[ ]=

U[ ] X[ ] Y[ ]=

WTLT BT=

XTL WT    =

LDLT

XTL WTD 1–=
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The theory covering the solution of systems of linear equations is described in the 
following section.
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4.2 Theory of Forward-Backward Substitution

Right-Handed Method
The elements of matrices  and  of Eq. 4-3 and Eq. 4-4 are given by

Eq. 4-9

and

Eq. 4-10

NX Nastran uses a sparse implementation of the above algorithm, as well as special 
modifications for the parallel, unsymmetric, and left-handed cases.

Left-Handed Method
The elements of Eq. 4-6 and Eq. 4-7 are:

Eq. 4-11

and

In the above equations, the  matrix is assumed to have been decomposed with the 
Cholesky method.

Sparse Method
The sparse option of FBS executes the forward-backward substitution from the 
factor of the sparse (multifrontal) decomposition.  Therefore, one must consider the 
pivoting performed by the permutation matrix  for the symmetric case, or the 
permutations  and  for the unsymmetric case, and then solve the following 
matrix equations.  For the symmetric case,

Y[ ] X[ ]

yij bij lik  ykj
k 1=

i 1–

∑–=

xij
yij
di
------ lki  xkj

k i 1+=

n

∑–=

wik

bik wjk  li j
j 1=

i 1–

∑–

li i
-------------------------------------------=

zik

wik
 

j i 1+=

n

∑ wjk  li j–

li i
------------------------------------------------------=

A

P
P Q
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Eq. 4-12

For the unsymmetric case,

Eq. 4-13

The usual forward pass solves the following equation for the symmetric case

Eq. 4-14

For the unsymmetric case,

Eq. 4-15

for .  The backward pass gives  from the following equation for the symmetric 
case

Eq. 4-16

For the unsymmetric case,

Eq. 4-17

The storage requirements are real arrays for the right-hand side  and the result 
, an integer vector of length  holding the permutation information, and 

workspace for the factor.

Note that only real right-hand sides are supported in the sparse Cholesky case.

Parallel Method
A shared memory, parallel execution of the sparse method is also available.  The 
parallelization is either on the factor side of the equations, based on special shared 
memory parallel kernels, or on the right-hand side when multiple loads exists.

Also, the DISFBS module is available for distributed forward-backward 
substitution based on domain decomposition. The distributed method uses the 
factor and Schur complement matrices produced by the DISDCMP module. 
Conceptually, this is similar to the distributed linear solution used in the parallel 
Lanczos method; see “Geometric Domain Decomposition-Based Distributed 
Parallel Lanczos Method” on page 159.

LDLTPX PB=

PLUQX PB=

LY PB=

PLY PB=

Y X

DLT PX( ) Y=

UQX Y=

B
X N
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4.3 User Interface
To solve the matrix equation  (right-handed solution) or  
(left-handed solution) using the triangular factors computed by DCMP.

Input Data Blocks:

Output Data Block:

Parameters:

To perform a distributed forward-backward substitution using the factors 
computed by DISDCMP.

Input Data Blocks:

Output Data Blocks:

FBS LD,U,B/X/KSYM/SIGN/FBTYP $

LD Lower triangular factor/diagonal, or Cholesky factor.

U Upper triangular factor. Purged unless [A] is unsymmetric.

B Rectangular matrix.

X Rectangular matrix having the same dimensions as [B].

KSYM Input-integer-default = –1. See “Method Selection” on page 82.

SIGN Input-integer-default = 1. See “Method Selection” on page 82.

FBTYP Input-integer-default = 0. See “Option Selection” on page 83.

DISFBS LBB,DSFDSC,EQMAP,UABAR/UA,PABAR,LOO/HLPMETH $

LBB Distributed boundary sparse factor matrix (contains the local panels of 
the fronts).

DSFDSC Table description of boundary sparse factor matrix.

EQMAP Table of degree-of-freedom global-to-local maps for domain 
decomposition.

UABAR Local updated rectangular ("loads") matrix.

UA Global boundary solution for distributed decomposition.

PABAR Summed up updated rectangular ("loads") matrix for distributed 
decomposition.

LOO Merged boundary sparse factor matrix for distributed decomposition.

A[ ] X[ ] B[ ]±= X[ ]T A[ ] B[ ]T=



81CHAPTER 4
Direct Solution of Linear Systems
Parameters:

Remark: LBB and DSFDSC may be purged.

HLPMETH Input-integer-default = 0. Processing option.

>0 Summation only.

=0 Complete distributed forward-backward substitution (default).

=4 Summation operation and merging of distributed sparse 
boundary factor matrix.
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4.4 Method Selection

FBS Method Selection
The FBS method selection is executed via the following parameters:

Additionally, if the factor matrix is symmetric and non-sparse, the system cell 
FBSOPT = SYSTEM(70) may be used to select a submethod. By default, the method 
minimizing the sum of CPU and I/O time estimates is chosen. The value of FBSOPT 
is interpreted as follows:

KSYM Symmetry flag.

–1 choose symmetric if [U] is purged, otherwise unsymmetric 
(default).

0 matrix [A] is unsymmetric.

1 matrix [A] is symmetric.

2 perform left-handed solution. See “Option Selection” on 
page 83.

SIGN Sign of [B].

1 solve [A] [X] = [B] (default).

–1 solve [A] [X] = –[B].

SYSTEM(70)
FBSOPT Non-Sparse Submethod

-2 Method 1A

-1 Method 1

0 Automatic selection (default)

+1 Method 2
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4.5 Option Selection

Right-handed FBS Options
The user can control the flow of the forward-backward substitution from within 
source code via SYSTEM(74), or by using the FBTYP parameter (DMAP call). If the 
FBS module is called from DMAP, then SYSTEM(74) is overriden by the FBTYP 
parameter. The default value is 0, which indicates a full execution of both passes 
of the solution.  Set FBTYP to +1 for a forward pass only; set FBTYP to –1 for a 
backwards only partial execution.  These options are useful in eigenvalue 
modules.

If the forward-backward substitution is called from source code with a symmetric 
non-sparse factor matrix, then SYSTEM(73) = +1 can be set to indicate the presence 

of a Cholesky factor .  The default is 0, which indicates the regular  
factor. The factor type is determined automatically in the FBS module, so this 
system cell has no effect when called from DMAP. To summarize this:

Left-handed FBS Option
The left-handed FBS obtains the solution by rows, as opposed to columns. Since 
the solution is packed out via the usual GINO facilities, the solution rows are 
stored as columns of the solution (X) matrix. The user may input a transposed or 
untransposed right-hand side (B) matrix, except for sparse Cholesky factors, in 
which case only SYSTEM(72) = 1 is supported. To summarize this:

SYSTEM Value Action

(73) +1 Cholesky factor:

else Regular factor:  (default)

(74) +1 Solve 

or FBTYP 1 Solve 

0 Full FBS (default)

SYSTEM Value Action

(72) = 1

L[ ] L[ ]T L[ ] D[ ] L[ ]T

L[ ] L[ ]T X[ ] B[ ]=

L[ ] D[ ] L[ ]T X[ ] B[ ]=

L[ ] Y[ ] B[ ]  or L[ ] D[ ] Y[ ] B[ ]==

L[ ]T X[ ] Y[ ]=

B XTA=

1≠ BT XTA=
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The FBS options controlled by cells 73 and 74 apply to the left-handed solution 
similarly.

Parallel FBS Solution
The user needs FBSOPT = –2 and SYSTEM(107) = PARALLEL > 1 for the right-hand 
side shared memory parallel execution. For the factor side parallel, only PARALLEL 
> 1 is needed.

The parallel method can be deselected for FBS by setting PARALLEL = 1024 + ncpu 
where ncpu = number of CPUs.  This setting leaves the other parallel methods 
enabled.



85CHAPTER 4
Direct Solution of Linear Systems
4.6 Diagnostics
For the direct solution of systems of linear equations, diagnostics can also be 
classified as follows:  numerical diagnostics, performance messages, and error 
diagnostics.

Numerical Diagnostics
UIM 5293:

Performance Messages
UIM 4234:
UFBS TIME ESTIMATE  TO FORM XX TYPE = X CPU = X I/0 = X TOTAL = X 
PASSES = X

UIM 4153:
FBS METHOD X TIME ESTIMATE TO FORM XX CPU = X I/0 = X TOTAL = X 
PASSES = X

These messages are printed only when the CPU time estimate is greater than the 
value of SYSTEM(20) (default = machine-dependent).  To force the printing of 
these messages, the user must set SYSTEM(20) = 0.

Error Diagnostics
FBS 1(2, 3 OR 4) FATAL ERROR 20:     USER FATAL MESSAGE

This error should not occur under normal circumstances.  The cause for the error 
is that information from the GINO control block is incompatible with information 
from the buffer.  This occurs in methods 1 or 1A only.

SFM FBSUB LOGIC ERROR 10:     USER FATAL MESSAGE

This error is similar to the previous one from method 2.

SFM 6069 (LFBSS):
SYMMETRIC LEFT HANDED FBS IS CALLED TO SOLVE A COMPLEX SYSTEM 
WITH CHOLESKY FACTOR.

This option is not supported.

SFM 6070 (LFBSS):
ERROR IN READING THE FACTOR IN SYMMETRIC LEFT HANDED FBS

FOR DATA BLOCK . . . . LOADSEQ EPSILON EXTERNAL WORK

. . . . . . . . . . . .

. . . . . . . . . . . .
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These messages are from the left-handed method.  They are either from symmetric, 
unsymmetric, or from the timing phase of either one.  The cause for this error is 
similar to the cause for Error 20.

SFM 6072 (LFBSU):
INCORRECT PIVOTING INSTRUCTIONS IN UNSYMMETRIC FACTOR 
DURING A LEFT HANDED FBS.

This message is similar to Error 20 since it indicates inconsistency in a data block.

SFM 6073 (LFBSU):
ERROR IN READING THE FACTOR IN UNSYMMETRIC LEFT HANDED FBS

Similar causes as Error 20.

SFM 6201 (FBSQCK):
SPARSE FBS CANNOT BE EXECUTED WHEN THE FACTOR IS REAL AND THE 
RIGHT HAND SIDE IS COMPLEX.

Recommendation:  Do not select the sparse decomposition and FBS methods under 
these circumstances.

UFM 6138 (DFMSB):
INSUFFICIENT CORE FOR SPARSE FBS.
USER ACTION:  INCREASE CORE BY XX WORDS.
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4.7 FBS Estimates and Requirements

Sparse FBS Estimates
The CPU time for sparse FBS is:

Eq. 4-18

Data move time (sec):

Eq. 4-19

where:

The minimum storage requirements of FBS are:

where:

= number of right-hand sides

= number of nonzeroes in the factor

= number of passes

Disk:

Memory:

= average front size

= machine precision (1 for short-word machines, 2 for long-word 
machines)

Note:  are defined in the Glossary of Terms.

2 NRHS NZFAC M⋅ ⋅

2 N NRHS P 2 NZFAC Ps Npass⋅ ⋅+⋅ ⋅

NRHS

NZFAC

Npass

NZFAC IPREC⋅ 2 N NRHS IPREC⋅ ⋅+

1 2⁄ Nfront
2 IPREC 2 N IPREC⋅+⋅ ⋅

Nfront

IPREC

M P  and Ps,
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5.1 Iterative Solutions
The previous chapter discussed the solution of linear systems using the direct 
method, which consists of matrix decomposition followed by a forward-backward 
substitution.  In this chapter an alternative method, the iterative solution, is 
described. 

There are two types of iterative solution; global and element. The global type uses 
the assembled matrices while the element type uses the element matrices. The 
element type is limited in the problems it can solve but is more efficient with solve 
times as much as 6X faster.

Solution Sequences.  The iterative solver can be used in the following solution 
sequences:

Parallel Execution.  In addition to the above sequential versions, the global 
iterative solver is implemented for parallel execution on distributed memory 
machines in SOL 1 and SOL 101 (linear statics).

Methods
Global: 

For symmetric positive definite systems, several different versions of the 
preconditioned conjugate gradient method are available in NX Nastran.  For 
unsymmetric or indefinite systems, the preconditioned bi-conjugate gradient or 
the preconditioned conjugate residual method is used.

Element: 

In the element based version, the preconditioner consists of two parts:

(i) The first part approximates the matrix very well in a lower dimensional 
subspace. This lower dimensional subspace is generated using the element and 
node geometry and the types of degrees of freedom in the model. The lower 
dimensional subspace is meant to provide a very coarse approximation to the low 
frequency eigenvector subspace.

Global Element 

Linear statics (SOLs 1, 101) Linear statics (SOLs 1, 101)

Nonlinear statics (SOL 106)

Direct frequency response (SOLs 8, 108)

Modal frequency response (SOLs 11, 111)
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(ii) The second part is a simple approximation to the matrix in the orthogonal 
complement of the above low dimensional subspace.

The preconditioner makes a suitable trade-off between the cost of factoring the 
preconditioner and the estimated number of conjugate gradient iterations required 
to solve the problem within a reasonable tolerance.
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5.2 Theory of the Conjugate Gradient Method
The conjugate gradient method minimizes the error function

Eq. 5-1

The first derivative (gradient) of this function is

Eq. 5-2

which is the negative of the residual.  An iterative procedure is obtained by 
calculating consecutive versions of the approximate solution as follows:

Eq. 5-3

and

Eq. 5-4

where the direction  and the distance  are computed to minimize the above 
error function.

Computationally efficient forms to calculate these quantities are

Eq. 5-5

where 

See Hageman and Young, 1981 [1] for more details.  The algorithmic formulation 
is fairly straightforward.

Convergence Control
Convergence is achieved inside the iteration loop when the following inequality 
holds:

F x( ) 1
2
---  xTAx xTb–=

dF
dx
------- Ax b r–=–=

xi 1+ xi αi  pi+=

ri 1+ ri αi  Api–=

p α

αi
ri
Tri

pi
TApi

---------------=

pi ri βi  pi 1–+=

βi
ri
Tri

ri 1–
T  ri 1–

----------------------------=
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Eq. 5-6

where  denotes the residual vector after  iterations,  denotes the initial 
right-hand side vector, and  is a user-defined parameter (default: 1.E-06).  If this 
ratio does not become smaller than  within the maximum number of iterations,  
is compared to an energy norm (Eq. 5-7)  after the iteration loop is finished.  The 
solution is accepted if the following inequality holds:

Eq. 5-7

where  is the solution vector,  is the final residual vector, and  is the initial 
right-hand side vector as before.  Experience has shown that the convergence 
criterion inside the iteration loop (Eq. 5-6) is far more conservative than the 
convergence criterion outside the iteration loop (Eq. 5-7).

Based on user selection, an alternate convergence criterion is available for Jacobi, 
Cholesky and RIC preconditioning:

Eq. 5-8

where:

See Conca, 1992 [2] for details.

Block Conjugate Gradient Method (BIC)
The BIC method is the most recent and most recommended method for the iterative 
solution of linear systems in NX Nastran.  It was introduced several years ago and 
has gone through major improvements with regard to memory management and 
spill logic since then.

BIC is a block version of the conjugate gradient method described above where 
‘block’ refers to two characteristics of the method:

1. The efficient solution of the linear system with a block of right-hand sides 
where the following inequality is expected to hold for  (  = the 
number of right-hand sides)

=

=
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where  refers to the time needed to solve the linear system with just the 
i-th right-hand side and  refers to the time needed to solve the linear 
system with the complete block of  right-hand sides.

The method will still work for ; however, the inequality may not 
hold.

2. Both the matrix and the preconditioner are stored in block-structured 
form to improve the performance.

The block of direction vectors is updated in every iteration as

Eq. 5-9

and the blocks of residual and solution vectors are updated as

Eq. 5-10

Eq. 5-11

where all matrices are  size except for , which is obtained by the 
concatenation of the two matrices as

Eq. 5-12

and it is of size .  Convergence is achieved when the following inequality 
holds

Eq. 5-13

where  is the column index, ,  is the rectangular matrix of the  residual 
vectors,  is the set of right-hand sides, and  is the set of solution vectors.  See 
Babikov, 1995 [3] for more details.

The algorithmic formulation of this method employed in the iterative solution 
module is fairly straightforward, except for the very difficult issue of performing 
the linear solve of order  in Eq. 5-9.  However, the details of that calculation are 
beyond the scope of this guide.
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Real and Complex BIC
The BIC methods differ for real and complex linear systems of equations, and 
therefore are described separately in the following paragraphs.  The parameters are 
described in “User Interface” on page 101.

The real BIC method follows the basic algorithm shown below. Here,  is the 
preconditioner,  is the block of right-hand side vectors,  is the block of updated 
solution vectors, and  is the block of updated residual vectors.

The memory management and the spill logic are rather involved, and only the basic 
steps are listed below:

1. Execute a bandwidth-reducing permutation

2. Symbolic phase

B
F X

R

X0 X 1– 0= =

R0 R 1– F–= =

Loop on k 1 2 …  ITSMAX,,,=

Wk B 1– Rk=

Vk AWk=

Tk Xk Xk 1– Wk–[ ]=

Pk Rk Rk 1– Vk–[ ]=

Gk Pk
T Tk( )

1–
=

Hk Gk Tk
T Rk=

Xk Xk 1– Tk  Hk–=

IF error ITSEP S<( )  then converged

End loop on k

Rk Rk 1– Pk  Hk–=
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Find the best memory usage given a certain amount of memory and an 
IPAD value (see “User Interface” on page 101 for details on IPAD).  The 
following logical steps are traversed in this order:

a. Check if matrix and factor fit in core; if yes, go to step e.

b. Check if factor fits in core with matrix being out-of-core; if yes, go to 
step e.

c. Check if memory is sufficient when factor and matrix are both 
out-of-core; if yes, go to step e.

d. Decrease padding level:  IPAD = IPAD – 1; go back to step a.

e. Set up memory accordingly.

3. The numeric phase of the preconditioner calculation makes use of the 
following techniques:

a. Calculation of preconditioner in double precision; storage of final 
preconditioner in single precision.

b. Restarts with global shift regularization if incomplete factorization 
fails.

c. Post truncation for well-conditioned problems.

4. Using the techniques described above, more memory may be available 
than was predicted by the symbolic phase.  Unless both matrix and 
preconditioner are in core, as much as possible is read from the scratch 
files and saved in memory.

The memory management and spill logic for the complex BIC methods are 
different.

For the complex case, there are two different BIC methods which are selected via 
the IPAD value.  For IPAD < 5, the complex BIC algorithm is similar to the real BIC 
method.  However, for IPAD ≥ 5, a very different strategy is used, which is 
described below.

The solution of the system

is based on its equivalent representation

where matrices  and  (= , since  is symmetric) have fully zero 
imaginary parts and  is truly complex.  The solution is found using the Schur 
complement.

AX F=

A11 A12

A21 A22⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞ X1

X2⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞ F1

F2⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

A11 A12 A21
T A

A22
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There is no spill logic for the first complex method (IPAD < 5):  if the matrix and 
preconditioner do not both fit in core, then a fully out-of-core approach is used.

Spill logic for the second complex BIC method is available.  It determines whether 
only , only , or both  and  can be kept in core.  is always kept in core 
since it usually has very few nonzero terms.

The second complex BIC method is recommended and is also the default for 
complex symmetric linear systems.

A11 A22 A11 A22 A12
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5.3 Preconditioning Methods
The use of a preconditioner is recommended to reduce the number of iterations.  
The disadvantage of this process is that the preconditioning calculation increases 
the amount of work in each iteration.  With the use of a preconditioner matrix, the 
original problem is now written as

Eq. 5-14

where  is the preconditioning matrix.  In this form, the preconditioner is applied 
in every iteration step.  This is called stepwise preconditioning.  The Jacobi and 
Cholesky preconditioners are stepwise.  If  is chosen, then the problem is 
trivial:

Eq. 5-15

Of course, the cost of this preconditioning is equivalent to the direct solution of the 
system.

The following four major stepwise preconditioning strategies are supported in NX 
Nastran.

Jacobi (J).  For the Jacobi method, the  matrix is a diagonal matrix containing 
the diagonal terms of the  matrix.  The preconditioning step in every iteration is 
a simple division of the current residual vector by these terms.

Cholesky (C).  In the Cholesky method, the selection of the preconditioner matrix 
is

Eq. 5-16

where  is an incomplete Cholesky factor of .  Despite wide acceptance, the use 
of standard Cholesky preconditioning in the conjugate gradient method is only 
proven to be very good for finite difference discretization of partial differential 
equations.  For example, the conjugate gradient method has convergence 
problems when used in finite element problems with high Poisson ratios.

Reduced Incomplete Cholesky (RIC).  In the RIC method the preconditioner 
matrix is calculated based on elemental information as

Eq. 5-17

where  is the elemental matrices used to assemble .

This method significantly increases the performance of the iterative solver for shell 
problems.  See Efrat, 1986 [4] for details.

P 1– Ax P 1– b=

P

P A=

P 1– Ax Ix= A 1– b=

P
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P CCT A≅=
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Block Incomplete Cholesky (BIC).  Another disadvantage of the Cholesky 
method is the calculation cost for the incomplete or reduced factor and the memory 
requirement for parts of the Cholesky factor.  A specific block sparse 
implementation reduces these disadvantages. This proprietary method uses a 
global shift regularization strategy, a post-truncation technique for 
well-conditioned problems, and allow a certain level of fill-in based on delicate 
numerical considerations.  The implementation of the block conjugate gradient 
method accelerates convergence for problems involving multiple loads.  Moreover, 
a band reordering method is used for the matrix in the symbolic phase of the 
iterative solver.  See Babikov, 1995 for details.

Scaling
Another approach for preconditioning is to use the preconditioner as a 
transformation.  Then

Eq. 5-18

is transformed into

Eq. 5-19

In this case the solution of the transformed system has to be converted back to the 
original solution as follows:

Eq. 5-20

An example of this transformation approach is diagonal scaling.  Diagonal scaling 
is a useful tool for matrices whose terms differ significantly in magnitude.  In this 
method, the following transformation is performed:

Eq. 5-21

where  is an intermediate result, such as

Eq. 5-22

The diagonal terms of the scaled matrix are unity as a result of the diagonal scaling.  
This scaling makes the Jacobi preconditioning step trivial.  The other (Cholesky 
type) preconditioning methods may be combined with scaling.

Numerical Reliability of Equation Solutions
The accuracy of the solution of the linear equation systems in NX Nastran is 
evaluated with the following residual vector:

P 1– AP 1– Px P 1– b=

A  x b=

x P 1– x=

D 1– A D 1– x D 1– b•=•• )

x )

D diag … aii …, ,( )  and x D 1– x•== )
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Eq. 5-23

This residual vector is calculated for each solution vector in static analysis.  Then 
a scalar value is calculated as follows:

Eq. 5-24

The magnitude of this error ratio indicates the numerical accuracy of the solution 
vector x.

r b Ax–=

ε xTr

xTb
---------=
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5.4 User Interface
Format for global non-p-version solution:

Format for global p-version solution:

Input Data Blocks:

SOLVIT A,B,XS,PC,USET,KGG,GM,SIL,EQEXIN,EDT,CASECC,EQMAP/
X,R,PC1,EPSSE/
SIGN/ITSOPT/ITSEPS/ITSMAX/IPAD/IEXT/ADPTINDX/
NSKIP/MSGLVL/PREFONLY/S,N,ITSERR/SEID $ 

SOLVIT A,B,XS,PS,USET,USET0,SIL0,SIL,EQEXIN,EDT,CASECC,
EQMAP/
X,R,PG,EPSSE/
SIGN/ITSOPT/ITSEPS/ITSMAX/IPAD/IEXT/ADPTINDX/
NSKIP/MSGLVL/PREFONLY/S,N,ITSERR/SEID $

A Square matrix (real or complex, symmetric or unsymmetric).

B Rectangular matrix (real or complex), the right-hand side.

XS Optional starting vector, same type as B (may be purged).

PC Optional stepwise preconditioner, same type as A (may be purged).

USET Degree-of-freedom set membership table. See Remark 3.

KGG Stiffness matrix - g-set. See Remark 3.

GM Multipoint constraint transformation matrix. See Remark 3.

USET0 USET table from previous adaptivity index in p-version analysis.

SIL Scalar index list.

SIL0 SIL table from previous adaptivity index in p-version analysis.

EQEXIN Equivalence table between external and internal grid/scalar 
identification numbers. Required for p-version preconditioning only.

EDT Table of Bulk Data entry images related to element deformation, 
aerodynamics, p-element analysis, divergence analysis, and the 
iterative solver.

CASECC Table of Case Control command images. Required if SMETHOD Case 
Control command is used and NSIP=-1.

EQMAP Table of degree-of-freedom global-to-local maps for domain 
decomposition.
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Output Data Blocks:

Parameters:

X Solution matrix. Rectangular matrix having the same dimensions and 
type as [B].

R Residual matrix. Rectangular matrix having the same dimensions 
and type as [B], the residual [R] = [B] - [A][X].

PC1 Updated stepwise preconditioner matrix. See Remark 6.

EPSSE Table of epsilon and external work.

SIGN Input-integer-default = 0. Sign flag for [B].

0 : + [B]

1 : -  [B]

ITSOPT Input-integer-default = 0. Preconditioner flag. See “Option 
Selection” on page 108. 

0 Choose optimal method based on type of problem:

ITSOPT    Type of problem

    6             p-version and real [A] and [B]
   10            complex [A] and/or [B]
   11            non p-version and real [A] and [B]

1 Jacobi preconditioning (default) for real, complex, symmetric 
and unsymmetric A.

2 Incomplete Cholesky preconditioning or user-given 
preconditioner.

3 Reduced incomplete Cholesky preconditioning. preconditioner 
(available for real symmetric A only).

4 User supplied for real, complex, symmetric A.

5 Incomplete geometric, Jacobi hierarchic for real symmetric A.

6 Complete geometric, Jacobi hierarchic for real symmetric A.

7 Complete geometric, incomplete hierarchic for real symmetric A.

10 Block incomplete Cholesky for well-conditioned real symmetric 
A (default for real A).

11 Block incomplete Cholesky for well-conditioned complex 
symmetric A (default for complex A).

<0 Same as above with diagonal scaling.

ITSEPS Input-real-default = 1.0E-6. Convergence parameter epsilon.



103CHAPTER 5
Iterative Solution of Systems of Linear Equations
ITSMAX Input-integer-default = 0. Maximum number of iterations. The 
default value implies N/4 (N = dimension of [A]).

IPAD Input-integer-default = 0 (see table below). Padding level for reduced 
or block incomplete Cholesky factorization (0, 1, 2, ...). See Remarks 1 
and 2. See also “Option Selection” on page 108.

IPAD 
default

Method ITSOPT Model 
type

Type of 
[A]

0 reduced incomplete 
Cholesky

3 all real

2 block incomplete Cholesky 10,11 3-D real

3 block incomplete Cholesky 10,11 2-D or 
mixed

real

5 block incomplete Cholesky 10,11 all complex

IEXT Input-integer-default = 0. Extraction level in reduced or block 
incomplete Cholesky factorization. See Remarks 1 and 2. See also 
“Option Selection” on page 108.

IEXT 
default

Reduced Block

0 0 solid bodies, no rigid elements. Requires USET and 
SIL

1 1 shells only Heuristic block 
structure (default)

2 2 mixed including rigid elements n/a

ADPTINDX Input-integer-default=0. P-version analysis adaptivity index. See 
Remark 7.

NSKIP Input-integer-default=1. Record number of current subcase in 
CASECC and used only if the SMETHOD command selects the 
ITER Bulk Data entry which specifies values for the desired iteration 
parameters. If NSKIP=-1 then CASECC is not required and the 
values are taken from the module specification of the values.

MSGLVL Input-integer-default=0. Message level output. See “Option 
Selection” on page 108.

0 minimal; i.e., UIM 6447 (default).
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Remarks:

1. If ITSOPT = 3, the IPAD level is recommended to be 0, 1, or 2 (IEXT = 0) and 
should be increased when IEXT is increased.

2. The amount of memory needed for ITSOPT = 3, 10, and 11 increases with the 
increase of the parameters IPAD and IEXT.

3. For ITSOPT = 1 or 2, the input data blocks USET, KGG, and GM may be 
purged. For ITSOPT = 3, USET must be specified. KGG and GM are necessary 
only if IEXT = 2.

4. If the message “ *** USER FATAL MESSAGE 6288 (SITDRV): UNABLE TO 
CONVERGE WITH ITERATIVE METHOD” is issued, then results will still be 
printed but may be inaccurate.

5. The system cell SYSTEM (69) is equivalent to the SOLVE keyword and 
controls some special options for the module:

6. If data block PC1 is specified, the CPU time will increase slightly.

7. If SOLVIT is to be used for p-element analysis and ADPTINDX>1, then XS 
and PC must be the solution matrix and pre-conditioner from the previous 
adaptivity p-level. Also, the USET and SIL from the previous p-level are 
specified for U and KGG and the USET and SIL from the current p-level are 
specified for GM and SIL. 

8. For frequency response analysis with ITSOPT=10 or 11 (block incomplete 
Cholesky), IEXT=0 is not available and IEXT=1 is used automatically.

1 UIM 6447, convergence ratios, and residual norms

PREFONLY Input-integer-default=0. Preface execution only. If set to -1 then 
SOLVIT is terminated after the preface information is 
computed and printed.

ITSERR Output-integer-default=0. Iterative solver return code.

 1 no convergence

 2 insufficent memory

SEID Input-integer-default=0. Superelement identification number.

SOLVE Action

2 Suppresses the user information message at each iteration.

8 Use alternative convergence criterion (less conservative 
than default).
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Examples:

1. Solve [A][X]=[B] with Jacobi pre-conditioning with convergence established at 
1.E-4 and maximum allowed iterations at 55 specified for the module 
parameters.

SOLVIT   A,B,,,,,,,,,/X,,//1/1.E-4////-1 $

2. Same as 1 except parameters are obtained from the SMETHOD command and 
ITER entry.

SOLVIT   A,B,,,,,,,,EDT,CASECC/X,, $

3. Same as 2 except for p-version analysis.

DBVIEW SIL0    = SILS   (WHERE PVALID=PVALOLD) $
DBVIEW UL0     = UL     (WHERE PVALID=PVALOLD) $
DBVIEW USET0   = USET   (WHERE PVALID=PVALOLD) $
DBVIEW PRECON0 = PRECON (WHERE PVALID=PVALOLD) $
SOLVIT         KLL,PLI,UL0,PRECON0,USET,USET0,SIL0,SILS,
               EQEXINS,EDT,CASES/
               UL,RUL,PRECON///////ADPTINDX/NSKIP $
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Format for element based solution:

Input Data Blocks:

Output Data Blocks:

Parameters:

SOLVIT KELM,PG,KDICT,SIL,ECT,BGPDT,CSTM,EDT,CASECC,USETB,RG,MPT,
YGB,SLT,MDICT,MELM,EPT/UGV1,QG1,/V,Y,ISIGN/V,Y,IOPT/
S,N,ITSEPS/V,Y,ITSMAX/V,Y,IPAD/V,Y,IEXT//NSKIP/V,Y,IMSGFL/
V,Y,IDEBUG/V,Y,IERROR $

KELM Element stiffness matrix.

PG Load vector in g set.

KDICT Element stiffness dictionary.

SIL Scalar index list.

ECT Element connectivity table.

BGPDT Basic grid point data table.

CSTM Coordinate system transformation matrix.

EDT Element data table.

CASECC Case control command images.

USETB Degree-of-freedom set membership table.

RG Constraint matrix in g set.

MPT Material property table.

YGB Specified non-zero displacements in g set.

SLT Static load table.

MDICT Mass dictionary.

MELM Element mass matrix.

EPT Element property table.

UGV1 Displacements - g set.

QG1 SPC forces - g set.

ITSEPS Input-real-default = 1.0E-6. Convergence parameter epsilon. 

ITSMAX Input-integer-default = 1000. Maximum number of iterations.

ITSERR Output-integer-default = 0. Iterative solver return code.
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5.5 Iterative Method Selection
The NASTRAN keyword ITER (equivalent to SYSTEM(216)) is used to select the 
iterative solution by ITER = YES.  The default is ITER = NO. The NASTRAN 
keyword ELEMITER (equivalent to SYSTEM(399)) is also required to select the 
element iterative solution by ELEMITER=YES.

The defaults for the iterative solver can be changed via the Bulk Data entry ITER, 
which needs to be selected in the Case Control Section as 

SMETHOD = SID

The Bulk Data entry ITER uses a free parameter format as follows:

where CHAR = character type and INT = integer.

Note that the order and existence of the parameters is not mandatory.  For example, 
the following Bulk Data entry selected by SMETHOD=10 in the Case Control 
Section is valid:

This entry chooses a Jacobi preconditioner with 1.0E-04 accuracy.

Continuation lines must start in column 9, aligning with SID.  Embedded spaces and 
commas are allowed and the conventional continuation entry markers (+xx, +xx) 
are obsolete.

All integer and real parameters correspond to the appropriate SOLVIT parameters.  
The parameters used for method and option selections are also described in 
“Option Selection” on page 108.

ITER SID
PRECOND=CHAR CONV=CHAR
MSGFLG=CHAR ITSEPS=REAL ITSMAX=INT
IPAD=INT IEXT=INT PREFONLY=INT

ITER 10
ITSEPS=1.0E-04 PRECOND=J
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5.6 Option Selection

Preconditioner Options
The global iterative solver preconditioner options are controlled via the IOPT and 
the PRECOND parameters as shown below:

The scaling option is chosen by adding an ‘S’ to PRECOND or by setting IOPT 
negative.  For example, PRECOND=CS or IOPT=–2 means incomplete Cholesky 
with scaling.

The option PRECOND=USER can be used in the following ways:

• For direct frequency response (SOLs 8, 108) it will result in using the 
direct method for the first frequency.  The factor from this decomposition 
will then be used for the subsequent frequencies as the preconditioner 
with the iterative solver. If the iterative solver fails or takes too long time 
to converge, then the direct method will be used for the next frequency 
and the new factor will be used as the preconditioner for the subsequent 
frequencies.

• In cases where several linear systems of the same size need to be solved, 
and where the system matrices differ only slightly, this option can be 
used with a DMAP ALTER.  A possible scenario is to use the direct 
method to solve the first linear system, and then use the SOLVIT module 
for the solution of the subsequent systems.  Specify the output data block 
from the decomposition containing the factor as the 4th input data block 
(= user given preconditioner) to the SOLVIT module.  The following lines 
of DMAP show a simple example of the solution of two linear systems:

A X = F

PRECOND IOPT Preconditioner Type

J(S) 1(–1) Jacobi real, complex, 
symmetric,
unsymmetric

C(S) 2(–2) Incomplete Cholesky real, complex, 
symmetric,
unsymmetric

RIC(S) 3(–3) Reduced Incomplete 
Cholesky

real, symmetric

USER 4 User given real, complex, 
symmetric
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and

B Y = G

where A and B do not differ too much

The hierarchic (for p-version elements) preconditioning strategies are chosen as:

The block incomplete Cholesky (BIC) technique options are:

For the distributed parallel SOLVIT only Jacobi preconditioning is available.

Convergence Criterion Options
The convergence criterion options of SOLVIT are selected by CONV as follows:

DECOMP A/L, /$

FBS L, , F/X/$

SOLVIT B,G,,L,,,,,,,/Y,,//4//////–1 $

PRECOND IOPT Strategy Type

PBCJ 5 Incomplete geometric, Jacobi hierarchic real, 
symmetric

PBDJ 6 Complete geometric, Jacobi hierarchic 
(default for p-version problems)

real, 
symmetric

PBDC 7 Complete geometric, Incomplete 
hierarchic

real, 
symmetric

PRECOND IOPT Technique Type

BIC 11 Well conditioned problems (default 
for real problems)

real, symmetric

BICCMPLX 10 Complex problems (default for 
complex problems)

complex 
symmetric

CONV Criterion

AR Equation Eq. 5-6

GE Equation Eq. 5-8

AREX Equations Eq. 5-6 and Eq. 5-7

GEEX Equations Eq. 5-8 and Eq. 5-7
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For the BIC method the convergence criterion is automatically set to Eq. 5-13.

The default is determined according to preconditioner and solution type. For SOL 
108, Eq. 5-8 is used; otherwise, Eq. 5-6 applies. This default is overruled by 
choosing Jacobi (which selects Eq. 5-6) or incomplete Cholesky preconditioning 
(Eq. 5-8). Furthermore, the external convergence criterion (Eq. 5-7) is used unless 
the preconditioner is Jacobi with scaling (IOPT=-1) or incomplete Cholesky with 
scaling (IOPT=-2).

Diagnostic Output Options
The diagnostic output from the iterative solver is controlled by MSGFLG or 
MSGLVL as follows:

The parameter PREFONLY (default=0) can be set to –1, which will terminate the 
iterative solver after the preface, giving some helpful information in UIM 4157 
(.f04 file) such as matrix size and optimal memory requirements for best 
performance.

Element Iterative Solver Options
The parameter ELITASPC performs the autospc in the element iterative solver 
(default is NO). This parameter is set using a bulk PARAM card, e.g. 
PARAM,ELITASPC,YES. Normally the element iterative solver does not perform 
an autospc function as it is usually not necessary. For solid elements, the rotational 
dofs are eliminated directly. If K6ROT is specified for linear shell elements, there 
is no issue either. But for CQUAD8 and CTRIA6 elements and possibly other 
special cases, the autospc function is required. The drawback of this option is that 
it requires the assembly of the KGG matrix which is used in the autospc and this 
can have a significant impact on performance. This parameter will also generate 
the rigid body mass properties.

MSGFLG MSGLVL Action

no 
(default)

0 Only minimal output (i.e., UIM 6447 [see “Option 
Selection” on page 108], information on whether 
convergence was achieved).  In case of multiple 
loads, only if one or more loads did not converge, 
a final output is given for each right hand side.

yes 1 For 1 RHS:  Output above + convergence ratio and 
norm of residual for each iteration are given.

For > 1 RHS:  Minimal output + final output is 
given for each RHS.
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In-core Frequency Response Options
The in-core frequency response is available for modal frequency response(SOL 111). 
USER is selected as the preconditioner option. The in-core frequency method is 
selected by setting SYSTEM(462)=1and iter=yes. It will be deactivated if memory is 
insufficient.

Incomplete Cholesky Density Options
The density of the incomplete factor is controlled by the IPAD parameter as follows:

IPAD 
Default Method ITSOPT Model 

Type
Type of 

[A]

0 reduced incomplete 
Cholesky

3 all real

2 block incomplete Cholesky 10,11 3-D real

3 block incomplete Cholesky 10,11 2-D or 
mixed

real

5 block incomplete Cholesky 10,11 all complex
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Extraction Level Options for Incomplete Cholesky

Recommendations
The recommended preconditioner options are as follows:

In the case where it is known in advance that a particular model needs to be run 
many times (e.g. because the model needs to be modified in between, the load 
vector changes, or for some other reason), it is highly recommended to determine 
the best parameter setting for the iterative solver.  To do this, one can simply vary 
the IPAD value from 1, ... , 4, while monitoring the EST OPTIMAL MEMORY (see 
Performance Diagnostics), the size of the SCRATCH FILE (see Performance 
Diagnostics), and the CPU time spent in SOLVIT.  The defaults have been selected 
to give the best performance for most problems, but since the iterative solver is 
very sensitive to the conditioning of the matrix, they may not be best for all 
problems.

IEXT
Default Reduced Block

0 solid bodies, no rigid elements. Requires USET and SIL

1 shells only Heuristic block structure 
(default)

2 mixed including rigid elements n/a

• Real symmetric positive definite systems

Sequential : PRECOND = BIC

Parallel : PRECOND = J

• Complex symmetric positive definite systems

Sequential : PRECOND = BICCMPLX

• p-version analysis

Sequential : PRECOND = PBDJ

• Direct frequency response (SOLs 8, 108)

Sequential : PRECOND = USER

• Unsymmetric or indefinite systems

Sequential : PRECOND = J

Note: Except for SOL 108, all of the above recommended options are also the 
defaults.
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To find the EST OPTIMAL MEMORY without having to go through a complete run, 
one can set PREFONLY=–1 on the ITER Bulk Data entry.  This option will give the 
desired information and cause NX Nastran to exit after the symbolic phase of the 
iterative solver.

The distributed memory parallel execution of the SOLVIT module takes advantage 
of the fact that the matrix multiply operation (the most time-consuming part of 
certain iterative strategies) is also easily executed while the system matrix resides in 
parts on the local memories.  This is also the method of the iterative option of the 
STATICS supermodule.

Examples:

1. Solve [A][X]=[B] with Jacobi pre-conditioning with convergence established at 
1.E-4 and maximum allowed iterations of 55 specified for the module 
parameters.

SOLVIT   A,B,,,,,,,,,/X,,//1/1.E-4/55///-1 $

2. Same as 1 except parameters are obtained from the SMETHOD command and 
ITER entry.

SOLVIT   A,B,,,,,,,,EDT,CASECC/X,, $
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5.7 Global Iterative Solution Diagnostics
There are several different types of diagnostics given by the iterative solver, 
including:

• Accuracy diagnostics (.f06 file)

• Performance and memory diagnostics (.f04 file)

Accuracy Diagnostics
In the .f06 output file of an NX Nastran run, the following accuracy diagnostics 
and convergence messages may be found:

UIM 6447:
ITERATIVE SOLVER DIAGNOSTIC OUTPUT

The following example shows diagnostics for MSCFLG=yes and MSGFLG=no 
(default).

are as given in Eq. 5-6 and Eq. 5-13, EPSILON is given in Eq. 5-24, and 
EXTERNAL WORK is the denominator of Eq. 5-24.

MSGFLG=yes

R
B

----------     and   X I 1+( ) X I( )–
X I( )

--------------------------------------------

*** USER INFORMATION MESSAGE 6447 (SITDR3)
    ITERATIVE SOLVER DIAGNOSTIC OUTPUT
    IPS :  0.9999999975E-06
    BIC PRECONDITIONING
    ITERATION NUMBER       ||R|| / ||B||        ||X(I+1)-X(I)|| / ||X(I)||
            1             .1209539266E+00            .10000000E+01
            2             .2251168868E-02            .14229420E-01
            3             .8846335248E-04            .61378225E-03
            4             .1581571489E-05            .13831341E-04
            5             .5083508633E-07            .47836956E-06
*** USER INFORMATION MESSAGE 5293 (SBUT5 )
    FOR DATA BLOCK KLL
    LOAD SEQ. NO.              EPSILON               EXTERNAL WORK
               1          -4.3350458E-16           1.2827542E+05
*** USER INFORMATION MESSAGE 6448 (SITDR3)
    SOLUTION CONVERGED WITH ITERATIVE METHOD.
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MSGFLG=no (Default)

This last portion of the diagnostic table prints either the last iteration number only 
or all the iteration numbers based on the user selection of MSGFLG (see SOLVIT 
OPTIONS).

UIM 6448:
SOLUTION CONVERGED WITH ITERATIVE METHOD.

UIM 6320:
SOLUTION WAS CONTINUED BECAUSE EXTERNAL CONVERGENCE 
CRITERION WAS PASSED.

This message is printed if convergence is not achieved within the maximum number 
of iterations, even though the solution is accepted due to the energy norm check (see 
“Iterative Solutions” on page 90).

UFM 6288:
UNABLE TO CONVERGE WITH ITERATIVE METHOD.

UIM 5293:
FOR DATA BLOCK XX
LOADSEQ NO  EPSILON  EXTERNAL WORK

*** USER INFORMATION MESSAGE 6447 (SITDR3)
    ITERATIVE SOLVER DIAGNOSTIC OUTPUT
    EPS :  0.9999999975E-06
    BIC PRECONDITIONING
    ITERATION NUMBER       ||R|| / ||B||     ||X(I+1)-X(I)|| / ||X(I)||
            5             .5083508633E-07         .47836956E-06
*** USER INFORMATION MESSAGE 5293 (SBUT5 )
    FOR DATA BLOCK KLL
    LOAD SEQ. NO.             EPSILON            EXTERNAL WORK
               1         -4.3350458E-16        1.2827542E+05
*** USER INFORMATION MESSAGE 6448 (SITDR3)

    SOLUTION CONVERGED WITH ITERATIVE METHOD.

MSGFLG=YES will print the information in every iteration.

MSGFLG=NO must be set by the user to suppress the information (default).
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Performance Diagnostics
Performance diagnostics as well as information about the system matrix and the 
memory requirements are given in the .f04 NX Nastran output file with SIM 4157, 
which is also used in the direct solution.  An example is shown below with 
interpretation of the meaning of the different variables:

MATRIX SIZE, DENSITY, STRING LENGTH, NUMBER OF STRINGS, 
NONZERO TERMS, and FULL BAND WIDTH are all obvious characteristics of 
the system matrix.

The parameters IPAD, BLOCK SIZE, SCRATCH FILE, and MEMORY USED 
appear only for BIC preconditioning.

*** SYSTEM INFORMATION MESSAGE 4157 (SITDR3)
    PARAMETERS FOR THE ITERATIVE SOLUTION WITH DATA BLOCK KLL (TYPE = RDP ) FOLLOW
       MATRIX SIZE =  134333 ROWS                  DENSITY =  .00056
     STRING LENGTH =    5.19 AVG         NUMBER OF STRINGS =    1910 K
     NONZERO TERMS =   10107 K             FULL BAND WIDTH =    6243 AVG
  MEMORY AVAILABLE =   37359 K WORDS                  IPAD =       2
     NUMBER OF RHS =       1
        BLOCK SIZE =       5             EST OPTIMAL MEMORY=   27347 K WORDS
EST MINIMUM MEMORY =    4217 K WORDS
       MEMORY USED =   36639 K WORDS      PREFACE CPU TIME =   52.49 SECONDS
      SCRATCH FILE =       0 K WORDS         AVG. CPU/ITER =   .7693 SECONDS

MEMORY AVAILABLE = K words of memory available to the iterative solver.

IPAD = padding level used (see “User Interface” on 
page 101).

NUMBER OF RHS = number of load vectors.

BLOCK SIZE = block size used to block-structure the matrix.

ESTIMATED OPTIMAL
MEMORY

= memory needed by iterative solver to run in core; 
ensures optimal performance.

ESTIMATED MINIMUM
MEMORY

= absolute minimum memory needed for iterative 
solver to run; will not give best performance.

MEMORY USED = memory that was actually used by iterative solver.

PREFACE CPU TIME = time required for memory estimation, re-ordering, 
and preconditioner calculation.

SCRATCH FILE =0
>0

⇒ in core run
⇒ amount of spill
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For p-version analysis, the following additional information is printed in SIM 4157.

GEOMETRIC DOFs = number of rows in stiffness matrix corresponding to the 
geometric degrees of freedom.

HIERARCHIC DOFs = number of rows in stiffness matrix corresponding to the 
p degrees of freedom.
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5.8 Global Iterative Solver Estimates and 
Requirements
Time estimates for a complete iterative solution are not given, because the number 
of operations per iteration is different for each preconditioner. Moreover, it is 
never known in advance how many iterations will be required to achieve 
convergence.

However, the following paragraph gives the computation time for one iteration 
using Jacobi and BIC preconditioning. The calculation of the computation time t is 
based on the operations necessary in each iteration using a particular 
preconditioner.

• Jacobi:

• BIC:

where:

The minimum and optimal memory estimates are equally difficult to determine, 
since they also depend on the preconditioner used. Since BIC preconditioning is 
the most frequently used option and since the estimates for Jacobi preconditioning 
are rather straightforward, some memory estimates for those two options are 
given below:

–1 matrix/vector multiplication

–1 preconditioner application 

–3 dot products

⇒

–1 matrix/vector multiplication

–1 preconditioner application 

–8 dot products

–2 saxpy

⇒

= number of right-hand sides

N = number of rows in matrix

P = preconditioner

= number of nonzero terms in P

M = average time of one multiply-add operation

ri aii⁄

t M= NRHS N2 N 6 N•+ +( )••

z Pr
1–=

t M= NRHS N2 2 NZp• 10 N•+ +( )••

NRHS

NZp
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• Minimum memory in words (MINMEM)

• Jacobi:

• BIC:

• Optimal memory in words (OPTMEM)

• Jacobi:

• BIC:

where:

Remark

Memory requirements for BIC are only very rough estimates because of the:

• Automatic reduction of IPAD value.

• Automatic decision of post-truncation of the preconditioner for well-
conditioned problems.

Recommendation

To obtain reliable estimates, perform a trial run and stop after the symbolic phase 
by setting:

PREFONLY = –1 on ITER Bulk Data entry.

= number of right-hand sides

NWPT = number of words per term

1 for long word machines
2 for short word machines

NZA = number of nonzero terms in system matrix

N = number of rows in system matrix

5 5NRHS 2+( ) N• NWPT•    symmetric+

5 8NRHS 4+( ) N• NWPT•    unsymmetric+

0.5 NZA•

OPTMEM MINMEM NZA 2 N+⁄( ) NWPT•+=

IPAD 2 3, OPTMEM 3 NZA•≈⇒=

IPAD 4 OPTMEM 4 NZA•≈⇒=

NRHS
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5.9 Element Iterative Solver Memory Requirements
The minimum memory required in words:

For models made up of mostly 10 node TETRA elements:

Else;

where

50 * NGRIDs + PCG + 2,000,000

PCG = 90 * NE

PCG = 200 * NE

NGRID = number of grid points

NE = number of equations to be solved - sum of the L & M sets
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6.1 Real Eigenvalue Problems
The solution of the real eigenvalue problem is very important for many analysis 
solution sequences. The problem is numerically difficult and time consuming; 
therefore, NX Nastran offers methods in two different categories: the reduction 
(tridiagonal) method, and the iterative (Lanczos) method.

The problem of normal modes analysis is of the form:

Eq. 6-1

The problem of the buckling analysis is stated as

Eq. 6-2

where:

These problems may be solved with a reduction type method by transforming to a 
canonical form and reducing the whole matrix to tridiagonal form. An iterative 
method usually does not modify the matrices  and ; it may use their linear 
combination of  where  is a shift value. The Lanczos method, as 
implemented in NX Nastran, is a method using this technique. The detailed theory 
of real eigenvalue analysis is discussed in “Theory of Real Eigenvalue Analysis” 
on page 125.

Although the methods are mathematically interchangeable, the Lanczos method is 
recommended for the solution of large buckling and normal modes problems, for 
example, those arising in the analysis of complete vehicles. The reduction methods 
are useful for small normal modes problems in analysis of structural components. 

= the stiffness

= differential stiffness

= mass matrices

= eigenvalue

= eigenvector

K[ ]x λ M[ ]x=

K[ ]x λ Kd[ ]x=

K[ ]

Kd[ ]

M[ ]

λ

x

K M
K[ ] λs M[ ]+ λs
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6.2 Theory of Real Eigenvalue Analysis
Two main methods of real eigenvalue extraction are provided in NX Nastran in 
order to solve the wide variety of problems arising in finite element analysis 
applications:

1. Reduction (Tridiagonal) Method

2. Iterative (Lanczos) Method

In a reduction method, the matrix of coefficients is first transformed, while 
preserving its eigenvalues, into a special form (diagonal, tridiagonal, or upper 
Hessenberg) from which the eigenvalues may easily be extracted. In an iterative 
method, a certain number of roots are extracted at a time by iterative procedures 
applied to the original dynamic matrix. One of the methods used in NX Nastran is 
a transformation method (tridiagonal method), and the other is an iterative method 
(shifted block Lanczos method).

The preliminary transformation procedure of the transformation methods requires 
that the major share of the total effort be expended prior to the extraction of the first 
eigenvalue. Thus, the total effort is not strongly dependent on the number of 
extracted eigenvalues. In marked contrast, the total effort in the iterative methods is 
linearly proportional to the number of extracted eigenvalues. Therefore, it follows 
that the iterative methods are more efficient when only a few eigenvalues are 
required and less efficient when a high proportion of eigenvalues are required.

The general characteristics of the real methods used in NX Nastran are compared in 
Table 6-1. The tridiagonal method is available only for the evaluation of the 
vibration modes of conservative systems and not for buckling analysis due to 
restrictions on the matrix form. The Lanczos method is available for all vibration 
modes and buckling problems currently solved by NX Nastran.

It may be noted from Table 6-1 that a narrow bandwidth and a small proportion of 
extracted roots tend to favor the Lanczos method. An example of such a problem is 
the evaluation of the lowest few modes of a structure. When the bandwidth is 
relatively large, and/or when a high proportion of the eigenvalues are required, the 
tridiagonal method is probably more efficient, assuming the problem size is not too 
large.

The main advantage of including two methods is to provide a backup method if one 
method should fail (as sometimes happens with all methods of eigenvalue 
extraction).
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where:

Reduction (Tridiagonal) Method
The reduction method of NX Nastran offers Givens or Householder 
tridiagonalization options.

Table 6-1  Comparison of Methods of Real Eigenvalue Extraction

Characteristic/Method Tridiagonal
Method

Lanczos
Method

Matrix pencil

or

or

Restrictions on matrix 
character

A real, symmetric,
constant

or

 positive
semidefinite

or

 positive
semidefinite

Obtains eigenvalues in order All at once Several—nearest to
the shift point

Takes advantage of 
bandwidth or sparsity

No Yes

Number of calculations

Recommended All modes Few modes

= number of equations

= semi-bandwidth or similar decomposition parameter (such as average front size)

= number of extracted eigenvalues

A I,( )

A K
M
-----=

A M
K λM+
--------------------=

M K σM–( ) 1– M M,( )

K K σKd–( ) 1– K K,( )

M Singular≠

K λM Singular≠+

M

K

0 n3( ) 0 nb2E( )

n

b

E
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Transformation to Canonical Form

In the tridiagonal method when the eigenvalue problem is solved in a canonical 
mathematical form, a Cholesky decomposition is performed as follows:

Eq. 6-3

where  is a lower triangular matrix. The procedure used to obtain the factors is 
described in “Decomposition Process” on page 50. The symmetric matrix  is 
then obtained by the following transformation:

Eq. 6-4

Let

Eq. 6-5

where  is the transformed vector. Then

Eq. 6-6

After the eigenvalue of Eq. 6-4 is found, the eigenvectors can be calculated by using 
Eq. 6-5.

Tridiagonal Method

Tridiagonal methods are particularly effective for obtaining vibration modes when 
all or a substantial fraction of the eigenvalues and eigenvectors of a real symmetric 
matrix are desired. The general restrictions on the use of the method within NX 
Nastran are described in Table 6-1. The basic steps employed in the method are as 
follows. First, the canonical matrix is transformed into a tridiagonal matrix

Eq. 6-7

Next  is transformed to diagonal form:

Eq. 6-8

Finally, the eigenvectors are computed over a given frequency range or for a given 
number of eigenvalues and are converted to physical form.

Givens Tridiagonalization Method

The most recognized and stable tridiagonalization methods are the Givens and 
Householder methods. In the tridiagonal method of NX Nastran, both the Givens 
and Householder solutions are used. This section describes the Givens solutions, 
and the next section describes the Householder solutions.

M[ ] C[ ] C[ ]T=

C[ ]
A[ ]

C[ ] 1– K[ ] u{ } λ C[ ] 1– C[ ] C[ ]T u{ } 0=–

u{ } C[ ] 1 T,– x{ }=

x{ }

A C[ ] 1– K[ ] C[ ] 1 T,–=

A At→

At

At diag λ( )→
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The Givens method depends on orthogonal transformations  of a 
symmetric matrix . An orthogonal transformation is one whose matrix  
satisfies the following:

Eq. 6-9

The eigenvalues of a matrix are preserved under an orthogonal transformation since

Eq. 6-10

Consequently, if det  vanishes, then det  also vanishes.

The effect of a series of orthogonal transformations on the eigenvectors of a matrix 
is a succession of multiplications by orthogonal matrices. If

Eq. 6-11

and if  are orthogonal matrices, then

Eq. 6-12

Through the substitution

Eq. 6-13

we obtain

Eq. 6-14

where Eq. 6-9 is applied repeatedly to obtain the final form. Here  is an 
eigenvector of the transformed matrix:

and  is obtained from  by Eq. 6-13.

The Givens method uses a series of specially constructed orthogonal rotation 
matrices ; each such matrix, for given indices  and a given angle , 
matches the identity matrix  except for the four elements:

Eq. 6-15

T[ ] A[ ] T[ ]T

A[ ] T[ ]

T[ ] T[ ]T T[ ]T T[ ] I[ ]= =

T[ ] A[ ] λ I[ ]–( ) T[ ]T T[ ] A[ ] T[ ]T λ I[ ]–=

A[ ] λ I[ ]–( ) T[ ] A[ ] T[ ]T λ I[ ]–( )

A[ ] x{ } λ x{ }=

T1[ ] T2[ ] … Tr[ ], , ,

Tr[ ] Tr 1–[ ]… T2[ ] T1[ ] A[ ] x{ } λ= Tr[ ] Tr 1–[ ]… T2[ ] T1[ ] x{ }

x{ } T1[ ]T T2[ ]T… Tr 1–[ ]T Tr[ ]T y{ }=

Tr[ ] Tr 1–[ ]… T2[ ] T1[ ] A[ ] T1[ ]T T2[ ]T… Tr 1–[ ]T Tr[ ]T y{ }

λ= Tr[ ] Tr 1–[ ]… T2[ ] T1[ ] T1[ ]T T2[ ]T… Tr 1–[ ]T Tr[ ]T y{ }

λ= y{ }

y{ }

Tr[ ] Tr 1–[ ]… T2[ ] T1[ ] A[ ] T1[ ]T T2[ ]T… Tr 1–[ ]T Tr[ ]T

x{ } y{ }

Tk[ ] i j, θi 1 j,+
I[ ]

ti 1+ i 1+, tj j, θi 1+ j,( )cos= =

ti 1+ j, tj i 1+,– θi 1+ j,( )sin= = ⎭
⎬
⎫
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The orthogonal transformation  leaves all the elements of  unchanged 
except those in the st and j-th rows and columns, the so-called plane of 
rotation. The four pivotal elements of the transformed matrix are:

 Eq. 6-16

where , etc., are elements of the untransformed matrix. The other elements of the 
-st and j-th rows and columns of the transformed matrix are:

Eq. 6-17

In the Givens method, each rotation matrix is chosen so that  vanishes, which 
happens when

Eq. 6-18

The calculation of  followed by the orthogonal transformation

Eq. 6-19

is carried out for a sequence of iterations with . The values of  used in 
Eq. 6-8, Eq. 6-9, Eq. 6-10, and Eq. 6-11 are . For each , a set of  
transformations is performed with  assuming the values of  before the 
next value of  is used. As a result, the elements in the matrix positions  

 are successively reduced to zero together with 
their transposes, the  elements. Thus, the set of 
transformations reduces the matrix to tridiagonal form.

NX Nastran employs a procedure introduced by Wilkinson (1965) in which the 
Givens method is modified by grouping the  transformations together, 
which produces zeroes in the i-th row and column. This procedure should not be 
confused with the Householder method which eliminates a row and column at a 
time. The Wilkinson process is particularly advantageous when the matrix  is so 
large that all the elements cannot be held in memory at one time. The process 
requires only  transfers of the matrix to and from auxiliary storage instead of 
the  transfers required by the unmodified Givens method. This 
modified Givens method requires 4n memory locations for working space that are 
divided into four groups of n storage locations each. The first  rows and 
columns play no part in the i-th major step. This step has five substeps as follows:

T[ ] A[ ] T[ ]T A[ ]
i 1+( )

ai 1+ i 1+, ai 1+ i 1+, cos2 θi 1+ j,( ) aj j, sin2 θi 1+ j,( ) ai 1+ j, 2θi 1+ j,( )sin+ +←

aj j, ai 1+ i 1+, sin2 θi 1+ j,( ) aj j, cos2 θi 1+ j,( ) ai 1+ j, 2θi 1+ j,( )sin–+←

ai 1+ j6y, aj i 1+, ai 1+ j, 2θi 1+ j,( )cos← 1
2
--- ai 1+ i 1+, aj j,–( ) 2θi 1+ j,( )sin–= ⎭

⎪
⎪
⎬
⎪
⎪
⎫

aj j,
i 1+( )

ai 1+ s, as i 1+, ai 1+ s, θi 1+ j,( )cos← aj s, θi 1+ j,( )sin+=

aj s, as j, ai 1+ s,– θi 1+ j,( )sin aj s, θi 1+ j,( )cos+←= ⎭
⎬
⎫

ai j,

θi 1+ j,( )tan
ai j,

ai i 1+,
------------------=

θi 1+ j,

A m[ ][ ] Tm[ ] A m 1–( )[ ] Tm[ ]T=

A 0( )[ ] A[ ]= i
1 2 3 … n 1–( ), , , , i n i– 1–( )

j i 2 i 3 … n, ,+,+
i 1 3,( ) 1 4,( ) …,, ,

1 n,( ) 2 4,( ) 2 5,( ) … 2 n,( ) … n 2 n,–( ), , , , , ,
3 1,( ) 4 1,( ) … n n 2–,( ), , ,

n i– 1–( )

A[ ]

n 2–( )
n 1–( ) n 2–( ) 2⁄

i 1–( )
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1. The i-th rows of  are transferred to the set of memory locations in group 
1.

2. The values of , , ,  are computed 
successively from the following:

Eq. 6-20

where the superscripted term is computed by the following:

Eq. 6-21

and the starting value for  is as follows:

Eq. 6-22

The  may be overwritten on those elements of the untransformed 
matrix  which are no longer required, and the  is stored in the 
group 2 storage locations.

3. The st row of  is transferred to the group 3 storage locations. Only 
those elements on and above the diagonal are used in this and succeeding 
rows. For , in turn, the operations in substeps 4 and 5 are 
carried out.

4. The k-th row  is transferred to the group 4 storage locations. The 
elements , , and  are subjected to the row and column 
operations involving  and . For  in turn, 
the part of the row transformation involving  and  is 
performed on  and . At this point, all the transformations involving 
the i-th major step were performed on all the elements of row  and on the 
elements , ,  of row .

5. The completed k-th row is transferred to auxiliary storage.

When substeps 4 and 5 are complete for all appropriate values of , the work on row 
 is also complete. The values of  and  for , ,  

are transferred to the auxiliary storage, and row  is transferred to the group 1 
core storage locations. Since the  row plays the same part in the next major step 
as in the i-th in the step just described, then the process is ready for substep 2 in the 

A[ ]

θi 1+ i 2+,cos θi 1+ i 2+, …,sin θi 1+ n,cos θi 1+ n,sin

θi 1+ j,cos
ai j, 1+

j 1–( )

ai i 1+,
j 1–( )( )

2
ai j, 1–

2+
--------------------------------------------------------=

θi 1+ j,sin
ai i,

ai i 1+,
j 1–( )( )

2
ai j,

2+
------------------------------------------------=

ai i 1+,
j 1–( ) ai i 1+,

j 2–( )( )
2

ai j 1–,
2+=

j i 2+=

ai i 1+,
i 1+( ) ai i 1+,=

θi j,cos

ai j, θi 1+ j,sin

i 1+( ) A[ ]

k i 2 i 3 … n, ,+,+=

A[ ]
ai 1+ i 1+, ai 1+ k, ak k,

θi k,cos θi 1+ k,sin i k 1 k 2 … n, ,+,+=
θi 1+ k,cos θi 1+ k,sin

ai 1+ ak
k

i 2+ i 3 …,+ n i 1+( )

k
i 1+( ) θi 1+ k,cos θi 1+ k,sin k i 2+= i 3+ … n,

i 1+( )
i 1+( )
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next major step. In fact, substep 1 is only required in the first major step because the 
appropriate row is already in the storage locations of group 1 while performing 
subsequent steps.

Householder Tridiagonalization Method

The Householder tridiagonalization method uses the following transformation:

Eq. 6-23

where:

=

=  symmetric, orthogonal

= 1

Ar Pr Ar 1– Pr=

A0 A

Pr
 I 2 wr wr

T–

wr
Twr
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The elements of  are chosen so that  has all zeroes in the r-th row except for the 
three diagonal positions. The matrix  can be partitioned as:

where:

The  transformation matrix can be partitioned similarly as

where  = a vector of order 

By executing the multiplication given in the right-hand side of Eq. 6-23, the 
following is obtained:

where .

If we have chosen  so that  is null except for its first component, then the first 
 rows and columns of  are tridiagonal.

An algorithm formulation can be developed by writing  in the following form:

Eq. 6-24

= a tridiagonal matrix of order  (partial result)

= a square matrix of order  (part of original matrix)

= a vector having  components

wr Ar
Ar 1–

Ar 1–                                          

                    
            
                  
       
      
      

= =

r

n r–

x x     
x x x    
 x x x x x
  x x x x
  x x x x
  x x x x

Cr 1–

0

br 1–
T

0 br 1– Br 1–

Cr 1– r

Br 1– n r–

br 1– n r–

Pr

Pr
r     

n r–     

I 0

0 Qr
 

I 0

0 I 2vrvr
T–

==

vr n r–

Ar 1–  =               

                    
            
                  
       
      
      

r

n r–

Cr 1–

0

cr
T

0 cr Qr Br 1– Qr
T

cr Qr br 1–=

vr cr
r 1+( ) Ar

Pr

Pr I 2wr wr
T–=



133CHAPTER 6
Real Symmetric Eigenvalue Analysis
where  is a vector of order  with zeroes as the first  elements. Furthermore, we 
can substitute :

Eq. 6-25

where:

and  is the  element of . Substituting Eq. 6-25 into Eq. 6-23, the following 
equation results:

Eq. 6-26

with a new notation as follows:

Eq. 6-27

Now the form becomes the following:

Eq. 6-28

By introducing one more intermediate element

Eq. 6-29

=  

=

=

=

=

wr n r
wr ur 2Kr( )⁄=

Pr I
urur

T

2Kr
2

-----------–=

uir 0  i 1 2 … r, , ,=,

ur 1+ r, ar r 1+,   Sr±

uir ari  i, r 2 … n, ,+=

Sr
2 ari

2

i r 1+=

n

∑

2Kr
2 Sr

2  ar r 1+,  Sr±

aij i j,( ) A

Ar I
urur

T

2Kr
2

-----------–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

Ar 1– I
urur

T

2Kr
2

-----------–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

pr
Ar 1– ur

2Kr
2

--------------------=

Ar Ar 1– ur pr
T pr ur

T–
ur ur

Tpr( )ur
T

2Kr
2

-----------------------------+–=

qr pr
1
2
--- ur

ur
Tpr

2Kr
2

-----------
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

–=
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the final algorithmic form is obtained

Eq. 6-30

which takes advantage of the symmetry.

Modified Tridiagonal Methods

The modified tridiagonal methods (i.e., modified Givens or Householder) are used 
if the mass matrix  is singular. These methods have a different transformation 
scheme to obtain the canonical form. First, perform a Cholesky decomposition on a 
shifted matrix as follows:

Eq. 6-31

where  is a positive shift value obtained, as shown below, from the diagonal terms 
of  and  matrices. The new form of Eq. 6-1 is now

Eq. 6-32

where:

The  shift value is calculated as:

where  and  are the diagonal elements of  and  respectively. If  or 
 or , the term is omitted from the summation. If all terms are 

omitted,  is set to 0.001. If the  value calculated does not result in a stable 
Cholesky decomposition, the value is slightly perturbed, and the decomposition is 
repeated up to 2 times. After three unsuccessful shifts, a fatal error is given.

The details of the above equation can be seen by rearranging Eq. 6-7 as follows:

Eq. 6-33

Then by premultiplying and substituting Eq. 6-31 the following is 
obtained:

=

=

Ar Ar 1– ur qr
T qr ur

T––=

M

K[ ] λs M[ ]+( ) C[ ] C[ ]T=

λs
K[ ] M[ ]

A[ ] λI x{ } 0=–

λ 1
λ λs+
----------------

A[ ] C[ ] 1– M[ ] C[ ] 1 T,–

λs

λs
1

n1 2⁄ Mii
Kii
--------

i 1=

n

∑⋅

----------------------------------------=

Mii Kii M K Mii 0=
Kii 0= Mii Kii⁄ 108>

λs λs

K[ ] λs M[ ] λ λs+( ) M[ ]–+( ) u{ } 0=

1– λ λs+( )⁄
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Eq. 6-34

Finally, premultiplying by  and substituting the term

Eq. 6-35

gives the Eq. 6-32.

QR Method of Eigenvalue Extraction

In the tridiagonal methods of Givens or Householder, NX Nastran employs the  
iteration of Francis (1962), which produces a series of orthogonal transformations 

 where  is factored into the product , with  an 
upper triangular matrix. Thus,

Eq. 6-36

and

Now  by virtue of the orthogonality property; therefore,

Eq. 6-37

It follows that  is determined from  by performing in succession the 
decomposition given by Eq. 6-36 and multiplication. Francis has shown that if a 
matrix  is nonsingular, then  approaches an upper triangular matrix as 

. Since eigenvalues are preserved under orthogonal transformation, it follows 
that the diagonal elements of the limiting matrix are the eigenvalues of the original 
matrix . Although the method can be applied to any matrix, it is particularly 
suitable for tridiagonal matrices because the bandwidth of the matrix can be 
preserved as will be shown. In the case where  is symmetric, the matrix  
converges to diagonal form as .

Even though the upper triangular matrix  and the orthogonal matrix  are 
unique up to sign, several methods are available for performing the decomposition. 
In the method of calculation devised by Francis,  is expressed as a product of 

 elementary rotation matrices as follows, where  is the order of :

Eq. 6-38

M[ ] C[ ] C[ ]T

λ λs+
----------------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

u{ } 0=

C[ ] 1–

x{ } C[ ]T u{ }=

QR

Ar 1+[ ] Qr[ ]T Ar[ ] Qr[ ]= Ar[ ] Qr[ ] Rr[ ] Rr[ ]

Ar[ ] Qr[ ] Rr[ ]=

Ar 1+[ ] Qr[ ]T Ar[ ] Qr[ ]=

Qr[ ]T Qr[ ] Rr[ ] Qr[ ]=

Qr[ ]T Qr[ ] I[ ]=

Ar 1+[ ] Rr[ ] Qr[ ]=

Ar 1+[ ] Ar[ ]

A[ ] A1[ ]= Ar[ ]
r ∞→

A[ ]

A[ ] Ar[ ]
r ∞→

Rr[ ] Qr[ ]

Qr[ ]
n 1–( ) n Ar[ ]

Qr[ ] T 1( )[ ] T 2( )[ ]… T n 1–( )[ ]=
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The nonzero elements of the j-th elementary rotation matrix are the following:

Eq. 6-39

The manner in which the  and  coefficients are obtained from the elements of  
are shown later. From the orthogonality property

Eq. 6-40

we can define the nonzero elements of ,  and  as follows:

Eq. 6-41

Eq. 6-42

and

tj j,
j( ) tj 1+ j 1+,

j( ) cj= =

tj 1+ j,
j( ) tj j, 1+

j( )– sj= =

tk k,
j( ) 1= k j j 1+,≠ ⎭

⎪
⎪
⎬
⎪
⎪
⎫

cj sj Ar[ ]

Rr[ ] Qr[ ] 1– Ar[ ] Qr[ ]T Ar[ ]= =

T n 1–( )[ ]
T

T n 2–( )[ ]
T

… T 2( )[ ]
T

T 1( )[ ]
T

Ar[ ]=

Ar[ ] Ar 1+[ ] Rr[ ]

Ar[ ]

a1 b1  0

b2 a2 b3  

                

    bn 1– an 1– bn
0   bn an

= .
.

.

Ar 1+[ ]

a1 b1  0

b2 a2 b3  

                

    bn 1– an 1– bn

0   bn an

= .
.

.



137CHAPTER 6
Real Symmetric Eigenvalue Analysis
Eq. 6-43

The coefficients of the elementary rotation matrices are selected to reduce the 
subdiagonal terms of  to zero. Specifically,

Eq. 6-44

where

Eq. 6-45

Substitution yields the elements of  as follows:

Eq. 6-46

From Eq. 6-37, the elements of  are the following:

Rr[ ]

r1   q1         t1       

                
    r2   q2   t2   

                
                
                
        rn 1–      qn 1–   

                
0           rn   

= .
. 

.

Rr[ ]

sj
bj 1+

pj
2 bj 1+

2+( )
1 2⁄

------------------------------------------=

cj
pj

pj
2 bj 1+

2+( )
1 2⁄

------------------------------------------=

⎭
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎫

j 1 2 … n 1–, , ,=

p1 a1=

p2 c1a2 s1b2–=

pj cj 1– aj sj 1– cj 2– bj–= j 3 4 … n 1–, , ,=

Rr[ ]

rj cj pj sj bj 1++=  j 1 2 … n 1–, , ,=

rn pn=  

q1 c1b2 s1 a2+=  

qj sj aj 1+ cj cj 1– bj 1++= j 2 3 … n 1–, , ,=

tj sjbj 2+=              j 1 2 … n 2–, , ,= ⎭
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎫

Ar 1+
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Eq. 6-47

NX Nastran uses a variation of Francis’s original method that avoids the calculation 
of square roots. This variation uses the following equations in place of Eq. 6-47 as 
follows:

Eq. 6-48

Eq. 6-49

where

Eq. 6-50

The reason that the use of Eq. 6-48, Eq. 6-49, and Eq. 6-50 in place of Eq. 6-47 avoids 
the calculation of square roots can best be seen by considering the terms input to and 
produced by these equations. For Eq. 6-47, the input terms consist of the elements 
of  (which are ) and  (which are the elements of ). 
This completes one iteration step but involves the calculation of square roots. 
However, for Eq. 6-48, Eq. 6-49, and Eq. 6-50, the input terms consist of  
and . The data produced is  and , which serve as the 
input to the next iteration step. No square roots need to be computed here.

a1 c1r1 s1q1+=  

aj cj 1– cj rj sj qj+=   j 2 3 … n 1–, , ,=

an cn 1– rn=  

bj 1+ sj rj 1–=            j 1 2 … n 2–, , ,= ⎭
⎪
⎪
⎬
⎪
⎪
⎫

aj 1 sj
2+( )gj sj

2 aj 1++=  j 1 2 … n 1–, , ,=
⎭
⎬
⎫

an gn=

bj 1+
2

sj
2 pj 1+

2 bj 2+
2+( )= j 1 2 … n 2–, , ,=

bn
2

sn 1–
2 pn

2= ⎭
⎪
⎪
⎬
⎪
⎪
⎫

g1 a1=

gj cj 1– pj aj sj 1–
2 aj gj 1–+( )–== j 2 3 … n, , ,=

g1
2 a1

2=

g1
2

gj
2

cj 1–
2

-------------         if cj 1– 0≠                 j 2 3 … n, , ,=

cj 2–
2 bj

2    if cj 1– 0=               j 2 3 … n, , ,=⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

⎭
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎫

Ar[ ] a1 a2 … an, , , b2 b3 … bn, , , Ar 1+[ ]

a1 a2 … an, , ,
b1

2 b2
2 … bn

2, , , a1 a2 … an, , , b2 b3 … bn, , ,
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Convergence of the tridiagonal matrix to a diagonal form is speeded up by origin 
shifting. NX Nastran employs a procedure suggested by Wilkinson’s quadratic shift 
which has shown that when the eigenvalues are real, the best shift strategy is to 
subtract  from each diagonal element of  and thereby reduce each eigenvalue 
by .

Another device, useful in speeding up the determination of eigenvalues of 
tridiagonal matrices, takes advantage of zeroes that may occur in the off-diagonal 
rows. Let  matrix be represented in partitioned form as follows:

Eq. 6-51

In this matrix, the diagonal terms in the lower right-hand partition are eigenvalues 
that were determined in previous iterations. The j-th is the next lowest row in which 
the off-diagonal term  is zero thereby uncoupling the equations in the first  

rows from the rest. As a result, the eigenvalues of the matrix in the central block may 
be obtained separately. Other uncoupled blocks may be found in the upper left 
partition.

The iteration described by Eq. 6-48 and Eq. 6-49 is continued until  decreases 
to a satisfactory level of accuracy so that  may be accepted as an eigenvalue of the 
shifted matrix.  must be negligible compared to , that is,  
must approximately equal . Then  is transferred to the lower partition, and 
the process is continued until all the eigenvalues of the partitioned matrix are 
extracted.

an A[ ]
an

Ar[ ]

a1 b1                                           

b1 a2 b2                                        

                                                

                                                

         aj 2–    bj 2–                                  

         bj 2–    aj 1–                                  

               aj bj                                    

                     bj aj 1+ bj 1+                           

                                                

                                                                

                                   bm 2– am 1– bm 1–            

                bm 1– am             

                        am 1+           

                                

                                

                              an

.
.

.

.
.

.

.
.

.

bj 1– j 1–

bm 1–( )
2

am
bm 1–( )

2
am( )2 bm 1–( )

2
am( )2+

am( )2 am( )
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Computation of Eigenvectors

The eigenvector corresponding to any eigenvalue  of the tridiagonal matrix may 
be determined by solving  of the following equations:

Eq. 6-52

If the first  equations are used, the solution is obtained by taking  to be unity 
and substituting in the equations to obtain values of . Wilkinson (1958) 
shows that this method is unstable and suggests the following approach, which is 
used in NX Nastran.

The tridiagonal matrix  is factored into the product of a lower unit triangle 
 and an upper triangle . Partial pivoting is used in this decomposition; i.e., 

the pivotal row at each stage is selected to be the equation with the largest coefficient 
of the variable being eliminated. An approximation to the eigenvector  is then 
obtained from the solution of the following equation:

Eq. 6-53

where  is randomly selected. The solution is easily obtained by backward 
substitution because  has the form below:

Eq. 6-54

An improved solution is obtained by repeated application of Eq. 6-53 using the 
current estimate of  on the right-hand side. Thus,

Eq. 6-55

where

λi
n 1–

a1 λi–( )x1 b2 x2 0=+

b2 x1 a2 λi–( )x2 b3 x3 0=++

bn 1–  xn 1– an 1– λ– i( )xn 1– bn  xn 0=++

bn  xn 1– an λi–( )xn 0=+

.

.

.

n 1–( ) x1

x2 x3 … xn, , ,

A λiI–[ ]
Li[ ] Ui[ ]

φi[ ]

Ui[ ] φi[ ] C[ ]=

C[ ]
Ui[ ]

Ui[ ]

p1 q1 r1    

 p2 q2 r2     
  

      

       
 pn 2– qn 2– rn 2–

    pn 1– qn 1–
     pn

=
.

.
.

φi[ ]

Ui[ ] φi
n( )

⎩ ⎭
⎨ ⎬
⎧ ⎫

φi
n 1–( )

⎩ ⎭
⎨ ⎬
⎧ ⎫

=
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Wilkinson showed that, if the computed eigenvalue  is a close approximation to 
the true eigenvalue, convergence is so rapid that not more than two iterations are 
required. The applied test is for the maximum component of the eigenvector to 
remain unchanged (to single precision accuracy) in one iteration. The initial vector 

 is chosen so that each element is unity.

In the case of a multiple eigenvalue, the above method gives one eigenvector . 
If you start with any initial vector  orthogonal to  and apply the previous 
algorithm, convergence to the other eigenvector results. The following 
procedure is used in NX Nastran to compute eigenvectors associated with multiple 
eigenvalues. If eigenvectors  with elements  
are obtained, an initial vector  orthogonal to each of these eigenvectors is 
obtained by taking the components  as unity and solving the 
simultaneous equations as follows:

Eq. 6-56

Accumulated round-off errors result in the computed multiple eigenvectors since 
they are not exactly orthogonal to one another. The following Gram-Schmidt 
algorithm is used to produce an orthogonal set of  eigenvectors  from the 
almost orthogonal set . For , select as follows:

Eq. 6-57

Then for , calculate as follows:

φ1
0

⎩ ⎭
⎨ ⎬
⎧ ⎫

C[ ]=

λi

C[ ]

φ1{ }
b{ } φ1{ }

φ2{ }

φ1{ } φ2{ } … φm{ }, , , φd{ } a1s a2s … ans, , ,{ }T=
b{ }

bm 1+ bm 2+ … bn, , ,

b1 a11 b2 a21 … bm am1 ai1( )

i m 1+=

n

∑–=+ ++

b1 a12 b2 a22 … bm am2 ai2( )

i m 1+=

n

∑–=+ ++

b1 a1m b2m a2m … bm amm aim( )

i m 1+=

n

∑–=+ ++

⎭
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎫

.

.

.

k ys{ }
xs{ } s 1=

y1{ }
x1{ }
x1{ }

-------------------=

1 s k≤<
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Eq. 6-58

where  denotes the Euclidean norm

 

of vector  and  is a scalar product of the vectors  and 

.

When all the eigenvectors of the tridiagonal matrix are extracted, the back 
transformations are carried out to obtain the eigenvectors of the original matrix . 
Finally, for all of the tridiagonal methods, the eigenvectors are given one last stage 
of orthogonalization as follows. First compute:

Then, find , such that

by Cholesky factorization. Finally, find the reorthogonalized eigenvectors  by a 
forward solution pass of . It can be shown that this operation is equivalent 
to orthogonalizing the second vector with respect to the first, orthogonalizing the 
third with respect to the purified second and first vector, , and orthogonalizing 
the last vector with respect to all of the other purified vectors. If  is poorly 
conditioned with respect to the Cholesky decomposition, a fatal error message is 
produced.

Shared Memory Parallel Householder Method

The most time-consuming part of the reduction type methods is the reduction to 
tridiagonal form. Besides being more easily vectorizable, the Householder method 
also lends itself easily to parallelization. The computer science aspects of the parallel 
Householder method (i.e., creating subtasks, waiting, etc.) are similar to those of the 
parallel methods mentioned previously and are not detailed here. The necessary 
mathematical details follow.

zs{ } xs{ } xs{ }T yt{ }( ) yt{ }

t 1=

s 1–

∑–=

yt{ }
zt
zt{ }

-----------------=

zt{ }

zt1
2 zt2

2 … ztn
2+ + +

zt1 zt2 … ztn, , ,{ }T xs{ }T yt{ } xs{ }

yt{ }

A[ ]

Mmodal φTMφ=

L

LTL Mmodal=

φ
L φ

T
φT=•

…
Mmodal
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A logical suggestion is to “aggregate” the Householder transformations, i.e., work 
in column blocks instead of columns. For example, by observing the first k steps, the 
following can be written:

where:

Completing the process in k-size blocks produces the following:

where 

Before the j-th block step, the structure of  is as follows:

=

 and =  matrices (  representation)

A[ ]k P[ ]k P[ ]k 1– … P[ ]1,,( )A P[ ]k P[ ]k 1– … P[ ]1,,( )T=

 Q[ ]k A[ ] Q[ ]k
T=

Q[ ]k I W[ ]k Y[ ]k
T+

W[ ] Y[ ] n k× WY

A[ ]j Q[ ]j A[ ] Q[ ]j
T= j 1= 2 … n k⁄, , ,

Q[ ]j P[ ]jk P[ ]jk 1– … Pjk k 1+–[ ],=

A

Aj[ ] Cj 1–[ ]= Bj 1–[ ] A1
j 1–( )[ ]

j 1–( ) k• k n jk( )–
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where:

The process is then to generate  so that  assumes tridiagonal form and 

afterwards update the remainder of the matrix as shown:

This block update can be parallelized and forms the parallel portion of the NX 
Nastran Householder code. It is intended for shared memory parallel computers. It 
does not run on distributed memory computers. A similar approach can also be 
used in the reduction to Hessenberg form, which is one of NX Nastran’s complex 
eigenvalue methods. However, this parallelized Hessenberg approach is not 
implemented as yet.

Real Symmetric Lanczos Method
The basic Lanczos recurrence (Lanczos, 1950) is a transformation process to 
tridiagonal form. However, the Lanczos algorithm truncates the tridiagonalization 
process and provides approximations to the eigenpairs (eigenvalues and 
eigenvectors) of the original matrix. The block representation increases performance 
in general and reliability on problems with multiple roots. The matrices used in the 
Lanczos method are specifically selected to allow the best possible formulation of 
the Lanczos iteration and are described in Table 6-1 of “Theory of Real Eigenvalue 
Analysis” on page 125.

Basic Lanczos Recurrence

The basic Lanczos algorithm solves the following problem:

Eq. 6-59

and can be formulated as follows:

1. Initialization

a. A starting vector  is chosen with .

b. Initialize the scalar  and vector .

2. lteration

= tridiagonal matrix of order 

= general matrix of order 

= general matrix of order 

Cj 1– n j 1–( )k⋅

Bj 1– n k⋅

A j 1–( ) n n jk–⋅

I Wj Yj
T+ Bj 1–

A j( ) I Wj Yj
T+( )A j 1–( ) I Wj Yj

T+( )
T

=

Ax λx=

q1 q1 1=
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For , iterate as below until convergence:

If this algorithm is carried out without round-off errors, the vectors , are 
orthonormal. These vectors can be considered to be the columns of an orthogonal 
matrix . The scalars  and  can be combined in a tridiagonal 
matrix  as follows:

With this notation, the first  steps of the Lanczos algorithm can be combined in 
matrix form as follows:

Eq. 6-60

where the vector  is the unit vector with zero entries except for the j-th row which 
holds the value of one.

This mathematical presentation is not sufficient for a practical implementation of 
the Lanczos algorithm that is capable of coping with finite precision arithmetic. The 
computation of the Lanczos loop can be carried out in many mathematically 
equivalent ways, one of which is the best for finite arithmetic, while several others 
do not work in finite arithmetic (Grimes, R.G., et al.). Even with the recurrence 
written in the proper form, round-off errors can cause the algorithm to behave quite 
differently from the ideal description given above. More details on the effects of 
round-off errors are given in the section on preserving orthogonality.
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The Lanczos algorithm is valuable for solving sparse eigenvalue problems because 
it needs only a partial tridiagonalization and does not actually modify the matrix . 
The matrix  enters the algorithm only in the formation of the matrix vector product 

. In practice, this means that the sparsity of  can be exploited in a natural way 
since all that is needed is an efficient subroutine to compute  from .

The eigenvalues and corresponding eigenvectors of  are computed from those of 
. Let  and  be an eigenpair of the tridiagonal matrix ; that is, let

Eq. 6-61

Then  and  with  can be considered an approximate eigenpair for the 
original problem. Note that in a typical application, the order of matrix  may be in 
the tens of thousands, whereas the order of  is about 20 to 30. Hence, it is much 
easier to solve the eigenvalue problem of Eq. 6-61 than of Eq. 6-60. But the question 
is: How good is the approximate eigenpair , or more directly, when should the 
Lanczos recurrence be stopped so that the eigenpairs are satisfactorily accurate?

The correct answer requires the norm of the residual for the eigenpair , 
which seems to require the full computation of a candidate eigenpair. In fact, this 
residual norm can be obtained from Eq. 6-61 by observing that

Eq. 6-62

where  is the j-th or bottom element of the eigenvector . Hence, the norm of the 
residual is given by  and the quantity can be computed without computing the 
eigenvector  explicitly. A small extra effort allows the convergence of the 
eigenpairs to be monitored and terminates the Lanczos loop whenever the required 
number of sufficiently accurate eigenpairs is found. The eigenvector  is computed 
only once at the end.

Why should it be expected that some of the eigenvalues of the tridiagonal matrix  
converge quickly to the eigenvalues of ? This question is answered by some 
intricate mathematical theorems (see Parlett for an overview) which guarantee that, 
under reasonable assumptions on the properties of the starting vector, 
approximations to some of the extreme eigenvalues appear in the tridiagonal matrix 
very quickly. Two factors can impede this rapid convergence. If the starting vector 
has no components in the direction of one of the eigenvectors, the convergence of 
this eigenvector is delayed. A cluster of poorly separated eigenvalues also causes 
slow convergence.

Shifted Algorithm

The basic Lanczos algorithm as discussed in the previous section must be modified 
in two respects to solve the practical vibration problem. The vibration problem is a 
symmetric generalized eigenvalue problem using the following form:
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Eq. 6-63

where  is a symmetric matrix,  is a symmetric positive semidefinite matrix, and 
 is the eigenvalue. If  is positive definite, the Cholesky factorization of  can be 

computed and Eq. 6-63 can be reduced to an ordinary eigenvalue equation. 
However, there are considerably more difficulties when  is only semidefinite 
(nonnegative definite). The implementation of the Lanczos algorithm in NX Nastran 
avoids the Cholesky factorization of  to use the more general form of the problem.

The typical eigenvalue problem is to compute the smallest (closest to zero) 
eigenvalues and eigenvectors of Eq. 6-63. These eigenvalues are usually clustered 
closely together when compared to the largest eigenvalues. The Lanczos algorithm 
applied directly to Eq. 6-63 yields precise approximations to these large, 
well-separated, but uninteresting eigenvalues, and poor approximations to the 
small, clustered, and interesting eigenvalues. In order to overcome this convergence 
difficulty, the Lanczos algorithm is applied to the following shifted and inverted 
eigenvalue problem:

Eq. 6-64

In Eq. 6-64 the shift  is chosen close to the eigenvalues of interest. This 
formulation of the shifted and inverted eigenvalue problem is only one of several 
possible ones. Eq. 6-64 is the preferred choice for vibration problems because of its 
improved rate of convergence to the desired eigenvalues and the fact that the 
eigenvectors of Eq. 6-64 are also eigenvectors of Eq. 6-63.

The relationship between the application of the Lanczos algorithm to Eq. 6-63 and 
Eq. 6-64 is comparable to the relationship between the power method and the 
inverse power method (inverse iteration). The choice of shift in the inverse power 
method directs the convergence toward the eigenpair closest to the shift. For 
well-chosen shifts, the convergence can be very rapid. The same is true for the 
shifted and inverted Lanczos algorithm. A properly chosen shift guarantees rapid 
convergence not only to the closest eigenpair but also to a whole group of eigenpairs 
in the vicinity of the shift. The cost of this accelerated convergence towards the 
desirable eigenvalues is the factorization of  which, for large matrices, can 
be the dominating cost in either algorithm. The computational superiority of the 
Lanczos algorithm derives from its efficient use of this expensive factorization. Even 
a relatively short run of the shifted and inverted Lanczos algorithm can extract 
many eigenvalues using only one factorization.

The Lanczos algorithm applied to the vibration problem of Eq. 6-64 can be 
formulated as follows:

1. Initialization

a. A starting vector  is chosen.
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b.   is computed.

c. The mass-normalized vector  is computed.

d.  and  are initialized.

2. lteration

For  the following iteration is performed until convergence 
occurs:

There are two remarkable facts about this formulation of the Lanczos algorithm for 
the eigenvalue problem. First, no factorization of the possibly singular mass matrix 

 is required. Second, the Lanczos vectors  are orthogonal with respect to 
the inner product defined by . 

When  is semidefinite, it does not define a true inner product, but the algorithm 
still works as described. The null space of  is spanned by the eigenvectors 
corresponding to infinite eigenvalues of Eq. 6-63. In that case, the initialization step 
(1b) purges the infinite eigenvector components from the first Lanczos vector (and 
therefore all successive Lanczos vectors, in exact arithmetic). Thus, the Lanczos 
algorithm still works by implicitly restricting  to a positive definite matrix 
operating on the row space of , this restriction defining a true inner product. An 
extra benefit is that the Lanczos algorithm in the version above generates no 
approximations to the infinite eigenvalues of Eq. 6-63 that arise when  is 
semidefinite. It is worth noting that in implementation, the Lanczos vectors may 
collect some infinite eigenvector components due to round-off; these components 
do not affect the Lanczos recurrence, and can be purged from the computed 
eigenvectors by an Ericsson-Ruhe correction.

The tridiagonal matrix  defined in Eq. 6-61 contains approximations to the finite 
eigenvalues of Eq. 6-64 via the so-called spectral transformation. Specifically, if  is 
an eigenvalue of , then

Eq. 6-65
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is an approximate eigenvalue of Eq. 6-64. The approximate eigenvector  can be 
computed in the same way as in the previous section. Since the Lanczos vectors are 

-orthogonal, the eigenvectors corresponding to different eigenvalues are also 
-orthogonal.

To solve the buckling problem of the form

Eq. 6-66

a different shifting and inverting strategy is required. In Eq. 6-66, the differential 
stiffness matrix  is merely symmetric and has no definite properties, whereas the 
stiffness matrix  is positive semidefinite. The semidefinite property of  in the 
vibration analysis is critical to the Lanczos algorithm, so the shifting strategy 
applied in the vibration case cannot be applied to the buckling case simply by 
substituting  for .

Since the desired eigenvalues are usually the ones closest to zero, a simple approach 
is to interchange the roles of  and  and then compute the largest eigenvalues of 
the problem. Therefore, by applying the Lanczos algorithm without shift, we can 
write

Eq. 6-67

where . This formulation is not quite sufficient, because it does not allow 
any shifting for other eigenvalues.

A general shifting and inverting strategy is possible for the buckling problem. As 
shown previously, the operator  is factored for an arbitrary shift, but the 
Lanczos recurrence is carried out using -orthogonality among the Lanczos 
vectors. Each multiplication by the mass matrix  in the vibration case is replaced 
by a multiplication by the stiffness matrix in the buckling case. The rest of the 
Lanczos recurrence remains the same. Hence, in the buckling case the Lanczos 
algorithm works with the operator  and -orthogonality.

This shifted and inverted operator allows for arbitrary shifts with the exception of a 
shift at zero that reduces the problem to an identity matrix. For all other shifts, an 
eigenvalue  of  can be transformed as

Eq. 6-68

to yield an approximate eigenvalue of Eq. 6-66. Eigenvectors are computed as 
before without any additional back transformation resulting in a -orthogonal set. 
Since the stiffness matrix  is used in the initialization step in the same way as  is 
used in the vibration problem, the sequence of Lanczos vectors and hence the 
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eigenvectors are orthogonal to the null space of . Therefore,  does not yield any 
approximation to the exact zero eigenvalues of the buckling problem. The rigid 
body modes of the structure are not computed during the buckling analysis.

Block Method

In exact arithmetic, the single-vector Lanczos algorithm can only compute one 
eigenvector in a degenerate set. Because of round-off errors introduced into the 
Lanczos recurrence, additional eigenvectors of multiple eigenvalues may 
eventually appear in the tridiagonal matrix . A second eigenvector of a multiple 
eigenvalue only converges a number of steps after the first eigenvector converged. 
(Effectively, this is the case where the starting vector is orthogonal to the desired 
eigenvector.) Thus, the single-vector Lanczos algorithm has difficulties with 
eigenvalues of high multiplicity.

Each step of the shifted Lanczos recurrence requires the solution of a sparse linear 
system of equations of the form  and one multiplication by the 
matrix . In NX Nastran these operations require accessing matrices stored on disk 
files and thus entail significant I/O costs.

Block Lanczos algorithms have been developed in which the basic Lanczos 
recurrence is carried out for  vectors simultaneously. If the idea of a block code is 
combined with the shifted and inverted Lanczos algorithm, the following 
recurrence is obtained for the vibration problem:

1. Initialization

a. A starting block of  column vectors  is chosen.

b.  is computed.

c. An upper triangular  matrix  and an -orthonormal  
matrix  are computed so that .

d. The upper triangular  matrix  is set to  as well as .

2. lteration

a. For , the process iterates as follows, until convergence:

 where 

b. Compute the following factorization:

 where  is an  matrix with -orthonormal columns and  
is a  upper triangular matrix.
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Using the block version of the Lanczos algorithm provides the benefit that multiple 
eigenvalues of the original problem can be computed more easily. All degenerate 
eigenvectors can be found together when the multiplicity of an eigenvalue is less 
than or equal to the block size . Further, the amount of I/O per column is reduced 
by a factor of 1/  since it is possible to solve and perform the matrix multiplication 
for  vectors simultaneously.

The description of the block Lanczos code is incomplete without a description of the 
factorization  and consideration of the fact that  is now block 
tridiagonal. This factorization is required to obtain -orthonormal vectors in the 
recurrence. Here,  and  are  matrices and  is an upper triangular  
matrix, which is chosen so that the columns of  are -orthonormal. This 
procedure is implemented using a generalization of the modified Gram-Schmidt 
procedure that avoids repeated multiplications by matrix . Both vectors in  and 
a second set, initially set to , are updated during the Gram-Schmidt 
orthogonalization. At the completion of the procedure, the first set of vectors are 
transformed to  and the second set to . A multiplication by  is required at 
the beginning of the procedure. A second multiplication is made at the end to ensure 
that  is accurate, but no additional multiplications by  are required during the 
procedure.

Another consequence of using a block Lanczos algorithm is that matrix , from 
which the approximations to the eigenvalues are computed, is now a block 
tridiagonal matrix represented as follows:

Since the  blocks are upper triangular,  is actually a banded matrix with 
bandwidth .

The eigenvalues and eigenvectors of  are computed by the following procedure. 
First, reduce  to a tridiagonal form . An orthogonal matrix  is found so that
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Eq. 6-69

Then perform an eigenextraction for . An orthogonal matrix  is found so that

Eq. 6-70

where  is the diagonal matrix of the eigenvalues of . Then, by combining Eq. 6-69 
and Eq. 6-70, the following is obtained:

Eq. 6-71

where the orthogonal matrix is the eigenvector matrix for .

The orthogonal matrices  and  are products of simple orthogonal matrices 

(Givens rotations)

and

respectively. These product matrices are accumulated by beginning with the 
identity matrix I and successively multiplying on the right by 

where .

The algorithms used in Eq. 6-69 and Eq. 6-70 are standard and numerically stable.

The actual implementation of the band reduction algorithm of Eq. 6-69 uses 
modified (square root free) Givens rotations to reduce the overall cost by 
eliminating the square root computations associated with each rotation.

Note: The eigenvector matrix is formed by products that take linear 
combinations of the columns. In the intermediate steps when only the 
last  rows of the eigenvector matrix are desired, the leading rows are 

ignored and the rotations are applied only to the last  rows of the 
identity matrix.
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The extraction of the eigenvalues and eigenvectors of  (see Eq. 6-70) is essentially 
the same procedure used by the  algorithm (see “QR Method of Eigenvalue 
Extraction” on page 135). The procedure used here is an explicitly shifted  
algorithm using ordinary Givens rotations. The square root

required for the calculation of the Givens rotations is computed by a special 
recursion based on the Pythagorean Theorem. This recursion avoids overflow by 
not forming  or  and avoids destructive underflow occurring with the implicitly 
shifted  algorithm for the matrices produced by the Lanczos shifted block. The 
spectral transformation is applied as before to find approximate eigenvalues for the 
original problem of Eq. 6-64. If  is an eigenvector of , then  with 

 is an approximate eigenvector of Eq. 6-64. The residual norms of 
the eigenpairs are now given by  where the vector  consists of the last  
(block size) components of the eigenvector .

The expense of l/O operations suggests that  should be as large as possible. The 
available memory precludes choosing very large block sizes. However, large block 
sizes also entail other costs because the -orthogonal factorization requires 
additional computation and the overall convergence rate depends largely on the 
number of Lanczos steps and less on the dimension of . Therefore, the actual block 
size is taken as a compromise among the reduction of I/O costs, the possible 
increase in arithmetic operations, and the largest multiplicity of the expected 
eigenvalues.

Orthogonalization

The Lanczos algorithm produces an orthonormal (or -orthonormal) set of 
Lanczos vectors in exact arithmetic. (For simplicity, the orthogonality referred to 
always implies orthogonality with respect to the inner product defined by ). The 
numerical algorithm is affected by round-off errors that cause the Lanczos vectors 
to lose their orthogonality. Maintenance of orthogonality is essential for preserving 
the convergence properties of the Lanczos algorithm. Early implementations of the 
Lanczos algorithm employed a “full reorthogonalization” scheme in which each 
new block of Lanczos vectors was explicitly reorthogonalized against all previous 
Lanczos vectors. This process required  vector operations at step  as well as 
access to all previous vectors (usually stored out-of-core). Instead of this expensive 
scheme, the Lanczos algorithm in NX Nastran employs a combination of several 
efficient reorthogonalization mechanisms that together accomplish the computation 
of a sufficiently orthonormal set of Lanczos vectors.

Loss of orthogonality can occur in four different areas:

1. Within a given block of Lanczos vectors (internal).
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2. With respect to the previous two blocks of Lanczos vectors (local).

3. With respect to the set of all previously computed Lanczos vectors (global).

4. With respect to eigenvectors from different shifts (external).

Problems with orthogonality within a block of Lanczos vectors can arise if the 
vectors of  are almost linearly dependent. For example, this problem occurs 
when the shift  is extremely close to an eigenvalue. In this case, one step of the 
generalized modified Gram-Schmidt procedure is not sufficient to produce vectors 
that are orthogonal to working precision. Gram-Schmidt is considered an iterative 
procedure that possibly can be repeated several times until the Lanczos vectors are 
orthogonal. The Gram-Schmidt procedure is referred to as “internal 
reorthogonalization,” which also requires updating the elements of .

The local loss of orthogonality involves the previous two blocks of Lanczos vectors. 
The recurrence can be considered an orthogonalization of the block  against the 
blocks  and . The block  computed from the Lanczos recurrence may not 
be orthogonal to  and  to full working precision. Investigations indicate that 
the orthogonality between  and  is crucial for the correct continuation of the 
Lanczos process. Therefore, one step of local reorthogonalization is carried out; i.e., 
the block  is reorthogonalized against the block . This procedure may be 
repeated until the two blocks are orthogonal to working precision. This local 
reorthogonalization also requires updating the elements of .

The global loss of orthogonality between the block  and previous Lanczos 
blocks is of a different nature. The Lanczos recurrence involves only three blocks of 
Lanczos vectors. The beauty and efficiency of this recurrence lies in the fact that the 
three-term recurrence in exact arithmetic is enough to assure global orthogonality 
among all of the Lanczos vectors. Unfortunately, this is no longer true under the 
influence of round-off errors. Once some tiny error is introduced into the 
recurrence, it becomes amplified in the course of the next Lanczos steps and soon 
the global orthogonality property is lost. The mechanisms of this loss of 
orthogonality have been investigated in the last decade by several researchers and 
are now well understood. There are two important insights from the theoretical 
works that provide for an efficient implementation of the global 
reorthogonalization. First, it is possible to monitor the loss of orthogonalization 
inexpensively by updating certain estimates for loss of orthogonality at every 
Lanczos step. Second, it is sufficient to maintain orthogonality at the level of the 
square root of the machine’s precision (semi-orthogonality) and still obtain fully 
accurate eigenvalues. These two observations give rise to the scheme of partial 
reorthogonalization that is generalized to the block Lanczos algorithm in the NX 
Nastran implementation.
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The fourth type of loss of orthogonality can only occur in the context of the shifted 
and inverted algorithm, and has nothing to do with the Lanczos recurrence directly. 
The NX Nastran Lanczos algorithm begins by computing some eigenvalues and 
eigenvectors with an initial shift . If not all of the desired eigenvalues are found, 
then a second Lanczos run with a new shift  is made. For reasons of efficiency and 
simplicity in bookkeeping, the previously computed eigenvalues are prevented 
from being recomputed. This benefit is achieved by the external selective 
orthogonalization implemented in NX Nastran. For each new shift, a set of critical 
converged eigenvalues is determined. The Lanczos vectors are then kept orthogonal 
against the corresponding eigenvectors of this selected group of computed 
eigenvalues using a modification of the technique of selective orthogonalization. 
Estimates for the loss of orthogonality with respect to the computed eigenvectors 
are updated at each Lanczos step, and reorthogonalizations are performed only 
when semi-orthogonality is about to be lost.

Shift Strategy

The eigenanalysis problem in NX Nastran is to compute either the lowest  
eigenvalues in magnitude or all eigenvalues in an interval  where  and  can 
be any real numbers, . The shift strategy incorporated in the block shifted 
Lanczos code allows the shifts selected in the interval  to rapidly find the 
desired eigenvalues without wasted factorizations. The main objective for the shift 
strategy is to encompass the region containing the eigenvalues of interest with a 
trust region in which all the eigenvalues have been computed and the number of 
eigenvalues has been verified with a Sturm sequence check.

The first shift is chosen at the primary point of interest (usually 0 in vibration or –1 
in buckling) or the left endpoint if it is finite. Additional shifts are chosen to form or 
extend a trust region until the requested eigenvalues are computed. These shifts are 
selected based on the information computed during previous Lanczos runs. A trust 
region can be extended in either direction.

The shift strategy is designed to place the final shift at the correct place to 
simultaneously compute the last required eigenvalues and to make a Sturm 
sequence check for the entire interval. However, a final shift may be required for a 
separate final Sturm sequence check. This check is designed conservatively so that 
shifts are not taken so far as to skip past part of the spectrum. However, if this does 
happen, the Sturm sequence count indicates that not all the eigenvalues are 
computed between two shift points. The shift strategy immediately attempts to find 
the missing eigenvalues rather than to extend the trust region further.

Two values, called the left and right sentinels, are associated with all shifts. A right 
sentinel is defined as the rightmost accepted eigenvalue that has no unaccepted 
eigenvalue approximations between the shift and itself. The left sentinel is defined 
similarly for the accepted and unaccepted approximations to the left of the shift. 
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When eigenvalues are missing between two shifts, it is usually because the last shift 
was too far from the previous shift. In this case, the missing eigenvalues should be 
between the right sentinel of the leftmost of the two shifts and the left sentinel of the 
rightmost of the two shifts. A new shift is selected to bisect the interval between the 
above two sentinels. In the rare case when the sentinels overlap each other, the new 
shift bisects the full interval between the two previous shifts. (The usual reason that 
such an overlap occurs is that the multiplicity of eigenvalues is greater than the 
Lanczos block size.)

There are several ways in which the shifting may deviate from the description 
above. Four major special cases are listed in this section. The first special case is the 
setting of the shift scale . Initially,  is an approximation to the first nonrigid body 
mode of the structure. In the case of an initial shift at 0 for a structure with rigid body 
modes, only the rigid body modes in the initial Lanczos run are computed. In such 
cases the shift strategy does not update the value of , but instead uses the initial  
to move away from 0 towards the first nonzero eigenvalue. There are other special 
cases related to the rigid body modes where the Lanczos algorithm may terminate 
with no new information available for the next shift selection. In these cases  is not 
updated, and the previous value is maintained.

The second special case is when no new information is computed at two consecutive 
shifts. This case may occur if there is a very large gap between modes of a structure 
or all remaining modes are infinite. The shift strategy expands its step size to cross 
the suspected hole in the spectrum. If the user-specified interval  has a finite 
endpoint that was not used previously, the shift strategy selects the new shift at that 
endpoint. If the interval has only infinite endpoints remaining, then the new shift is 
chosen at 10  past the last shift. If no new information is computed at this shift, the 
next shift is chosen at 100  past the last shift. If there is still no new information, 
then the Lanczos procedure terminates with the assumption that the remaining 
eigenvalues are infinite. An appropriate warning is returned with those eigenvalues 
that were computed.

The third special case is the buckling problem. The operator used in the buckling 
problem for the Lanczos iteration is ill-posed for shifts at or near 0. The shift strategy 
process of the buckling problem is similar to the vibration problem with the 
exception that the shifts near 0 are perturbed away from 0.

The fourth major special case is the processing of factorization errors. In rare cases 
when the selected shift  is exactly an eigenvalue, the operator  is singular, 
and the factorization can fail. If this occurs, the shift is perturbed, and an additional 
factorization is performed. If three factorization errors occur consecutively, then the 
Lanczos procedure terminates with an appropriate error message and returns any 
computed eigenvalues and eigenvectors. Presumably, the cause of such a failure is 
an improperly posed eigenvalue problem for which the mass and stiffness matrices 
have a common null space (massless mechanisms).
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Summary of Procedure

The general Lanczos procedure implemented in NX Nastran can be summarized in 
the following figures. There are two major levels in the procedure: the outer level in 
the shift strategy and administration, and the inner level in the actual Lanczos 
iteration. Figure 6-1 describes the outer level and Figure 6-2 describes the inner 
level.

Figure 6-1  Outer Level of the Lanczos Procedure
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Figure 6-2  Inner Level of the Lanczos Procedure

Segmented Lanczos Method

The segmented version of Lanczos is intended to alleviate the orthogonality 
problems encountered on very wide frequency range runs. The orthogonality may 
be lost when very long Lanczos runs are executed while trying to span a wide 
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regular intervals resulting in more frequent restarts of the Lanczos process. While it 
has significantly improved the solution quality, i.e., we avoid aborts due to loss of 
orthogonality, the number of shifts is usually more than the non-segmented run.

Frequency Domain Decomposition-Based Distributed Parallel 
Lanczos Method

The frequency domain decomposition normal modes analysis is built on the 
frequency segment approach of the Lanczos method. The frequency range of 
interest given by the user is subdivided automatically. The user also has the choice 
of introducing intermediate frequencies directly on the EIGRL continuation card. 
This may be especially advantageous in case of repeated runs (the most practical 
situation), where the user may be able to enforce better load balancing than the 
automatic intermediate frequency generation method. This process is executed in a 
master/slave paradigm. One of the processors (the master) will execute the 
coordination and collection of the separately calculated eigenvectors into an 
appropriately ordered set. This guarantees the continuation and proper exit of the 
master process. The slave processes will contain only the eigenvalues and 
eigenvectors they found upon exiting the READ module of NX Nastran.

Geometric Domain Decomposition-Based Distributed Parallel 
Lanczos Method

The principle of geometric domain decomposition is not confined completely to the 
READ module, as is the frequency domain decomposition. The geometric domain 
decomposition principle encompasses many DMAP modules prior to the READ 
module and the eigenproblem presented to READ is only a subset of the original 
problem.

It is important to emphasize that this version still solves the global (see Eq. 6-1) 
eigenvalue problem as "exactly" as the single processor run. The significant 
difference is that the geometry and therefore the global matrices are partitioned and 
the local processors see only the local portions. In the current implementation, we 
restrict ourselves to as many subdomains as we have processors. One might call this 
a "distributed global solution technique."

In general, there are two alternatives to execute this process. One is to keep only 
short, local  size vectors (where o indicates the interior set and a the boundary 
set), and another is to also add a global  size vector to the local Lanczos processes. 
The first method, while minimal in storage requirements, requires interprocess 
communication even when executing vector operations such as the Lanczos step. 
The latter technique requires communication only when matrix operations are 
executed (while it has  word redundancy on each processor), so this more 
attractive option is used in our implementation.
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In the geometry domain parallel Lanczos method, the stiffness and mass matrices 
are partitioned into submatrices based on geometry subdomains as follows:

Eq. 6-72

Eq. 6-73

where the superscript j refers to the j-th subdomain, subscript a refers to the 
common boundary of the subdomains, and s is the number of the subdomains, so 

. The size of these global matrices as well as the eigenvectors is N. 
For the presentation of the algorithm, let us partition the Lanczos vectors 
accordingly:

Eq. 6-74

Furthermore, the boundary portion may be partitioned as:
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Eq. 6-75

i.e., the a set is the global boundary set. Finally, the j-th processor will receive the j-
th subdomain information:

Eq. 6-76

where the submatrices are partitioned into local o and a-sets and the appropriate 
sizes are  and .

The main computational elements of the Lanczos method are executed in the 
distributed form as follows.

Simultaneous Shifted Matrix Generation.  Since the inputs to the READ module 
are the  and  matrices, the task of creating the local system matrix will be 
simultaneously executed on each of the processors serially:

Eq. 6-77

The  matrix is the distributed submatrix on the local memory of the j-th processor 
(node). Naturally, the local mass matrix component will also be saved locally and, 
since it is needed in each Lanczos step, it will be stored in local memory if possible. 
The shifted stiffness matrix will be stored on the local scratch disk of the node.

Distributed Factorization.  The parallel, distributed implementation will execute 
the following steps:

Important: The  shift is calculated from local information such as matrix norms 
and runtime measures; therefore, it is processor dependent. Hence, 
some communication between the nodes is required to assure that the 
shift is uniform across the processors.
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1. The partial decomposition will formally decompose this j-th subdomain as 
follows:

Eq. 6-78

where the identity matrices are not formed explicitly (they are only 
presented to make the matrix equation algebraically correct), and the  
submatrix is the boundary submatrix of the j-th partition updated by the 
factorization contributions from the interior as:

Eq. 6-79

2. The boundary submatrices are summed up as:

Eq. 6-80

3. The boundary is decomposed as:

Eq. 6-81

The distributed decomposition step will be executed outside the Lanczos 
recurrence logic and the resulting partial factor:

and the global boundary  factor will be utilized inside the recurrence.

Since one important function of the decomposition operation in the 
Lanczos framework is to establish the Sturm count ( ), another 
interprocessor communication is needed:

where the Sturm counts in the equation above are the global, boundary, 
and local interior Sturm counts in that order.
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Distributed Matrix Multiply.  This is the first operation where the fact of having  
+  +  long Lanczos vectors in all local processors, but executing a local  +  
size matrix operation requires extra care. The basic local matrix-vector multiply 
operation is:

Eq. 6-82

where the local vector partitions are defined as:

Eq. 6-83

and

Eq. 6-84

Note that the  boundary partitions are the local subsets of the . That is, each 
processor contains an identical copy of the global boundary in , and an 
additional copy with local boundary entries only in . The operation may be 
executed in the following steps:

1. Execute 

2. Scatter  to 

3. Send  to master processor

4. Master sums up  contributions from all processors

5. Receive  from master processor

6. Gather  from 

Operation 1. will be executed by the existing architecture, which consists of two 
phases. In phase 1 we save the M matrix in a sparse form, storing the indices and 
numerical terms separately. This in turn is read in and interpreted by the 2nd phase 
that executes the actual numerical operation by calling the XPI2R* indexed, double 
SAXPY kernel. This phase does not need to understand the local versus boundary 
structure of the  matrix.
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In addition, the option to keep a portion or all of the mass matrix in memory is 
available in the distributed environment. The operations 3. through 5. execute the 
communication and summing up of the boundary segments between the processors 
sharing the boundary. Finally, the scattering and gathering of the local boundary 
segments (operations 2., 6.) is straightforward.

Upon completing this step, all processors have a shared and complete  vector, 
identical in content. This is necessary to proceed with the local Lanczos process.

Distributed F-B Substitution.  This phase contains the following elements. Here, 
 is the right-hand side,  is an intermediate result, and  is the solution vector.

1. The partial factorization of the interior of the j-th subdomain is 
independent of the boundary, allowing a forward substitution on the 
interior as:

Eq. 6-85

It is important to note that in this step the overlapping boundary regions 
are zeroed out on all subprocesses, except for one, which will do the 
update.

2. The global boundary solution is a complete forward-backward 
substitution of:

Eq. 6-86

3. Finally, the interior solution is a backward only substitution:

Eq. 6-87

The local  vector is again partitioned as:

Eq. 6-88

therefore, a scattering and gathering operation is performed as described 
in steps 2. and 6. of “Distributed Matrix Multiply” on page 163.
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Simultaneous Lanczos Step.  Since at this stage all processors have their local 
 and  vectors (  refers to the Lanczos step number) as well as the 

last two Lanczos vectors , the Lanczos step will be executed simultaneously 
as follows:

1. Execute local inner product:

Eq. 6-89

2. Create global inner product via communication:

Eq. 6-90

3. Execute local saxpy:

Eq. 6-91

In order to normalize the next Lanczos vector, another matrix vector 
multiplication is needed inside of the Lanczos step (using the same method 
described in “Distributed Matrix Multiply” on page 163):

Eq. 6-92

The calculation of the normalization parameter follows steps 1. through 3. 
above:

Eq. 6-93

This leads to the next normalized Lanczos vector

Eq. 6-94

and the step is completed.
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Distributed Orthogonalization Scheme.  While this operation does not explicitly 
involve matrix operations, its performance impact is such that we have a distributed 
implementation. The main kinds of orthogonalization are: against the last two 
Lanczos blocks; against earlier found eigenvectors at the initial phase and during 
the iteration, respectively; and, finally, within the current block. 

The efficiency of the distributed orthogonalization scheme is coming from the fact 
that we can distribute  (vector) operations but need to communicate only 

 (scalar) data.

The distributed orthogonalization is executed in the following steps:

1. Calculate local inner products.

2. Exchange and sum up local inner products.

3. Execute local saxpy step.

In step 1., each processor is to calculate:

Eq. 6-95

where  is the set of selected Lanczos vectors. In step 2., the following global sum is 
needed on each processor:

Eq. 6-96

Finally, step 3. is executed in two segments, , as

Eq. 6-97

and

Eq. 6-98

followed by a gathering into the  array from 

After this step, the Lanczos process may be continued again from the “Distributed 
Matrix Multiply” on page 163. The process continues on all the nodes until a certain 
number of steps are executed or convergence achieved, which decision again needs 
communication..

Simultaneous Tridiagonal Solution Generation.  Since all processors have the 
Lanczos blocks, and hence the same block tridiagonal matrix, the solution of the 
tridiagonal problem of Eq. 6-69 will be executed on all nodes simultaneously. Once 
the tridiagonal solution has been completed, selected  will be accepted as 
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eigenvalues of the original problem and the corresponding  will become the basis 
to compute eigenvectors. Note that the  vectors are the same size on all the nodes. 
Since all the nodes have  length Lanczos vectors , the 
eigenvector computation of the local segments will not require additional 
communication.

The decision to stop the Lanczos run is based on analyzing the  matrix and cost 
analysis. Since the terms of this matrix are identical on all nodes, the stop must be 
simultaneous, but is synchronized for safety. If more eigenvectors are needed, 
another Lanczos run may be executed or ultimately the complete process starting 
from “Simultaneous Shifted Matrix Generation” on page 161 may be repeated 
with a different  shift value. If all required eigenvectors are found, the final 
orthogonality test will be executed on the local matrices and vectors and the READ 
module will complete by setting ND to the number of accepted eigenvectors. Note 
that upon exiting the READ module, all the processors have a complete LAMA table 
of eigenvalues; however, the PHIA matrix contains only the local rows of the 
eigenvectors.

The data recovery for each domain is done independently on each processor on the 
local segments of the eigenvectors provided by READ. As this does not require any 
communication, it helps in the overall speedup and disk-space savings during that 
part of the run. Following data recovery, the output may or may not be merged 
based on the mergeofp keyword.

Hierarchic Domain Decomposition-Based Distributed Parallel 
Lanczos

The hierarchic domain decomposition approach combines the frequency domain 
decomposition and geometric domain decomposition techniques. It is well-suited 
for very large problems with a wide frequency range, using a large number of 
processors. At the beginning of the job, the processors are divided into nclust equal-
size subsets of processors, called clusters. When the eigenanalysis is begun, the user-
specified frequency range is subdivided into nclust frequency segments, just as in 
frequency domain decomposition. Then, each cluster performs a complete eigenpair 
computation on its own frequency segment, independent of the other clusters, using 
geometric domain decomposition.

As in geometric domain decomposition, after exiting the READ module, the PHIA 
matrix on each processor contains only partial results (eigenvector entries for local 
rows). Unlike geometric domain decomposition, the LAMA table and columns of 
the PHIA matrix correspond to only the eigenvalues computed in that processor’s 
cluster, rather than the global eigensolution. The LAMA tables and PHIA matrices 
are exchanged after the READ module as necessary, in order to produce complete 
eigenvalue results and data recovery.
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To use hierarchic domain decomposition, the number of clusters is set by the 
"nclust" keyword.

The HDMP enables the usage of a cluster of workstation nodes by using both 
geometric domain and frequency domain partitioning of the normal modes analysis 
problem. The number of geometry partitions multiplied by the number of frequency 
segments equals the number of processors available in the work environment.

The number of frequency segments equals the number of clusters available which is 
defined by the new submittal keyword "nclust". In order to improve the balance of 
the frequency domain decomposition, the existing ALPHA tuning value of the 
EIGRL continuation card may be used.

The number of processors is specified with the existing dmp submittal keyword. 
The number of geometry partitions is the value of the dmp keyword divided by the 
value of the nclust keyword. The division result must be an integer greater than 1; 
for best results, a power of 2 is recommended. It is possible that the problem is not 
large enough to be partitioned, in which case a message is printed and a serial 
execution is done.

The HDMP is available for SOL 103. The user must use the EIGRL card, not the EIGR 
card, and both Fmin and Fmax must be specified. Fluid grids, disjoint structures and 
superelements are not permitted in the original implementation. HDMP is available 
with fewer restrictions and in a broader range of solution sequences if it is used 
together with the gpart option, introduced in NX Nastran 4; see the Parallel 
Processing User’s Guide for details.

Recursive Domain Decomposition-Based Distributed Parallel 
Lanczos

The Recursive Domain Lanczos method (RDMODES) extends the DMP parallel 
capability via substructruing technology for very large scal normal node analysis.

In general, the RDMODES approach computes fewer modes with lower accuracy 
compared to the standard Lanczos approaches in order to gain performance. 

RDMODES begins with partitioning the model into nrec external partitions. Each 
interior eigensolution corresponding to its external partition is the performed in 
serial, independent of the others. If the keyword nclust is specified, the processors 
are divided into nclusters as in HDMODES. In this case, each interior eigensolution 
is performed in GDMODES fashion in its own cluster.

As in hierarchic domain decomposition, the eigenvector matrix on each processor is 
required to exchange across the processors after READ module in order to complete 
data recovery. In the case of nclust presented, data recovery steps occur in two 
phases: first, on all partitions local to that cluster, and secondly, across the cluster.

To use RDMODES, the number of external partitions is set by the "nrec" keyword.
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6.3 Solution Method Characteristics
The real eigenvalue solution methods are categorized as shown in the following 
table:

Table 6-2  Real Eigenvalue Methods

Method Type Identifier Application Restriction

Givens Reduction GIV All Roots M Positive 
Definite

Householder Reduction HOU All Roots M Positive 
Definite

Modified 
Reduction

Reduction All Roots
Not Singular

Lanczos Iteration LANC Small 
Number of 
Roots

Not Singular
M Positive

Semidefinite
 Symmetric

MHOU
GIV AHOU

GIV, K[ ] λs M[ ]+

K[ ] λs M[ ]+

K
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6.4 DMAP User Interface

Input Data Blocks:

READ KAA,MAA,MR,DAR,DYNAMIC,USET,CASECC,
PARTVEC,SIL,VACOMP,INVEC,LLL,EQEXIN,GAPAR/
LAMA,PHIA,MI,OEIGS,LAMMAT,OUTVEC/
FORMAT/S,N,NEIGV/NSKIP/FLUID/SETNAME/SID/METH/
F1/F2/NE/ND/MSGLVL/MAXSET/SHFSCL/NORM/PRTSUM/
MAXRATIO $

KAA Stiffness matrix.

MAA Mass matrix.

MR Rigid body mass matrix

DAR Rigid body transformation matrix.

DYNAMIC Eigenvalue Extraction Data (output by IFP module).

USET Degree-of-freedom set membership table.

CASECC Case Control Data Table (selects EIGR, EIGRL, or EIGB entries, output 
by IFP module).

PARTVEC Partitioning vector with values of 1.0 at the rows corresponding to 
degrees of freedom which were eliminated in the partition to obtain 
KAA and MAA. Required for maximum efficiency. See SETNAME 
parameter description below.

SIL Scalar index list. Required for maximum efficiency.

VACOMP Partitioning vector of size of a-set with a value of 1.0 at the rows 
corresponding to r-set degrees-of-freedom. The USET table may be 
specified here as well. If VACOMP is purged and DAR does not have 
the same number of rows as KAA, then the partitioning vector will be 
determined from the size of MR.

INVEC Starting vector(s) for Lanczos method only or EQMAP data blocks for 
geometry domain parallel.

LLL Lower triangular factor from decomposition of KAA. Use to enhance 
shift logic for buckling eigenvalue extraction or VF01: interior 
boundary partitioning vector for geometry domain parallel Lanczos 
method.
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Output Data Blocks:

Parameters:

EQEXIN Equivalence between external and internal grid identification 
numbers. Required for maximum efficiency.

GAPAR Local-global boundary partitioning vector for geometry domain 
parallel Lanczos method.

LAMA Normal modes eigenvalue summary table.

PHIA Normal modes eigenvector matrix in the a-set.

OEIGS Real eigenvalue extraction summary.

MI Modal mass matrix.

LAMMAT Diagonal matrix containing eigenvalues on the diagonal (Lanczos and 
QLHOU only).

OUTVEC Last vector block (Lanczos only).

FORMAT Input-Character-no default. If FORMAT≠ ’MODES’, READ will solve 

a buckling problem of .

NEIGV Output-integer-no default. NEIGV is the number of eigenvectors 
found. If none were found, NEIGV = 0. If m modes were found (but 
error encountered), NEIGV = –m. If m modes were found, NEIGV = 
m.

NSKIP Input-integer-default=1. The method used by READ is taken from 
the NSKIP record of CASECC.

FLUID Input-logical-default=FALSE. If FLUID = TRUE, then the EIGRL or 
EIGR entry is selected from METHOD(FLUID) Case Control 
command.

SETNAME Input-character-default='A'. For maximum efficiency, the rows and 
columns KAA and MAA must correspond to or be a partition of the 
displacement set specified by SETNAME. If KAA and MAA are a 
partition then PARTVEC must also be specified.

K[ ] λ Kd[ ]+( )
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SID Input-integer-default=0. Alternate set identification number. 

If SID=0, the set identification number is obtained from the 
METHOD command in CASECC and used to select the EIGR or 
EIGRL entries in DYNAMIC.   

If SID>0, then METHOD command is ignored and the EIGR or 
EIGRL is selected by this parameter value. All subsequent parameter 
values (METH, F1, etc.) are ignored.

If SID<0, then both the METHOD command and all EIGR or EIGRL 
entries are ignored and the subsequent parameter values (METH, F1, 
etc.) will be used to control the eigenvalue extraction.

METH Input-character-default='LAN'. If SID<0, then METH specifies the 
method of eigenvalue extraction. 

LAN Lanczos

GIV Givens

MGIV Modified Givens

HOU Householder

MHOU Modified Householder

AGIV Automatic selection of GIV or MGIV

AHOU Automatic selection of HOU or MHOU

F1 Input-real-default=0.0. The lower frequency bound.

F2 Input-real-default=0.0. The upper frequency bound. The default 
value of 0.0 implies machine infinity.

NE Input-integer-default=0. The number of estimated eigenvalues for 
non-Lanczos methods only. For the Lanczos method, NE is the 
problem size (default=20) below which the QL Householder option is 
used if it is enabled.

ND  Input-integer-default=0. The number of desired eigenvalues.

MSGLVL Input-integer-default=0. The level of diagnostic output for the 
Lanczos method only.

0 no output

1 warning and fatal messages

2 summary output

3 detailed output on cost and convergence

4 detailed output on orthogonalization
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MAXSET Input-integer-default=0. Vector block size for Lanczos method only.

SHFSCL Input-real-default=0.0. Estimate of the first flexible natural 
frequency. SHFSCL must be greater than 0.0. For Lanczos method 
only.

NORM Input-character-default='MASS'. Method for normalizing 
eigenvectors. See “Option Selection” on page 176 for details.

PRTSUM Input-logical-default=TRUE. Lanczos eigenvalue summary print 
flag. See “Performance Diagnostics” on page 116 for details.

MAXRATIO Input-real-default= . May be overwritten in the DMAP by: param, 
maxratio, value.

105
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6.5 Method Selection

EIGR Entry.  The method selection of any method may be performed with the EIGR 
Bulk Data entry using the following format:

The SID is the set ID number corresponding to a METHOD command in the Case 
Control Section. METHOD should be equal to any of the identifiers given in 
“Solution Method Characteristics” on page 169. F1, F2 are frequency minimum 
and maximum values specifying the boundaries of the user’s frequency range of 
interest. NE and ND are the number of roots estimated and desired to be found, 
respectively. On the continuation entry, the user can choose some normalization 
options, which are detailed in “Option Selection” on page 176.

EIGRL Entry.  To select the Lanczos method in detail, the user should use the 
EIGRL Bulk Data entry with the following format:

The MSGLVL entry (0 through 3, default = 0) controls the amount of diagnostics 
output. MAXSET specifies the maximum number of vectors in a block of the 
Lanczos iteration. It is also equivalent to or may be overridden by the value of 
SYSTEM cell 263. The value of SHFSCL is an estimate for the location of the first 
nonzero eigenvalue of the problem. 

The following parameters are only used if the F1 and F2 frequency range is to be 
broken up into segments. ALPH is the constant defining the modal distributions 
function (“Frequency Segment Option” on page 178). Its default value is 1.0, which 
results in a uniform distribution of segments. NUMS is the number of segments in 
the frequency range (default = 1). f1 to f15 are segment boundaries such that F1< f1 
< f2 ... < f15 < F2.  f1 to f15 if not specified will be computed based on a distribution 
given by ALPH.

Different combinations of F1, F2, and ND specify different options in the Lanczos 
module (see “Frequency and Mode Options” on page 176).

EIGR SID METHOD F1 F2 NE ND

NORM G C

EIGRL SID F1 F2 ND MSGLV
L

MAXSET SHFSCL NORM

ALPH NUMS f1 f2 f3 f4 f5 f6

f7 f8 f9 f10 f11 f12 f13 f14

f15
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The main purpose of the SHFSCL is to aid the automatic shift logic in finding the 
eigenvalues especially in crossing the (possibly big) gap between the 
computationally zero (rigid body) modes and the finite (flexible) modes. Another 
use of SHFSCL is to create a cutoff frequency for the so-called supported modes.

The NORMalization parameter for Lanczos is described in “Normalization 
Options” on page 176.
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6.6 Option Selection
Real symmetric eigenvalue analysis offers several normalization, frequency and 
mode, and performance options.

Normalization Options
The methods accessed by the EIGR entry have several normalization options. They 
are:

The Lanczos method (using EIGRL) has MASS or MAX normalization capability 
only.

The following options are valid for the Lanczos method only unless otherwise 
stated.

Frequency and Mode Options
At present, based on the F1, F2, and ND combinations, the following options are 
supported in the Lanczos algorithm:

NORM = MASS Mass normalization of eigenvectors 
(normalize to unit value of generalized 
mass).

NORM = MAX Maximum normalization of eigenvectors 
(maximum component of vectors is 
unity).

NORM = POINT A selected point normalized to unity. The 
point is specified by G (grid point 
number) and C (components 1 through 
6).

F1 F2 ND Option

Given Given Given Lowest ND or all in range

Given Given Blank All in range

Given Blank Given Lowest ND in range (F1, + ∞)

Given Blank Blank Lowest one in range (F1, + ∞)

Blank Blank Given Lowest ND in (– ∞, + ∞)

Blank Blank Blank Lowest one in (– ∞, + ∞)

Blank Given Given Lowest ND below F2

Blank Given Blank All below F2
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Note that if ND is not given in buckling, then both F1 and F2 need to be specified.

Performance Options

Space Saver.  Another option available in Lanczos method is called the space 
saver option. This option is selected by setting SYSTEM (229) = 1 (default = 0) and 
results in significant reduction in scratch space usage by not preserving factor 
matrices for later use in the case both F1, F2 are given. However, CPU-time may 
increase.

Sparse Solver in Lanczos.  For faster CPU execution, the Lanczos method by 
default executes sparse matrix operations. The memory available for the sparse 
solver inside the Lanczos module can be controlled by setting SYSTEM (146) to 
greater than 1. The larger the number, the larger the area reserved for the factor. 
Recommended values are 2, 3, or 4. SYSTEM(146) is equivalent to the FBSMEM 
keyword. This increased memory space is taken from the space available for the 
eigenvectors; consequently, the user must find a satisfactory compromise.

Model-Specific Lanczos Options.  The REDORTH and REDMULT options may 
improve performance for models with certain properties. For very sparse (e.g. shell-
dominated) models, setting SYSTEM(417) = 1 (the REDORTH keyword) improves 
performance by reducing the reorthogonalization cost component of the Lanczos 
run. For models containing virtual mass, setting SYSTEM(426) = 1 (the REDMULT 
keyword) reduces the matrix-vector multiply cost component. Both options incur 
some overhead, and therefore will not be beneficial for all models. These options 
may be used independently, in either serial or frequency domain Lanczos runs.

I/O Reduction Options.  Other performance-enhancing options which control the 
I/O to CPU time ratio are described in the following table:

Table 6-3  I/O Reduction Options

System Performance Option

(199) =

l Set memory for incore mass matrix multiply to 2 × l ×BUFFSIZE
(default: l = 1)

0 Automatically fits the mass matrix in core if sufficient memory 
is available

(193) =

0 Save

result of mass matrix multiply (default = 0)
1 Do not save
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Accuracy Options.  The user may reset the Lanczos iteration tolerance by:

where k is the exponent of the Lanczos tolerance criterion if it is negative, or it is the 
exponent of the maximum matrix factor diagonal ratio tolerated by Lanczos if it is 
positive.

It is also possible to reset the pivot criterion for the decomposition inside the READ 
module by SYSTEM(89) = –k, resulting in  used.

In RDMODES, the user may modify the selected frequency range in the EIGRL 
specification for eigensolutions of each substructure to increase the accuracy of the 
solution by:

where d is a positive real number. In most practical circumstances values in the 
range of 1.0-2.0 are acceptable. The trade-off is that the computational time increases 
with higher values of rdscale. This keyword is unique to RDMODES.

RDMODES Sparse Eigenvector Recovery Option.  In many instances, a user is 
only interested in the solutions at a few key locations instead of all degrees of 
freedom, especially for large problems with millions of degrees of freedom. In such 
cases, the sparse eigenvector recovery method can significantly reduce the overall 
computation time and storage resource. 

In RDMODES, the sparse eigenvector recovery option will be determined 
automatically based on the user’s output request. If full eigenvectors are desired 
with only few output requests, a user can deactivate sparse data recovery with 
PARAM, RDSPARSE, NO in BULK data. 

Note that currently residual vectors (PARAM, RESVEC, YES) and user input 
matrices (K2GG, M2GG, B2GG) are not supported for this sparse eigenvector 
recovery.  If these features are needed, a user must specify PARAM, RDSPARSE, 
NO in BULK data for correct results. 

Frequency Segment Option.  The frequency segment option is controlled as 
follows.

The number of frequency segments may be specified on the EIGRL entry (NUMS) 
or on the NASTRAN entry (NUMSEG). In the case both are given, NUMS is set to 
NUMSEG. The intermediate frequencies may be directly given (f1 ... f15) by the user 
on the EIGRL entry. It is also possible to specify ALPH on the EIGRL entry or by 
setting FRQSEQ = SYSTEM(195). If both are given, then ALPH on the EIGRL card 
takes priority; if only SYSTEM(195) is set, then ALPH = SYSTEM(195)/100 is used. 

SYSTEM(123) = k

rdscal
e 

= d

10 k–
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If ALPH is specified by either means, the intermediate frequencies are automatically 
calculated by the formula shown in Table 6-4. Otherwise, the frequency segment is 
divided uniformly into equal-size subsegments.
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Miscellaneous Options
In the READ module, a new shift logic was introduced for the Lanczos method. If 
you wish to use the old method (delivered via the REIGL module), SYSTEM(273) 
must be set to a non-zero value. The default is zero.

Incompatible DAR and KAA sizes: If the DAR matrix has fewer rows than KAA, an 
appropriate size identity matrix is generated inside READ and merged into DAR to 
produce a DAA matrix. This assures that the rigid body modes included will have 
the same size as the flexible modes computed. This operation requires the presence 
of the VACOMP data block. If VACOMP is purged, a fatal error exit is produced.

Table 6-4  Frequency Segment Specification

PARAMETER
S Definition

NUMS Number of frequency spectrum subsegments

ALPH

Subsegment boundary, : ALPH 1≠

fi fmin fmax fmin–( ) 1 ALPHi–

1 ALPHNUMS–
------------------------------------------+=



181CHAPTER 6
Real Symmetric Eigenvalue Analysis
Parallel Options

Mass Matrix Analysis Options

Indefinite Test

The mass matrix MAA is examined for all real vibration (non-buckling) eigenvalue 
problems if SYSTEM(303) < 0. The NASTRAN keyword MINDEF is equivalent to 
SYSTEM(303). First and foremost, MAA is checked to determine if it is indefinite. If 
MAA is indefinite, UFM 4646 is printed, which includes a User Action suggesting 
the use of SYSTEM(304) to perturb the mass matrix, which may render it positive 
semi-definite. If SYSTEM(304) (aka MPERTURB keyword) is activated, a small 
value is added to the diagonal of MAA prior to the indefinite test. Then, if the 
indefinite test passes, the perturbed MAA is used in the subsequent eigenvalue 
analysis regardless of extraction method. Under no circumstances will an 
eigenvalue analysis proceed if MAA is determined to be indefinite.

1) Frequency domain (fdmodes): dmp = n numseg = n on submittal

The value of dmp is equivalent to SYSTEM(231). The value of numseg in fdmodes is 
equivalent to SYSTEM(197), and should equal the value of dmp.

2) Geometry domain (gdmodes): dmp = n on submittal

The value of dmp is equivalent to SYSTEM(231). The numdom value in gdmodes is 
equivalent to SYSTEM(349), and equals the value of dmp by default.

3) Hierarchic domain (hdmodes): dmp=n nclust=m on submittal

The number of frequency segments equals the number of clusters available which is 
equivalent to SYSTEM(408) and defined with the nclust keyword.

The number of geometry partitions equals the value of the dmp keyword divided 
by the value of the nclust keyword, i.e. g = n/m. The division must be an integer.

Another choice is:  gdoms=g fsegs=m on submittal

The number of processors equals the product of the value of the gdoms keyword 
and the value of the fsegs keyword. 

4) Recursive domain (rdmodes): dmp=n nrec=p on submittal

The number of external partitions of the model equals the value of the nrec 
keyword, which is equivalent to SYSTEM(445). If nclust, an existing keyword 
introduced in HDMODES, is specified, the interior eigensolution is performed in 
GDMODES fashion in each cluster.
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Rank Test

A rank test is performed only when the indefinite test is requested. The rank of 
MAA (NRANK) is determined in order to detect the presence of infinite roots. The 
number of eigenvectors requested is restricted to min (N,NRANK) for the 
tridiagonal methods (HOU,GIV). The rank test is controlled by SYSTEM(313), 
which defines a maximum ratio of MAA diagonals to MAA-factor diagonals.

Density Control

Neither of the above tests is performed if it is estimated that the tests themselves 
would require too much time. A test is made to determine if the density of MAA 
exceeds some threshold (default 10%). If MAA exceeds the threshold, it is deemed 
"dense"; therefore, its factorization might be nontrivial, and these tests are bypassed. 
The threshold is controlled by SYSTEM(314). If N (the problem size) is less than or 
equal to 100, the density check is bypassed.

These analyses are summarized in Table 6-5:

QL Householder Option

If sufficient memory is available, a modern (QL iteration based) version of 
Householder methods (AHOU, MHOU, or HOU) is automatically used. This is also 
used in place of Lanczos when the problem size is smaller than the value of the NE 

Table 6-5  Mass Matrix Analyses

System 
Cell Comment Description Default Value

303 Indefinite Test =0 cutoff=1.0e-6
<0 cutoff=10**sys303
> bypass test

0
(Do the Test)

304 M Perturbation =0 perturb=1.0e-6
<0 perturb=10**sys304
>0 bypass perturbation

+1
(Do not Perturb)

313 Rank Test =0 rank ratio=1.0e+7
>0 rank ratio=10**sys313
<0 bypass test

0
(Do the Test)

314 Density
Threshold

=0 thresh=0.1
>0 thresh=sys314/10000.
<0 do not check density

0
(10% Threshold)
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parameter (default = 20). Setting SYSTEM(359) = 0 will turn off the QL Householder 
option (default SYSTEM(359)=1) and deactivate Lanczos fallback to Householder 
for small problems.
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6.7 Real Symmetric Eigenvalue Diagnostics
The diagnostics of the eigenvalue methods can be categorized as execution 
diagnostics, numerical diagnostics, and error messages.

Execution Diagnostics
A certain level of execution diagnostics of the READ module is requested by DIAG 
16. For the Lanczos method, MSGLVL = 1, 2, or 3 in the EIGRL entry gives different 
levels of execution diagnostics. These diagnostics pages are elaborate, and therefore 
are described separately in “Lanczos Diagnostics” on page 188. 

The following two tables are printed only when PRTSUM = TRUE (default)

Table of Shifts
The table of shifts shows the sequence of shifts taken, the Sturm counts, and the 
number of modes computed at each shift for the Lanczos method. It appears as 
follows:

Execution Summary.  The execution summary table for the Lanczos method is as 
follows:

EIGENVALUE ANALYSIS SUMMARY (REAL LANCZOS METHOD)

TABLE OF SHIFTS  (REIGL)

SHIFT # SHIFT VALUE FREQUENCY, CYCLES # EIGENVALUES BELOW # NEW EIGENVALUES 
FOUND

X1 X2 X3 X4 X5

X1 The shift number

X2 The shift value in eigenvalue units

X3 The shift value in frequency units (typically Hertz)

X4 The number of modes below this shift (the Sturm count)
If X4 is “FACTOR ERROR” then this shift is rejected because the 
MAXRATIO is too large. To override this, the user may set 
SYSTEM(166) = 4 and the factor will be used despite the high 
MAXRATIO.

X5 The number of modes found by the algorithm at this shift

BLOCK SIZE USED X

NUMBER OF DECOMPOSITIONS X

NUMBER OF ROOTS FOUND X
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The TEXT of the termination message can be any of the following:

• REQUIRED NUMBER OF EIGENVALUES FOUND

• ALL EIGENVALUES FOUND IN RANGE

• NOT ALL EIGENVALUES FOUND IN RANGE

• INSUFFICIENT TIME TO FIND MORE EIGENVALUES

The run may also finish with the following message:

• USER FATAL MESSAGE 5405, ERROR X OCCURRED DURING 
ITERATION

Numerical Diagnostics
UWM 3034:
ORTHOGONALITY TEST FAILED, LARGEST TERM = X NUMBER FAILED = 
PAIR = X, EPSILON = X.

This message is printed when the eigenvector accuracy is in doubt (up to a certain 
numerical limit). This message is given for all methods.

SFM 3034.2:
INTERNAL FAILURE IN THE LANCZOS PROCEDURE: M-ORTHOGONAL QR 
PROCEDURE FAILED TO CONVERGE. PROBABLE CAUSE: MASS MATRIX IS 
INDEFINITE (MODES) OR STIFFNESS MATRIX IS INDEFINITE (BUCKLING).

Indicates that the mass/stiffness matrix is indefinite or badly scaled. 

UIM 5010:
STURM SEQUENCE DATA FOR EIGENVALUE EXTRACTION TRIAL 
EIGENVALUE = X, CYCLES = X, NUMBER OF EIGENVALUES BELOW THIS 
VALUE = X.

This information is very important in establishing the number of roots existing in 
certain subregions of the frequency region.

NUMBER OF SOLVES REQUIRED X

TERMINATION MESSAGE: TEXT

where X can be equal to – 31: INSUFFICIENT WORKSPACE

– 32:  QL ALGORITHM DID NOT CONVERGE

– 33:  MORE EIGENVALUES FOUND THAN EXIST

– 34:  FILE I/O ERROR

– 35:  SVD ALGORITHM DID NOT CONVERGE
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UFM 4646:
THE MASS MATRIX IS NOT POSITIVE DEFINITE USING HOUSEHOLDER OR 
GIVENS METHOD.

UFM 4645:
THE SHIFTED STIFFNESS MATRIX IS NOT POSITIVE DEFINITE IN MGIVENS 
OR MHOUSEHOLDER METHOD.

UFM 4648:
THE MODAL MASS MATRIX IS NOT POSITIVE DEFINITE.

These messages report problems from the reduction methods.

UWM 5411:
NEGATIVE TERM ON DIAGONAL OF MASS (NORMAL MODES) OR 
STIFFNESS (BUCKLING) MATRIX.

This is a Lanczos diagnostic message for information only.

Error Diagnostics

UFM 5429:
INSUFFICIENT TIME TO START LANCZOS ITERATION.

UFM 5400:
INCORRECT RELATIONSHIP BETWEEN FREQUENCY LIMITS.

This means the upper frequency limit has a lower value than the lower frequency 
limit.

SFM 5401:
LANCZOS METHOD IS UNABLE TO FIND ALL EIGENVALUES IN RANGE. 
ACCEPTED EIGENVALUES AND ADDITIONAL ERROR MESSAGES MAY BE 
LISTED ABOVE. A POSSIBLE CAUSE IS THE OCCURENCE OF HIGH 
MAXRATIOS. CHECK MODEL FOR MECHANISMS IF HIGH MAXRATIOS 
EXIST. USER ACTION: RERUN WITH ANOTHER METHOD OR ANOTHER 
SETTING ON EIGRL ENTRY.

UFM 5402:
THE PROBLEM HAS NO STIFFNESS MATRIX.

UFM 4683:
MASS (OR STIFFNESS) MATRIX NEEDED FOR EIGENVALUE ANALYSIS.

UWM 6243 (REIG):
THE DOF REQUESTED FOR POINT NORMALIZATION HAS NOT BEEN 
SPECIFIED ON THE EIGR OR EIGB ENTRY.

SFM 5299:
FINITE INTERVAL ANALYSIS ERROR or
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STARTING BLOCK COMPUTATION ERROR or 

INSUFFICIENT STORAGE FOR LANCZOS or 

FACTORIZATION ERROR ON THREE CONSECUTIVE SHIFTS or

RESTORATION OF VECTORIZATION ERROR or 

IMPROPER PARAMETER SPECIFICATION FOR LANCZOS or 

TRUST REGION OVERFLOW IN LANCZOS or

UNRECOVERABLE TERMINATION FROM LANCZOS ITERATION

These messages issued under 5299 are from the Lanczos method. The first one, the 
finite interval analysis error, is the one most frequently encountered. This error 
indicates a high matrix-factor diagonal ratio at the F1 or F2 shifts which can be 
caused by a modeling error or matrix singularity.

SFM 5407:
INERTIA (STURM SEQUENCE) COUNT DISAGREES WITH THE NUMBER OF 
MODES ACTUALLY COMPUTED IN AN INTERVAL.

This message flags a serious problem, i.e., spurious modes were found in the 
Lanczos method.

UWM 5406:
NO CONVERGENCE IN SOLVING THE TRIDIAGONAL PROBLEM.

This message signals the abortion of the reduction methods.

UWM 9282 (SUBDMAP):
VIRTUAL MASS WILL BE IGNORED IN GDMODES EIGEN SOLUTION WHEN 
GPART = 0.

UWM 9288 (XREADR):
UNABLE TO PARTITION INTO NPART COMPONENTS.

RUNNING CONVENTIONAL LANCZOS SOLUTION INSTEAD.

UFM 9289 (XREADR):
EXIT DUE TO NO DESIRED INTERIOR MODES FOUND. 

USER ACTION: INCREASE RDSCALE VALUE.

Performance Diagnostics
UIM 5403:
BREAKDOWN OF CPU USAGE DURING LANCZOS ITERATIONS
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Eigenvalue analysis can be computationally expensive and may dominate overall 
CPU time. To help assess numerical performance, this message shows how much 
time the primary operations (forward-backward substitution, matrix-vector 
multiplication, and matrix summation and decomposition) consume during 
Lanczos iterations. The last entry, “LANCZOS RUN”, refers to the duration of a 
complete set of Lanczos cycles at one shift and contains within it all FBS and matrix 
multiplication times, but not the shift and factor times. The sum of total times for 
“SHIFT AND FACTOR” and “LANCZOS RUN” should then approximate the total 
time taken by the REIGL or LANCZOS modules.

UIM 2141:
GIVENS (OR HOUSEHOLDER) TIME ESTIMATE IS X SECONDS. SPILL WILL 
OCCUR FOR THIS CORE AT A PROBLEM SIZE OF X.

The reduction type methods are fairly predictable (not a characteristic of other 
eigenvalue methods). The CPU time and storage estimate are given in this message.

Lanczos Diagnostics
Since the Lanczos method is the most robust and modern of the eigenvalue 
extraction methods, its execution diagnostics are described here in greater detail.

The printing of diagnostic information is controlled by the MSGLVL parameter. 
When left at its default value of zero, only the Table of Shifts and the Execution 
Summary block are printed in addition to the eigensolution. MSGLVL values of 1, 
2, 3, or 4 yield increasingly more detailed diagnostic information about the Lanczos 
operations. 

The MSGLVL=1 diagnostics are organized into four major sections. Section I reports 
on the original problem specification and the setting of module parameters. In this 
section an interval analysis check is also shown to establish the number of 
eigenvalues in the range set by the user.

Most of the detailed diagnostics are self explanatory. Some of the parameter values 
are detailed below:

*** USER INFORMATION MESSAGE 5403 (LNNRIGL)
 BREAKDOWN OF CPU USAGE DURING LANCZOS ITERATIONS:
 OPERATION               REPETITIONS  AVERAGE      TOTAL
 FBS (BLOCK SIZE=...)        .... ........   ........
 MATRIX-VECTOR MULTIPLY      .... ........   ........
 SHIFT AND FACTOR            ....                       ........   ........ 
LANCZOS RUN ....                       ........   ........ 

MODE FLAG = 1 Vibration problem

2 Buckling problem
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The LEFT and RIGHT END POINTS are the F1, F2 values set on the EIGRL entry. 
The center frequency is the center (not necessarily the arithmetic center) of the 
interval.

ACCURACY REQUIRED is a value automatically set by the program.

The CP TIME ALLOWED is the remainder of the time left to complete the run using 
the limit set on the TIME entry.

The SHIFTING SCALE is an estimate of the smallest (in magnitude) nonzero 
eigenvalue in the spectrum. This estimate can be specified by the user or 
automatically calculated by the program. The INERTIA values at the specific 
locations are Sturm numbers.

Section II provides diagnostics on the memory usage, the setting of the working 
array sizes based on the memory available, and the maximum memory allocated. 
The term RITZ VECTORS means the approximate eigenvectors. A TRUST REGION 
is a segment of the frequency spectrum, bounded by two shifts where all the 
eigenvalues are found. By the nature of the automatic shift algorithm, there can be 
several of these segments.

Section III is the Lanczos run section. The text shown in this section can be repeated 
for each new shift. This section also prints occasional user information messages (for 
example, 5010 and 4158) that report the results from the decomposition module. 
This section is further expanded when the user requests additional diagnostics from 
the Lanczos run by setting MSGLVL = 2 or 3.

Section IV reports the conclusion of the Lanczos run. The most frequently occurring 
warning flag settings are listed below:

PROBLEM TYPE = 1 Lowest ND roots in interval

2 Highest ND roots

3 All roots in interval

4 ND roots nearest to center frequency

COMPLETION FLAG = – 99 ND roots nearest to center frequency

– 26 Starting block computation error

– 25 Restoration of factorization error

– 24 Illegal parameters error

– 23 Core structure error

– 22 Internal factorization error

– 21 Insufficient storage

– 20 Factorization error at a boundary shift
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MSGLVL = 2 provides detailed information about the shift logic, the spectrum 
distribution, and the cause of the termination of a Lanczos run. This 
TERMINATION CRITERION may have the following values:

Finally, MSGLVL = 3 describes the Lanczos run including norms, condition 
numbers, convergence criterion, shifted eigenvalues, and their residuals.

– 5 Incorrect frequency range

– 2 No eigenvalues found in range

0 Required number of roots found

1 All roots in interval found

2 Not all roots in interval found

3 Insufficient time to finish

4 – 7 Same as 1– 3; however, the inertia count error 
(see SFM 5407) occurred during the iteration

0 Preset maximum number of Lanczos steps reached

1 Cost of eigenvalue calculation increasing

2 Number of needed eigenvalues was found

3 Shift is too close to an eigenvalue

4 Lanczos block is singular

5 Running out of time

– 1 Insufficient workspace

– 2 QL algorithm does not converge

– 3 Too many eigenvalues found

– 4 File I/O error

– 5 Singular value decomposition error
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6.8 Real Lanczos Estimates and Requirements
The time estimates for the Lanczos method are the following:

Shifting time (sec):

Eq. 6-99

Recursion time (sec):

Eq. 6-100

Orthonormalization time (sec):

Eq. 6-101

Packing time (sec):

Eq. 6-102

where:

The minimum storage requirements are as follows:

where  is the factor disk space requirement.

The number of shifts in most Lanczos runs is 2, occasionally 1, sometimes 3 or more. 
The number of Lanczos steps is 10 on the average.

= number of shifts

= number of Lanczos steps

= block size used

= number of modes desired

= decomposition time (see “Decomposition Estimates and Requirements” 
on page 71 for details)

= solution time (see “FBS Estimates and Requirements” on page 87 for 
details)

= matrix multiply time (see “MPYAD Estimates and Requirements” on 
page 47 for details)

Disk:

Memory:

Td Nshifts⋅

Nsteps Nshifts 2TM Ts+( )⋅

2 Nshift Nsteps
2 M⋅ ⋅

2 Ndes Nsteps+( ) N P⋅ ⋅

Nshifts

Nsteps

B

Ndes

Td

Ts

TM

Ndes N IPREC Dfactor+⋅ ⋅

2 Nsteps B⋅( )2 IPREC 4 B N IPREC⋅ ⋅+⋅

Dfactor
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7.1 Damped Models
The solution of complex eigenvalue problems is important for damped models. The 
solution method is applied when either viscous or structural (or both) damping is 
used.

The basic equation of the damped free vibration problem is

Eq. 7-1

where:

The  matrix may be null, and the  and  matrices may be real or complex, 
symmetric or unsymmetric.

The eigenvalue  is given by

Eq. 7-2

The solution u in terms of the complex eigenvalue and eigenvector is of the form:

Eq. 7-3

= mass matrix

= damping matrix

= stiffness matrix

Mu·· Bu· Ku 0=+ +

M[ ]

B[ ]

K[ ]

B M K

λ

λ a iω+=

u eλ tΦ=
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7.2 Theory of Complex Eigenvalue Analysis

Canonical Transformation to Mathematical Form
The complex eigenvalue analysis problem is derived from:

Eq. 7-4

where  is the displacement vector.  is the acceleration of the grid points, i.e., the 
second time derivative of .  refers to the velocity or first time derivative. The 
solution of this homogeneous system (the free, but damped vibrations) is of the 
form

Eq. 7-5

where  is a vector of complex numbers and the  eigenvalue is also complex in 
general. By substituting Eq. 7-5 into Eq. 7-4 we get:

Eq. 7-6

In order to solve this quadratic eigenvalue problem, first a linearization 
transformation is executed. This transformation converts the original quadratic 
problem to a linear problem of twice the size.

It is obtained by simply rewriting Eq. 7-6 as a 2 × 2 block matrix equation:

Eq. 7-7

where:

Eq. 7-8

as in Eq. 7-7. This equation is now linear; however, there are shortcomings. 
Independently of the eigenvalue solution method, one would need to invert both 
the mass and damping matrices and an unsymmetric, indefinite matrix built from 
the damping and stiffness matrices, in order to reach a solution. Although the 
explicit inverses are not needed, the numerical decompositions on either of these 
matrices may not be well defined.

An advancement is possible by executing a spectral transformation, i.e., 
introducing an appropriate shift as:

Eq. 7-9

Mu·· Bu· Ku 0=+ +

u u··
u u·

u eλ t  Φ=

Φ λ

Mλ2 Bλ K+ +( )Φ 0=

λ M 0
0 I

Φ
·

Φ

B K
I– 0

Φ
·

Φ
0=+

Φ
·

λΦ=

λ λ0 μ+=
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With the shift (whose appropriate selection in the complex case is rather heuristic) 
the linear equation may be rewritten as:

Eq. 7-10

Another recommended improvement is to invert the problem by introducing:

Eq. 7-11

By substituting and reordering we get:

Eq. 7-12

The latter equation is a canonical form of

Eq. 7-13

where:

Eq. 7-14

and

The form allows the singularity of the mass matrix. However, the zero subspaces of 
, , and  may not coincide. This is a much lighter and more practical restriction 

than requiring both the mass and the damping matrices to be nonsingular, as in 
Eq. 7-7. Eq. 7-12 is the formulation used in the Lanczos methods.

If  is nonsingular, then a simplified formulation of

Eq. 7-15

also results in a canonical form of

B λ0M–– K–

I λ0I–
Φ
·

Φ
μ M 0

0 I
Φ
·

Φ
=

Λ 1
μ
---=

Λ Φ
·

Φ

B λ0M–– K–

I λ0I–

1–
M 0

0 I
Φ
·

Φ
=

Λx Ax=

A
B λ0M–– K–

I λ0I–

1–
M 0

0 I
=

x Φ
·

Φ
=

K B M

M

M 1– B λ0I+( )– M 1– K–

I λ0I–

Φ
·

Φ
μ Φ

·

Φ
=
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Eq. 7-16

Eq. 7-15 is the formulation used in the Hessenberg methods. 

When  is null, then the double-size representation can be avoided.

The problem then becomes

Eq. 7-17

Using the following:

Eq. 7-18

We can write

Eq. 7-19

Premultiplying Eq. 7-19 by  gives

Eq. 7-20

Therefore, from Eq. 7-15 and Eq. 7-20, the dynamic matrix  for the case of 
nonsingular  matrix is as follows:

Eq. 7-21

Because of the unsymmetric nature of the problem, the following left-handed 
solution also exists:

Eq. 7-22

For the special case when  is null, the left-handed solution of the form:

Eq. 7-23

also exists.

In Eq. 7-22 and Eq. 7-23, the superscript  stands for complex conjugate transpose.

The left-handed eigenvectors of the problems will only be found in the Lanczos 
(page 214) and QZ Hessenberg (page 212) methods. The left-handed eigenvectors 
are useful in establishing convergence quality.

Ax μx=

B

Mλ2 K+[ ]Φ 0=

λ2 λ0 μ+=

λ0M K+[ ]– Φ μMΦ=

M 1–

M 1– K λ0I+[ ]  Φ– μΦ=

A
M

         when B 0=

A

M 1– B λ+ 0I( )– M 1– K–
I λ0 I    –

 

M 1– K λ0 I+[ ]  –⎩
⎪
⎪
⎨
⎪
⎪
⎧

=
         when B 0≠

ψH λ2M λB K+ +( ) 0=

B

ψH λ2M K+( ) 0=

H
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The physical eigenvalues may easily be recovered from the shift and invert 
operations in Eq. 7-9 and Eq. 7-11:

Eq. 7-24

In order to find the relationship between the mathematical and physical 
eigenvectors, let us rewrite Eq. 7-7 in the following block notation:

Eq. 7-25

where again

Eq. 7-26

The block matrices are simply:

Eq. 7-27

and

Eq. 7-28

Substituting Eq. 7-24 into Eq. 7-25 and reordering yields:

Eq. 7-29

which is the same as Eq. 7-12 in block notation. This proves that the right 
eigenvectors are invariant under the shifted, inverted transformations, i.e., the right 
physical eigenvectors are the same as their mathematical counterparts, apart from 
the relevant partitioning.

For the left-handed problem of Eq. 7-22, we rewrite Eq. 7-22 using block notation:

Eq. 7-30

with a left-handed physical eigenvector of:

Eq. 7-31

λ 1
Λ
---- λ0+=

λM K+( )  x 0=

x Φ
·

Φ
=

K B K
I– 0

=

M M 0
0 I

=

K λ0+  M( )
1–
M ΛI+[ ]  x 0=

yH λM K+( ) 0=

yH ψ·
H

ψH,[ ]=



199CHAPTER 7
Complex Eigenvalue Analysis
Substituting Eq. 7-24 again gives:

Eq. 7-32

Factoring,

Eq. 7-33

which is equivalent to:

Eq. 7-34

Thus, the mathematical problem we solve is:

Eq. 7-35

where

Eq. 7-36

This means that the left-handed physical eigenvectors are not invariant under the 
transformation. Expanding Eq. 7-36 into the solution terms

Eq. 7-37

and finally

Eq. 7-38

The cost of this back-transformation is not very large since the factors of the 
dynamic matrix are available and we need a forward-backward substitution only. 
The importance of this back-transformation is rather academic since there is no 
physical meaning associated with the left physical eigenvectors. On the other 
hand, these are the eigenvectors output in the DMAP data block PSI, and they are 
not orthogonal to PHI unless properly converted.

yH M Λ K λ0 M+( )+[ ] 0=

yH K λ0 M+( ) K λ0 M+( )
1–
M ΛI+[ ] 0=

K λ0 M+( )
H

y[ ]
H

K λ0 M+( )
1–
M ΛI+[ ] 0=

yH K λ0 M+( )
1– M ΛI+[ ] 0=

yH K λ0 M+( )
H

y[ ]
H

=

y
B  –  λ0M– K–

I λ0I–

H

y–=

y
B–  λ0M– K–

I λ0I–

H–

y–=
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Dynamic Matrix Multiplication
In any eigenvalue solution method, the dynamic matrix times vector (block) 
multiplication is the most time consuming. From Eq. 7-12 and Eq. 7-13, the 
dynamic matrix  is

Eq. 7-39

From its structure it is clear that the matrix does not need to be built explicitly. In 
the following, the implicit execution of the dynamic matrix multiplication for both 
the transpose and non-transpose case is detailed.

For the non-transpose case, any  operation in the recurrence will be 
equivalent to solving the following system of equations:

Eq. 7-40

Partitioning  and  accordingly:

Eq. 7-41

Developing the first row:

Eq. 7-42

Developing the second row and rearranging, we obtain:

Eq. 7-43

Substituting the latter into the first row gives:

Eq. 7-44

Which, after reordering, becomes:

Eq. 7-45

This formulation has significant advantages. Besides avoiding the explicit 
formulation of , the decomposition of the 2N size problem is also avoided.

A

A
B  λ0– M– K–

I λ0I–

1–
M 0

0 I
=

z Ax=

B  λ0– M– K–

I λ0I–
z

M 0

0 I
x=

z x

B  λ0 M–  – K–

I λ0I–

z1

z2

M 0

0 I

x1

x2

=

B–  λ0M–( )  z1 K  z2 M  x1=–

z1 λ0 z2 x2+=

B– M  λ0–( )  λ0 z2 x2+( ) K  z2 M  x1=–

K λ0 B λ0
2 M+ +( )–  z2 M  x1 B λ0 M+( )  x2+=

A
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It is important that the transpose operation be executed without any matrix 
transpose. Any  operation in the recurrence will be equivalent to solving 
the following equation for :

Eq. 7-46

Let us introduce an intermediate vector :

Eq. 7-47

Now partitioning these vectors accordingly and transforming we obtain:

Eq. 7-48

Developing the first row:

Eq. 7-49

Developing the second row, we have:

Eq. 7-50

Solving for  from the first equation, substituting into the second and reordering 

yields:

Eq. 7-51

or solving for :

Eq. 7-52

Now, the lower part of the z vector is recovered from Eq. 7-49 by:

Eq. 7-53

Finally,

yT xTA=
yT

yT xT B   λ0M–  – K–

I λ0I–

1–
M 0

0 I
=

z

zT xT B   λ0M–– K–

I λ0I–

1–

=

x1

x2

B   λ0M–– K–

I λ0 I–

T
z1

z2

=

x1 B   λ0M––( )Tz1 z2+=

x2 KTz1– λ0 z2–=

z2

x2 λ0 x1 KT λ0 BT λ0
2 MT+ +( )z1–=+

z1

z1 KT λ0 BT λ0
2 MT+ +( )

1–
x2 λ0 x1+( )–=

z2 x1 B λ0 M+( )Tz1+=
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Eq. 7-54

Physical Solution Diagnosis
From the eigenvalue solution, it will be guaranteed that the left and right 
mathematical eigenvectors are bi-orthonormal:

Eq. 7-55

where  is an identity matrix in essence with computational zeroes as off diagonal 
terms. 

Based on the physical eigenvalues recovered by the shift formulae and the physical 
eigenvectors, another orthogonality criterion can be formed. Using the left and 
right solutions, the following equations hold for the problem:

Eq. 7-56

Eq. 7-57

By appropriate pre- and post-multiplications, we get:

Eq. 7-58

Eq. 7-59

A subtraction yields:

Eq. 7-60

Assuming , we can divide by  and obtain a mass orthogonality criterion:

Eq. 7-61

Thus, the  matrix given by Eq. 7-61 has (computational) zeroes as off diagonal 
terms (when ) and nonzero (proportional to ) diagonal terms (corresponding 
to ).

To obtain another orthogonality condition, we premultiply Eq. 7-56 by , 
postmultiply Eq. 7-57 by  and subtract to obtain:

yT zT M 0

0 I
=

YHX I XYH= =

I

λi
2M λiB K+ +( )φi 0=

ψj
H λj

2M λjB K+ +( ) 0=

ψj
H λi

2M λiB K+ +( )φi 0=

ψj
H λj

2M λjB K+ +( )φi 0=

λi
2 λj

2–( )ψj
H

Mφi λi λj–( )ψj
HBφi+ 0=

λj λi≠ λi λj–

O1[ ]j i λi λj+( )ψj
HMφi ψj

H+ Bφi=

O1

i j≠ 2λi
i j=

λj ψj
H

λi φi
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Eq. 7-62

By expanding and simplifying we get:

Eq. 7-63

Assuming again that  we can divide by and obtain another 
orthogonality condition recommended mainly for the structural damping option 
as:

Eq. 7-64

The related  orthogonality matrix will also have zero off-diagonal terms, and 
nonzero (proportional to ) diagonal terms.

Hessenberg Method
The method utilized in NX Nastran uses the Householder reduction to upper 
Hessenberg form followed by Francis’s QR steps and a direct eigenvector 
generation scheme. To distinguish from the QZ method, this is called the QR 
Hessenberg method.

Householder Transformations.  An  by  matrix with the following form:

Eq. 7-65

was introduced in “Theory of Real Eigenvalue Analysis” on page 125 as a 
Householder transformation or reflection. These matrices are symmetric and 
orthogonal, and are capable of zeroing out specified entries or any block of vector 
components. We generate a Householder matrix for a given nonzero vector :

Eq. 7-66

so that for  the elements from  to  of the transformed vector are 
zero; i.e.,

Eq. 7-67

The procedure is as follows.  We calculate

Eq. 7-68

and build

λjψj
H λi

2M λiB K+ +( )φi  λiψj
H– λj

2M λjB K+ +( )  φi 0=

λi λj–( )λi  λjψj
HMφi λj λi–( )ψj  Kφi 0=+

λj λi≠ λi λj–

O2[ ]j i λiλj  ψj
HMφi  ψj

HK  φi–=

O2

λi
2

n n

P I 2vvT

vTv
------------–=

x

xT x1 … xn, ,[ ]=

1 k j n≤ ≤ ≤ k 1+ j

Px x1 … xk 0 … 0 xj 1+ … xn, , , , , , , ,[ ]
T

=

a2 xk
2 … xj

2+ +=
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Eq. 7-69

It can be shown that if  is defined as in Eq. 7-65, then

Eq. 7-70

which is the form described in Eq. 7-67. The matrix update is similar:

Eq. 7-71

It is clear that  need not be formed explicitly if  and  are available.

Implicit Matrix Update.  For given values of , , and , the following algorithm 
in NX Nastran overwrites  with , where

For  

For 

End loop .

End loop .

Householder Reduction to the Hessenberg Form.  Let  be the general matrix 
on which the transformation must be executed. Consider the following 
transformation:

Eq. 7-72

where:

vT 0 … 0 xk a  sign xk( )+{ }   xk 1+ … xj 0 … 0, , , , , ,, , ,[ ]=

P

Px x1 … xk 1–, ,   sign– xk( )a{ } 0 … 0 xj 1+ … xn, , , , , ,[ ]= T

PA I βvvT–( )A A β  v ATv( )
T

–= =

P v β 2 vTv⁄=

A v β
A PA

P I βvvT–( )=

p 1 … n, ,=

s v k( )A k p,( ) … v j( )A j p,( )+ +←
s βs←

i k … j, ,=

A i p,( ) A i p,( ) s  v i( )–←

i

p

Note:  above. An analogous algorithm is used for the  

update.

vT 0 … vk … vj 0 … 0, , , , , , ,[ ]= AP

=

A

Ar Pr  Ar 1–  Pr=

A0 A 
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The elements of  are chosen so that  has zeroes in the positions 1 through  
in the r-th row. The configuration and partitioning of  can be shown as:

where:

The transformation matrix can be partitioned as follows:

where  is a unit vector of order .

By executing the multiplication given in the right-hand side of Eq. 7-72, the 
following  is obtained:

where .

If  is chosen so that  is null except for its first component, then  of the order 
 takes the Hessenberg form.

=  (symmetric)

= 1

= a submatrix of order 

= of upper Hessenberg form

= a square matrix order  (part of original matrix)

= a vector having  components

Pr I 2wr  wr
T–

wr
Twr

wr Ar r 2–
Ar 1–

r

n r–

x x x x x x
x x x x x x
 x x x x x
  x x x x
  x x x x
  x x x x

Hr 1–  Cr 1–
0 br 1– Br 1–

=Ar 1–  =

Cr 1– r

Hr 1–

Br 1– n r–

br 1– n r–

r I 0

0 Qr
 

I 0

0 I 2vrvr
T–

=Pr  =
n r–

vr n r–

Ar

r Hr 1–
    Cr 1– Qr

0 cr QrBr 1– Qr
T

Ar  =
n r–

cr Qr br 1–=

vr cr Hr
r 1+
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In-Memory Algorithm.  This formulation can be developed by writing  as 
follows:

Eq. 7-73

where  is a unit vector of order  with zeroes as the first  elements. By further 
changes:

Eq. 7-74

where:

Because of the lack of symmetry, the pre- and post-multiplications in Eq. 7-72 must 
be considered separately. The premultiplication takes the following form:

Eq. 7-75

The postmultiplication is as follows:

Eq. 7-76

Because  has zero elements in the 1 through  positions, it is seen that the 
premultiplication leaves the first  rows of  unchanged, while the 
postmultiplication leaves the first  columns unchanged. By introducing new 
intermediate vectors, the following may be written:

Eq. 7-77

=

=

=

=

=

Pr

Pr I 2wrwr
T–=

wr n r

Pr I
urur

T

2Kr
2

-----------–=

uir 0 i 1 2 … r , , ,=,

ur 1 r,+ ar r 1+, Sr±

uir air i r 2 … n, ,+=,

Sr
2 air

2

i r 1+=

n

∑

2Kr
2 Sr

2  ar 1+ r,  Sr±

Pr Ar 1– I
urur

T

2Kr
2

-----------–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

Ar 1– Ar 1–
ur ur

TAr 1–( )

2Kr
2

-------------------------------- Fr=–= =

Ar Fr  Pr Fr I
ur  ur

T

2Kr
2

-------------–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

= Fr
Fr  ur( )ur

T

2Kr
2

-------------------------–= =

ur r
r Ar 1–
r

ur
TAr 1– pr

T=
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where  has its first  elements as zero. This results in

Eq. 7-78

For the postmultiplication, the  vector is introduced

Eq. 7-79

which has no zero components. Finally,

Eq. 7-80

Two-Level Storage (Spill) Algorithm.  If the execution of memory transfers is a 
significant requirement, the following formulation is more convenient. The vector 

 is again defined as in Eq. 7-77:

Eq. 7-81

However,  is now defined as follows:

Eq. 7-82

By scaling elements of , the following is obtained:

Eq. 7-83

Finally, introducing the scalar  as follows:

Eq. 7-84

Eq. 7-72 now can be written in the following form:

Eq. 7-85

QR Iteration Using the Householder Matrices
It is proven (Wilkinson, 1965 ) that the general  matrix can be factored into the 
product of a unitary matrix  and an upper triangular matrix . The algorithm at 
the r-th stage is as follows:

pr
T r 1–( )

Fr Ar 1–
ur

2Kr
2

----------
⎝ ⎠
⎜ ⎟
⎛ ⎞

pr
T–=

qr

Fr  ur qr=

Ar Fr qr
ur

2Kr
2

----------
⎝ ⎠
⎜ ⎟
⎛ ⎞ T

–=

pr

pr
T ur

T  Ar 1–=

qr

qr Ar 1–  ur=

ur

vr
ur

2Kr
2

----------=

ar

ar pr
Tvr=

Ar Ar 1– vr  pr
T– qr  vr

T  pr
Tvr( )ur  vr

T+–=

Ar 1– vr  pr
T– qr ar  ur–( )  vr

T–=

A
Q R
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Eq. 7-86

By including the successive iterates, we obtain

Eq. 7-87

From the following form of Eq. 7-86:

Eq. 7-88

it is seen that  is unitarily similar to . In general,  tends towards an upper 
triangular form. The matrix  is the product of  elementary unitary 
transformations necessary to reduce  to the upper triangular form . The 
transformation matrices can be Givens rotations or Householder reflections.

In NX Nastran the latter Householder reflections are used. A shift  may be 
incorporated into the single step  logic as follows:

Eq. 7-89

If the matrix has complex conjugate eigenvalues, the most economical way is to 
execute two steps (double step). For example, the first double shift with shifts  
and  can be written as follows:

Eq. 7-90

Note that Eq. 7-87 still holds in the shifted case, so we have

Eq. 7-91

By introducing

Eq. 7-92

the following can be shown:

Eq. 7-93

or

Ar Qr  Rr=

Ar 1+ Qr
HAr  Qr Qr

H  Qr  Rr  Qr Rr  Qr= ==

Ar 1+ Qr
HAr  Qr Qr

HQr 1–
H …Q1

H( )A1 Q1Q2…Qr( )==

Q1Q2…Qr( )  Ar 1+ A1 Q1Q2…Qr( )=

Ar A1 Ar
Qr n 1–( )

Ar Rr

kr
QR

Ar kr  I Qr  Rr=–

Ar 1+ Rr  Qr kr  I+=

k1

k2

A1 k1 I Q1 R1=–

A2 k2 I Q2 R2=–

 A2 R1 Q1 k1I+=

A3 R2 Q2 k2I+=

A3 Q1 Q2( )HA1 Q1 Q2=

Q  Q1 Q2=

R R2 R1=

QR A1 k1I–( ) A1 k2I–( )=
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Eq. 7-94

which means that  is the orthogonal matrix that reduces  to 
the upper triangular form. Note that if  is real and the complex shifts  are 
chosen as a conjugate pair, then the factorization in Eq. 7-93 can be performed 
using only real arithmetic.

Implicit QR Step.  Using the Householder matrices again,

Eq. 7-95

where 

The derivation of  can be produced as follows. First we create a Householder 
matrix which provides the following:

Eq. 7-96

where:

Then we compute the following:

Eq. 7-97

(See the update with Householder matrices in “Theory of Real Eigenvalue 
Analysis” on page 125.)

The  matrix no longer takes Hessenberg form. Therefore, this matrix must be 
reduced by new Householder matrices:

Eq. 7-98

Now the question is how to formulate the  matrices. The nonzero elements of the 
 Householder matrices are determined by  for  and by  for , 

. A convenient representation of  (see also “Theory of Real 
Eigenvalue Analysis” on page 125 on Householder method) for the current case is 
as follows:

=

=

=

=

= first unit vector

QT A1 k1I–( ) A1 k2I–( ) R=

QT A1 k1I–( ) A1 k2I–( )
A1 k1 k2,

Pr I 2wrwr
T–=

wr  = 0 0 … 0 x … x, , , , , ,( )

A3

P1 x ke1=

xT x1 y1 z1 0 … 0, , , , ,( )

x1 a11 k1–( ) a11 k2–( ) a12 a21+

y1 a21 a11 k2–( ) a22 k1–( )a21+

z1 a32 a21

e1

C1 P1 A1 P1=

C1

Pn 2– …P2P1A1P1P2…Pn 2– A3=

Pr
Pr x1 y1 z1, , P1 xr yr zr, , Pr
r 2 … n 2–, ,= Pr
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Eq. 7-99

Then

Eq. 7-100

For the update, the algorithm described in “Theory of Real Eigenvalue Analysis” 
on page 125 is used.

Eigenvector Computation
The Hessenberg form is convenient for generating eigenvectors when the 
eigenvalues are known. An eigenvector of the Hessenberg matrix  can be found 
by solving the following:

Eq. 7-101

where  is the corresponding eigenvalue.

This equation in detailed form is as follows:

Eq. 7-102

The matrix of the system is singular, but the minor corresponding to the upper right 
corner element  is not. Therefore, we normalize the  vector so that the last 
element in it is equal to 1.

Eq. 7-103

Pr I
2vrvr

T

vr
Tvr

--------------–=

vr
T 0 … 0 1 ur vr 0 … 0, , , , , , , ,( )=

ur
yr

xr   ar±( )
-----------------------=

vr
zr

xr   ar±( )
-----------------------=

2

vr
Tvr

----------- 2

1 ur
2 vr

2+ +( )
----------------------------------- βr= =

Pr I vr βr  vr
T( )–=

H

H λ  I–( )y 0=

λ

h11 λ– h12 h13 h1n
h21 h22 λ– h23 h2n
   hi i 1–, hi i, λ– hin
            

      hn n 1–, hnn λ–

y1

 
yi

yn 1–
yn

0=
.

.
.

h1n y

yn 1=
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The next to the last element in this case is given by solving the following:

Eq. 7-104

which yields the following:

Eq. 7-105

The other elements can be evaluated in recursive form from:

Eq. 7-106

Then the -th element,  is as follows:

Eq. 7-107

The practical implementation of the above procedure also takes care of the cases 
where decoupling occurs, i.e., when . This process is still very unstable 
and an alternative iterative solution of Eq. 7-101 exists in NX Nastran, which is 
similar to the procedure detailed in “Theory of Real Eigenvalue Analysis” on 
page 125.

Transformation of the Vectors.  If Eq. 7-72 is extended, the following is 
obtained:

Eq. 7-108

By introducing

Eq. 7-109

the following is obtained:

Eq. 7-110

or

Eq. 7-111

If Eq. 7-111 is post-multiplied by an eigenvector of the  matrix, the following is 
obtained:

hn n 1–,  yn 1–  hnn λ–( )yn 0=+

 yn 1–
1

hn n 1–,
-------------------- λ hnn–( )=

hi i 1–,  yi 1– hi i, λ–( )  yi  hi l,  yl
l i 1+=

n

∑ 0=+ +

i 1–( ) i n 1 n 2 … 2, ,–,–=

yi 1–
1

hi i 1–,
------------------ λ hi i,–( )  yi hi l,  yl

l i 1+=

n

∑–=

hi i 1–, 0=

H Pn 2– Pn 1– …P1 A1 P1…Pn 2–=

Z P1 …  Pn 2–=

H ZTAZ=

AZ ZH=

H
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Eq. 7-112

Note from Eq. 7-101 that

Eq. 7-113

The result is the following equation:

Eq. 7-114

which indicates that an eigenvector  of  can be obtained by the following:

Eq. 7-115

This calculation is also straightforward if the  matrix is accumulated during the 
transformation from  to . However, it is not practical to explicitly form the  
matrix when the  matrices are not formed. An effective implicit formulation is 
given below.

Implicit Vector Transformation.  Write Eq. 7-115 as follows:

Eq. 7-116

where  represents the Householder transformation matrices. Considering 
Eq. 7-116 as a series of orthogonal transformations with  and , 
write the following:

Eq. 7-117

and substitute to get

Eq. 7-118

With this formulation, only the  vectors need to be accumulated during the  to 
 transformation and saved in secondary storage for the vector transformations.

QZ Hessenberg Method

The QZ method is a robust algorithm for computing eigenvalues and eigenvectors 
of the eigenvalue problem

and, as such, is applicable to the  case. If , the appropriate canonical 
transformation to linear form is executed. There are no restrictions on  or . For 
details, see Golub and Van Loan, p. 375.

AZy ZHy=

Hy λy=

AZy λZy=

x A

x Zy=

Z
A H Z

Pr

x P1 P2…Pn 2–  y=

Pi
y y n 2–( )= x y 0( )=

y r 1–( ) Pr  y r( )=

y r 1–( ) y r( ) ur
T  y r( )

2Kr
2

------------------ur–=

ur A
H

Ax λ  Cx=

B 0= B 0≠
A C
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Hessenberg-Triangular Form

The first stage of the QZ algorithm is to determine unitary matrices  and  so 
that the matrix  is upper triangular and  is upper Hessenberg.

This is accomplished by first computing a unitary matrix  such that  is upper 
triangular. Next, the matrix  is reduced to an upper Hessenberg matrix  by 
premultiplying by a series of unitary matrices  and postmultiplying by a series 
of unitary matrices , .

The matrices  and  are carefully chosen so that 

is upper Hessenberg, while

remains upper triangular.

The QZ Step

The derivation of the QZ step is motivated by the case where  is nonsingular 
(although it generalizes the singular case). If  is nonsingular, we could form  
and apply the Francis QR algorithm. Rather than forming  explicitly, the QZ 
algorithm updates  and  using unitary matrices  and :

The matrices  and  are chosen so that the matrix  is essentially the same as 
if a QR step had been explicitly applied to . However, since we operate with  
and  rather than , it is not necessary for  to be invertible.

The QZ iteration continues until the matrix  converges to upper triangular form.

Eigenvalue Computation

Once  has converged to upper triangular form, the QZ algorithm will have 
determined unitary matrices  and  so that both 

 and  are upper triangular. Denote the diagonal entries of  by 
, and the diagonal entries of  by .

Then, for each , the matrix  is singular. It follows that there 
exists a vector  so that .

Substituting for  and  and pre-multiplying by , we have .

Q Z
T QHCZ= S QHAZ=

U UHC
UHA S

Qj
Zj j 1 … k,,=

Qj Zj

Sj Qj
HQj 1–

H …Q1
H UHA( )Z1Z2…Zj QHAZ==

Tj Qj
HQj 1–

H …Q1
H UHC( )Z1Z2…Zj QHCZ==

T
T ST 1–

ST 1–

S T Q Z

Sj QHSZ=

Tj QHTZ=

Q Z SjTj
1–

ST 1– S
T ST 1– T

S

S
Q Q1 Q2 … Qj, , ,= Z Z1 Z2 … Zj, , ,=

S QHAZ= T QHCZ= S
α1 α2 … αn, , , T β1 β2 … βn, , ,

j 1= 2 … n, , , βj S αjT–
uj βjSuj αjTuj=

S T Q βjAZuj αjCZuj=
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Hence, if , we set  and  to get , as desired. 
However, if , then we have two cases to consider:

The Complex Lanczos Method
The main steps of the complex Lanczos Method are: reduction to tridiagonal form, 
solution of the tridiagonal problem, and eigenvector computation.

NX Nastran currently supports two complex Lanczos methods: the single vector 
method and the adaptive, block method.

The Single Vector Method

Reduction to Tridiagonal Form.  The recurrence procedure introduced in 
“Theory of Real Eigenvalue Analysis” on page 125 can also be used to reduce a 
general matrix to tridiagonal form. This is the so-called biorthogonal Lanczos 
method. Find a nonsingular  matrix such that:

Eq. 7-119

or

Eq. 7-120

Then with , the following relation holds:

Eq. 7-121

Eq. 7-119 and Eq. 7-121 can be written as:

Eq. 7-122

where  and for ,  and  are complex columns of the 
 and  matrices.

1. In this case,  is said to be an infinite eigenvalue.

2. Here  is indeterminate.

βj 0≠ λj αj βj⁄= xj Zuj= Axj λjCxj=
βj 0=

βj 0 αj 0≠,= λj

βj 0 αj 0=,= λj

V

AV VT=

V 1– AV T

α1 γ2    

β2 α2 γ3   

     

    γn
   Bn αn

 = = .
.

.

U V T–=

ATU UTT=

Avj γj  vj 1– αj  vj βj 1+  vj 1++ +=

ATuj βj  uj 1– αj  uj γj 1+  uj 1++ +=

γ1v0 β1u0 0== j 1 2 … n, 1–, ,= uj vj
U V
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Reordering Eq. 7-122 results in the following recurrence relations:

Eq. 7-123

There is some flexibility in choosing the scale factors of . One possibility is to 
select , which results in an unsymmetric  matrix with ones on the 
subdiagonal. This form is advantageous for a direct eigenvector generation 
scheme.

Another possibility is to select , which results in a complex but symmetric 
matrix. This matrix has significant advantages in the eigenvalue extraction from 

the tridiagonal form, and NX Nastran uses this method in the implementation. In 
this case, Eq. 7-123 becomes

Eq. 7-124

which corresponds to the matrix form (see Eq. 7-120):

Eq. 7-125

The explicit form of the coefficients of T can be derived from the biorthonormality 
of vectors  and . Biorthonormality means that

Eq. 7-126

The premultiplication of Eq. 7-124 by , and , respectively, results in 
the following (using Eq. 7-126):

and

Eq. 7-127

βj 1+  vj 1+ Avj αj  vj γj  vj 1–––=

γj 1+  uj 1+ ATuj αj  uj βj  uj 1–––=

βj γj,
βj 1= T

γj βj=
T

βj 1+  vj 1+ Avj αj  vj βj  vj 1–––=

βj 1+  uj 1+ ATuj αj  uj βj  uj 1–––=

UTAV T

α1 β2   

β2 α2   

    

  αn 1– βn
  βn αn

 = = .
.

.

u v

ui
Tvj

0 if i j≠
1 if i j=⎩

⎨
⎧

=

uj
T uj 1+

T, vj
T vj 1+

T,

αj
u ui

TAvj  or αj
v vj

TAuj==

βj 1+
u uj 1+

T Avj  or βj 1+
v vj 1+

T ATuj==
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The two versions of  and  should be the same in exact arithmetic. In the 
actual implementation, the average of the two versions is used.

The algorithm can be developed as follows:

Eq. 7-128

where . The algorithm starts with  as well as with 
biorthonormal random starting vectors for  and .

The procedure will break down if  becomes equal to zero. In that case, the 
process is restarted with new  vectors. In our implementation this is done 
when

Eq. 7-129

where  is a small number (related to the machine precision).

Solution of Tridiagonal Problem.  The method for extracting the eigenvalues of 
the complex tridiagonal form is a variant of the basic  procedure, mentioned 
previously in “Theory of Real Eigenvalue Analysis” on page 125. At each iteration 
the basic  procedure factors a shifted version of the current iterate as follows:

Eq. 7-130

where  is a lower triangular matrix,  is orthogonal and obeys the following:

Eq. 7-131

The next iterate  is obtained as follows:

Eq. 7-132

Premultiplying by  and postmultiplying by  in Eq. 7-130 gives

Eq. 7-133

αj βj 1+

αj
u uj

TA= vj ; αj
v vj

TAuj ; αj αj
u αj

v+( ) 2⁄==

vj 1+ Avj αj vj βj vj 1–––=

uj 1+ ATuj αj uj– βj  uj 1––=

βj 1+
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2
uj 1+

T A vj ; βj 1+
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T ATuj ; βj 1+ βj 1+
u βj 1+

v+( ) 2⁄= = =

vj 1+
vj 1+
βj 1+
------------=

uj 1+
uj 1+
βj 1+
------------=

j 1= … m n<, , u0 v0 0 β1 0=,= =
u1 v1

βj 1+
uj 1+ vj 1+,

βj 1+ εαj<
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QL

T ωI QL=–
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QTQ I=

Ti 1+

T1 LQ= ωI+
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T1 QTTQ=
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By repeatedly applying Eq. 7-130 and Eq. 7-133,  is finally converted into a 
diagonal matrix whose elements are the eigenvalues of the original tridiagonal 
matrix; that is,

Eq. 7-134

Note that if the  matrix is complex, then the  matrix is also complex.

The computation of  is performed by a sequence of complex Givens 
transformation matrices .   Each  is the identity matrix except for the entries 

 where . These terms are defined as follows:

Eq. 7-135

 and  are complex scalars (to be defined later). Each  matrix satisfies

Eq. 7-136

The  matrix is built as follows:

Eq. 7-137

First,  is determined from the n-th column of . Applying this 
transformation matrix to , a new nonzero term is introduced in the  
position. Subsequent  are defined so that the nonzero introduced by  is 
forced up and out of the matrix, thereby preserving the complex symmetric 
tridiagonal structure.

The algorithm given below does not perform the explicit shifting, factorization, 
and recombination of Eq. 7-130 and Eq. 7-132. Explicit shifting can result in 
significant loss of accuracy. Instead, one iteration step (generating  from ), is 
replaced by the following sequence:

Eq. 7-138

where , the original matrix.

Finally, the following is obtained:

Eq. 7-139

Ti
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T Q

Q
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T Pk Pk
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Q Pn 1– Pn 2– …P1=

Pn 1– T ωI–
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The process is repeated for  or until the matrix  becomes diagonal. 
Note that this diagonalization occurs by successive decoupling of 1 × 1 and 2 × 2 
submatrices of . Decoupling occurs when an off-diagonal term is less than the 
product of an  and the sum of the absolute values of the two corresponding 
diagonal entries.

The selection of the  parameters can now be described. For , we 
must first determine the shift , which is chosen to be the eigenvalue of the upper 
2 × 2 submatrix of  closest to . Then the parameters are as follows:

Eq. 7-140

Eq. 7-141

where

Eq. 7-142

Note again that by executing this transformation, the term  becomes 
nonzero. For the subsequent rotations , the parameters are selected as 
follows:

Eq. 7-143

where 

This step is reviewed in the following figure by using  (the sub- and 
superscripts of the  are ignored).
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Ti
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Ti

n( ) n n,( ) ω–
an 1–

-------------------------------------=

Sn 1–
Ti

n( ) n 1– n,( )
an 1–

------------------------------------=

an 1– Ti
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Figure 7-1  Chasing of Nonzero Offdiagonals.

As shown in Figure 7-1, the k-th transformation zeroes out , which was 
introduced by the th transformation, but generates a new nonzero term in 

.

Using Eq. 7-143 the new terms of the matrix  are calculated as follows. Let

Eq. 7-144

Then

Eq. 7-145
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by the  stepk n 2–=
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T k k 2+,( )

T n 2– n,( )
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Finishing the calculation of Eq. 7-145, set  and repeat from Eq. 7-144. 
When Eq. 7-145 is finished for , then use Eq. 7-142 and start the process from 
Eq. 7-144 again.

Breakdown of the Procedure.  The calculation of  and  is performed using a 
denominator with the following form:

Eq. 7-146

which can be very small without either  or  being small. For example, for  
and . When this situation occurs, the process breaks down. The 
condition of this problem can be formulated as follows. If

Eq. 7-147

then the procedure will terminate.  in Eq. 7-147 is a small number related to the 
machine precision.

The storage and computational efficiency of this algorithm is excellent since it 
needs  storage and  operations.

Error Bounds.  Theoretically, the solutions of the following reduced 
eigenproblem

Eq. 7-148

are approximations to the solutions of the original problem.

To estimate the accuracy of the solution, we use

Eq. 7-149

Eq. 7-149 is a generalization of a similar error bound in the current symmetric 
Lanczos code.

The error bound for the original eigenvalues of Eq. 7-6 can be found as follows:

Eq. 7-150
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Eigenvector Computation.  To calculate the eigenvectors of the tridiagonal form, 
an inverse power iteration procedure is used. First, a random right-hand side is 
generated for the inverse iteration. Then an  decomposition of the tridiagonal 
matrix is performed by Gaussian elimination with partial pivoting. After a back 
substitution pass, the convergence of the approximate eigenvector is checked by its 
norm. If the norm is greater than one, then the eigenvector is accepted. This norm 
shows sufficient growth, assuming that the procedure began with a random 
right-hand side vector with elements less than one. Otherwise, the eigenvector is 
normalized, and the process is repeated with this vector as the right-hand side. The 
iteration is repeated up to three times.

Practice indicates that most of the time one iteration pass is sufficient. The 
computation is very stable, especially with partial pivoting. The process can be 
summarized as follows.

1. Decomposition

Eq. 7-151

where:

2. Iteration

Eq. 7-152

where:

If  and the iteration count is less than 3, then

Eq. 7-153

and the iteration continues; otherwise,  is the eigenvector.

3. Converting the Solution

= the tridiagonal matrix

= an eigenvalue

= permutation matrix (row interchanges)

= factor matrices

= random starting vector

= approximate eigenvector

LU

P T λi  I–( ) LU=

T

λi

P

L U,

LUu2 u1=

u1

u2

u2 1<

u1
u2
u2

------------←

u2
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The conversion of eigenvalues is performed by the following equations:

Eq. 7-154

The eigenvector conversion requires the computation of the following:

, for the right vectors

or

, for the left vectors

where:

4. Initialization

The Lanczos recurrence is started with orthonormalized random vectors. 
Any numerical procedure can be used that generates sufficiently long 
pseudorandom number sequences. Suppose the random vectors are as 
follows:

Orthonormalization can be performed in the following form:

Eq. 7-155

These vectors are now suitable to start the Lanczos iteration.

= eigenvector of Eq. 7-148 corresponding to 

=

=

= number of roots found by the procedure at the particular shift
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5. Outer Orthogonalization

It is well known that repeated occurrence of eigenvectors can be 
prevented by assuring orthogonality between the already accepted 
eigenvectors and the Lanczos vectors. This outer orthogonality can be 
maintained using the following iteration process (i.e. modified 
Gram-Schmidt):

Eq. 7-156

This process should be executed similarly with the  vectors.

The respective orthogonalization formula is as follows:

In the above formulae,  are already accepted eigenvectors and 
.

6. Inner Orthogonalization

When the Lanczos process is carried out in practice using finite precision 
arithmetic, strict biorthogonality of the  sequences is lost. The 
biorthogonality can be maintained if  is reorthogonalized with 
respect to , and  is reothogonalized with respect to 

 using the following formulae:

Eq. 7-157

For numerical stability, the subtraction is performed immediately after 
each term is calculated (modified Gram-Schmidt), and the sum is not 
accumulated.

Inner orthogonality monitoring is performed by the following:
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Eq. 7-158

No orthogonalization is necessary when

If necessary, the orthogonalization is performed against all previous 
vectors. If the orthogonalizations are kept in the core, this fact implies a 
limit on .

7. Shift Strategy

The default logic begins with a shift at (0.1, 1.0). The Lanczos recurrence 
process is performed until breakdown. Then the eigensolutions of the 
reduced problem are evaluated as approximations. If the user desires, the 
shifts are executed at user-specified locations as shown in Figure 7-2.

Figure 7-2  Recommended Shift Points for Complex Lanczos

The shifts are used until the required number of eigenvalues are found. 
Unfortunately, there is no analogue to the Sturm sequence theory used for 
the real eigensolution. As a result, there is no assurance that no gaps exist 
between the eigenvalues found.

ωj
u uj 1+

T vj=

ωj
v vj 1+

T uj=

max ωj
u ωj

v,( ) ε<

m

Default Shift

Re

Im

α1β1( )

α2β2( )

α  β( )
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The Adaptive Block Lanczos Method
The solution of the mathematical eigenproblem in its canonical form shown in 
Eq. 7-13 will be more efficiently accomplished with the block Lanczos method.

The block Lanczos method (see Bai, et al., 1996) generates two sets of 
biorthonormal blocks of vectors  and  such that:

Eq. 7-159

when  and zero otherwise. Note that we are using superscript H to denote 
the complex conjugate transpose. These vector sets reduce the  system matrix to 

 block tridiagonal matrix form:

Eq. 7-160

where the matrices

Eq. 7-161

and

Eq. 7-162

are the collections of the Lanczos blocks. The structure of the tridiagonal matrix is:

Eq. 7-163

The block Lanczos process is executed by the following three term recurrence 
matrix equations:

Eq. 7-164

and

Eq. 7-165

Note that in both of these equations the transpose of the system matrix  is 
avoided.

Pj Qj

Pi
HQj I=

i j=
A

Tj

Tj Pj
H

AQj=

Pj P1 P2 … Pj, , ,=

Qj Q1 Q2 … Qj, , ,=

Tj

A1 B2    

C2 A2    

     
    Bj
   Cj Aj

=

Bj 1+ Pj 1+
H Pj

HA Aj  Pj
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In order to find the mathematical eigenvalues and eigenvectors, we solve the block 
tridiagonal eigenvalue problems posed as:

Eq. 7-166

and

Eq. 7-167

where the order of the reduced tridiagonal matrix is  times , assuming a fixed 
block size  for now. The eigenvalues  of the tridiagonal problem (the so-called 
Ritz values) are approximations to the eigenvalues  of the mathematical problem 
stated in Eq. 7-13. The approximations to the eigenvectors of the original problem 
are calculated from the left and right eigenvectors  of the tridiagonal problem 
(Ritz vectors) by:

Eq. 7-168

and

Eq. 7-169

where  are the matrices containing the first  Lanczos blocks of vectors. 
Finally,  are the right and left approximated eigenvectors of the mathematical 
problem.

A beautiful aspect of the Lanczos method (exploited also in the READ module) is 
that the error norm of the original problem may be calculated from the tridiagonal 
solution, without calculating the eigenvectors. Let us introduce a rectangular 
matrix  having an identity matrix as the bottom square block. Using this, a 
residual vector for the left-handed solution is:

Eq. 7-170

which means that only the bottom  (if the current block size is ) terms of the new 
Ritz vector  are required due to the structure of . Similarly for the right-handed 
vectors:

Eq. 7-171

An easy acceptance criterion (an extension of the one used in the real case) may be 
based on the norm of the above residual vectors as:

Eq. 7-172
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where the  value to accept convergence is either user given or related to an 
automatically calculated machine epsilon. The  denotes the Euclidean norm.

Based on a detailed error analysis of these quantities, we modify this criterion by 
considering the spectral gap:

Eq. 7-173

where . With this, the recommended criterion is

Eq. 7-174

In the above, we assumed that the Lanczos blocks have a uniform size of . It is 
possible to generalize this to allow for the j-th iteration to have  variable block 
size. Such flexibility may be advantageous in the case of clustered eigenvalues or 
to avoid the breakdown of the Lanczos process.

Let us assume at the -st iteration, the block size is increased by some  and 
the -st Lanczos vectors are augmented as:

Eq. 7-175

and

Eq. 7-176

where the * vectors are the still undefined augmentations. It is easy to see that 
appropriate augmentations will maintain the validity of the three member 
recurrence of Eq. 7-164 and Eq. 7-165 as follows:

Eq. 7-177

and

Eq. 7-178

The Lanczos process can therefore formally continue with the following 
substitutions:

Eq. 7-179
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Eq. 7-180

and

Eq. 7-181

Eq. 7-182

The conditions of successful continuation with augmented blocks are the 
orthogonality requirements of:

Eq. 7-183

and

Eq. 7-184

It is of course necessary that the inner product of the newly created, augmented pair 
of Lanczos vector blocks

is not singular, since its decomposition will be needed by the algorithm. 
Specifically, we need the smallest singular values of the inner product matrix to be 
larger than a certain small number. A possible choice for the augmentations is to 
choose  pairs of random vectors and orthogonalize them against the earlier 
vectors by using a modified Gram-Schmidt procedure. The orthogonalization may 
be repeated several times to assure that the smallest value is above the threshold.

The most prevalent usage of the block size adaptation is to cover existing clusters 
of eigenvalues. In the real block implementation, we were not able to change the 
block size on the fly (adaptively). Therefore, an estimate of the largest possible 
cluster was needed a priori. For typical structural applications, the default block 
size of 7 (anticipating 6 as the highest multiplicity) was used.

The multiplicity of a cluster may be found on the fly with the help of the Ritz values. 
The number of expected multiplicities in a cluster is the number of elements of the 
set satisfying:

Eq. 7-185
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where  is the user specified cluster threshold. The order of the largest cluster of 
the Ritz values is calculated every time a convergence test is made and the block 
size is appropriately adjusted. This procedure is not very expensive, since it is done 
on the tridiagonal problem.

Preventing Breakdown.  It is easy to see that the Lanczos process breaks down in 
some circumstances. These are:

• Either  or  or both are rank deficient.

• Neither are rank deficient, but  is rank deficient.

The breakdown of the first kind prevents the execution of the QR decomposition 
of the j-th blocks. This is fairly easy to overcome by an orthogonalization 
procedure also applied in the current complex Lanczos implementation.

Specifically, if  is rank deficient, then we restart the Lanczos process with a 
random  made orthogonal to all previous left Lanczos vectors  as:

Eq. 7-186

If  is just nearly rank deficient (detected by the QR decomposition of 
), then we reorthogonalize this  to the previous left Lanczos 

vectors, as shown in the above equation.

Rank deficiency (full or near) of  is treated similarly with respect to the right 
Lanczos vectors.

The breakdown of the second type (a serious breakdown) manifests itself in the 
singular value decomposition of . In this type of breakdown, some or all 
of the singular values are zero, as follows:

Eq. 7-187

where  is nonsingular if it exists. This problem may also be overcome using the 
augmentation techniques shown earlier. First, calculate and partition as follows:

Eq. 7-188

and

Eq. 7-189
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where the number of columns in the second partition is equal to the number of zero 
singular values. Create the following projector matrix:

Eq. 7-190

Bai et al., 1996 proves that the choice of vectors:

Eq. 7-191

and

Eq. 7-192

in the following augmentation:

Eq. 7-193

and 

Eq. 7-194

will always result in a nonsingular  product.

It is possible to extend this procedure to the case of near-breakdown when the 
singular values may not be exact zeroes, but smaller than desired. In this case, it is 
recommended to increase the block size for those singular values that are below a 
specified threshold. Finally, one may only use random vectors instead of the 
projection matrix.

Maintaining Biorthonormality.  The maintenance of the biorthonormality of the 
 and  vectors is the cornerstone of the Lanczos algorithm. Local 

biorthonormality, i.e. maintaining the condition between the consecutive Lanczos 
vectors, is fairly simple by executing the following steps:

Eq. 7-195

Eq. 7-196

These steps use data only available in memory, therefore they are cost effective 
even when executed repeatedly. Unfortunately, this method does not ensure that 
converged eigenvectors will not reappear. This may be prevented by a full 
reorthonormalization scheme using a modified Gram-Schmidt process. This is 
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implemented in the single vector complex Lanczos method of NX Nastran. A 
measure of the orthogonality of the current Lanczos vectors, with respect to the 
already accepted eigenvector, is:

Eq. 7-197

where  is the matrix column norm. This quantity is usually compared to a 

machine computational accuracy indicator as:

Eq. 7-198

where  is the automatically calculated machine epsilon. The appropriateness 
of the choice of the square root was proven in the real Lanczos method (called 
partial orthogonality there) and was already successfully employed in the READ 
module.

That measure, however, is very expensive, both in CPU and I/O regards. 
Specifically, the numerator requires the retrieval of the  and  vector blocks 
from secondary storage and a multiplication by them. A method of maintaining 
partial orthogonality with a limited access of the  and  matrices, uses

Eq. 7-199

where  is now the matrix row norm. The norms of the denominator may be 
updated in every iteration step without retrieving the eigenvectors. This method 
calculates the above numerator terms

Eq. 7-200

and

Eq. 7-201

utilizing the fact that these satisfy the three term recurrence equations perturbed 
by rounding errors as follows:

Eq. 7-202
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Eq. 7-203

and

Eq. 7-204

The superscript  refers to the left side. Similarly, for the right side:

Eq. 7-205

where

Eq. 7-206

and

Eq. 7-207

with superscript  referring to the right side. After these steps, the matrices are 
perturbed to simulate the round-off effect as:

Eq. 7-208

and

Eq. 7-209

where  is a random matrix having a norm of . If the test

Eq. 7-210

fails, then a retroactive modified Gram-Schmidt procedure (similar to the local one 
above) is needed. The cost of this procedure is , the dominant cost being the 
inner products of the Lanczos blocks producing the  vector blocks. This assumes 
that the block structure of  is taken into consideration.
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Mathematical Algorithm.  A simplified summary of the mathematical algorithm 
follows:

Figure 7-3  Block Lanczos Logic

Singular Value Decomposition (SVD)
Since a crucial element of the algorithm in Figure 7-3 is the singular value 
decomposition, step (c) in Figure 7-3, this section gives more detail.

Given any  matrix ,  there exist unitary matrices  and  such that

1. Initialization

a. Choose starting vector blocks  such that 

b. Calculate  and 

2. Iteration for 

a. Compute:

 

 

 

b. QR decomposition:

 

 

c. SV decomposition:

 

d. Compute recurrence:
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where  has the same dimensions as , but is in the form

where  is a diagonal matrix with real diagonal entries . The 
diagonal entries of  are the singular values of , and are mathematically defined 
to be the positive square roots of the eigenvalues of .

The singular value decomposition of  is computed without forming . The first 
step is to compute unitary matrices  and  such that 

is bidiagonal.

The main step of the SVD algorithm implicitly performs the Francis QR iteration on 
the matrix .

It is also possible to define an "economy" size SVD. Let  be the matrix consisting 
of the first  columns of . Then

is an alternate form of the SVD.

The method is also available directly to the user from the CEAD module, as shown 
in “User Interface” on page 237.

The Iterative Schur-Rayleigh-Ritz Method (ISRR)
The Iterative Schur-Rayleigh-Ritz Method (ISRR) is a procedure which extracts a 
specified number of roots which lie within a circle in the complex plane centered at 
the origin. The ISSR method computes a Schur factorization of the canonical matrix 

such that:

where has dimension n x n, is n x m, and is m x m. The reduced 
eigenproblem:

is then solved. Transformation of with recovers the eigenvectors 
corresponding to the eigenvalues .
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The advantages of this approach are that a much smaller m x m problem is solved 
spanning the subspace of the first m eigenvalues of , and a Schur decomposition 
is constructed which, within the limits of a numerical method, provides a greater 
degree of confidence than the complex Lanczos method that all modes have been 
found.

A
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7.3 Solution Method Characteristics
The available methods in NX Nastran are the Hessenberg methods, the complex 
Lanczos methods, SVD, and ISRR. The Hessenberg method is a reduction method, 
as is the SVD, while the Lanczos method and ISRR are iterative methods. The 
characteristics of these methods are:

Method Type Identifier Application Restriction

Hessenberg Reduction HESS All roots, few
vectors

 nonsingular

QZ Hessenberg Reduction QZHESS All roots, few
vectors

None

Complex
Lanczos

Iterative CLAN Few roots 

SVD Reduction SVD Singular value 
and/or 
vectors of 

 must be purged

ISRR Iterative ISRR Roots closest 
to origin

 nonsingular

M

K[ ] λs B[ ] λs
2 M[ ] 0≠+ +

K

B M,

M



237CHAPTER 7
Complex Eigenvalue Analysis
7.4 User Interface

Input Data Blocks:

Output Data Blocks:

Parameters:

CEAD KXX,BXX,MXX,DYNAMIC,CASECC,VDXC,VDXR/ 
CPHX,CLAMA,OCEIG,LCPHX,CLAMMAT/ 
S,N,NEIGV/UNUSED2/SID/METH/EPS/ND1/ALPHAJ/OMEGAJ/
MAXBLK/IBLK/KSTEP/NDJ $

KXX Stiffness matrix.

BXX Viscous damping matrix.

MXX Mass matrix.

DYNAMIC Table of Bulk Data entry images related to dynamics.

CASECC Table of Case Control command images.

VDXC Partitioning vector with 1.0 at rows corresponding to null 
columns in K, B, and M.

VDXR Partitioning vector with 1.0 at rows corresponding to null rows in 
K, B, and M. 

CPHX Complex eigenvector matrix, or right singular vectors  
(SVD method with ND1 > 0).

CLAMA Complex eigenvalue summary table.

OCEIG Complex eigenvalue extraction report.

LCPHX Left-handed complex eigenvector matrix (Lanczos only), or 

left singular vectors  (SVD method with ND1 > 0).

CLAMMAT Diagonal matrix with complex eigenvalues on the diagonal, 

or diagonal matrix of singular values (SVD method). See 
Remark 8.

NEIGV Output-integer-no default. NEIGV indicates the number of 
eigenvalues found. If none were found, NEIGV is set to -1.

UNUSED2 Input-integer-default=1. Unused.

V

U

Σ
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SID Input-integer-default=0. Alternate set identification number.

If SID=0, the set identification number is obtained from the 
CMETHOD command in CASECC and used to select the EIGC entry 
in DYNAMIC.

If SID>0, then the CMETHOD command is ignored and the EIGC 
entry is selected by this parameter value. Applicable for all methods.

If SID<0, then both the CMETHOD command and all EIGC entries are 
ignored and the subsequent parameter values (E, ND1, etc.) will be 
used to control the eigenvalue extraction. Applicable for single vector 
Lanczos, block Lanczos, QZ Hessenberg, QR Hessenberg, and SVD 
(Singular Value Decomposition).

METH Input-character-default='CLAN'. If SID<0, then METH specifies the 
method of eigenvalue extraction:

CLAN Complex Lanczos (block or single vector),

HESS QZ Hessenberg or QR Hessenberg,

SVD Singular Value Decomposition,

ISRR Iterative Schur-Rayleigh-Ritz Method.

EPS Input-real-default=1.E-5. Used only when SID<0.

ND1 Input-integer-default=0. The number of desired eigenvectors. Used 
only when SID<0.

ALPHAJ Input-real-default=0.0. Real part of shift point. Used only when 
SID<0.

OMEGAJ Input-real-default=0.0. Imaginary part of shift point. Used only when 
SID<0.

MAXBLK Input-integer-default=7. Maximum block size. Used only when 
SID<0.

IBLK Input-integer-default= see Remark 10. Initial block size. Used only 
when SID<0.

KSTEP Input-integer-default=ND1 / (10*IBLK) + 2. Frequency of solve. Used 
only when SID<0.

NDJ Input-integer-default=0. The number of desired eigenvectors at 
desired shift point for pre-Version 70.5 Lanczos method. Used only 
when SID<0.
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7.5 Method Selection

Defines the data needed to perform complex eigenvalue analysis.

Format:

The following continuation is repeated for each desired search region.  (J = 1 to n, 
where n is the number of search regions.)

Alternate Format for Continuation Entry for Block Complex Lanczos:

Alternate Format for Continuation Entry for ISRR:

Examples:

EIGC Complex Eigenvalue Extraction Data

1 2 3 4 5 6 7 8 9 10

EIGC SID METHOD NORM G C E ND0

ALPHAAJ OMEGAAJ ALPHABJ OMEGABJ LJ NEJ NDJ

ALPHAAJ OMEGAAJ MBLKSZ IBLKSZ KSTEPS NJi

ALPHACJ OMEGACJ ISRRFLG NJi

EIGC 14 CLAN

+5.6 4

-5.5 3

EIGC 15 ISRR

-1.0 0.0 3 4

EIGC 16 HESS 6

Field Contents

SID Set identification number.  (Unique Integer > 0)

METHOD Method of complex eigenvalue extraction.  (Character: 
“INV,” “HESS,” “CLAN” or “ISRR”)
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NORM Method for normalizing eigenvectors. (Character: “MAX” 
or “POINT”; Default = “MAX”). See “Normalization 
Options” on page 245.

G Grid or scalar point identification number.  Required if and 
only if NORM = “POINT”.  (Integer > 0).

C Component number.  Required if and only if 
NORM=“POINT” and G is a geometric grid point.  
(0 < Integer < 6)

E Convergence criterion.  (Real > 0.0.  Default values are: 10-4 
for METHOD = “INV”, 10-15 for METHOD = “HESS”, E is 
machine dependent for METHOD = “CLAN”.)

MBLKSZ Maximum block size. (Default = 7, Integer > 0) Block 
Lanczos only.

IBLKSZ Initial block size. (Default = See Remark 10., Integer > 0) 
Block Lanczos only.

KSTEPS Frequency of solve.  (Default = 5, Integer > 0) Block Lanczos 
only.

ISRRFLG Used only for ISRR (see “ISRR Option” on page 248). 

ALPHACJ Used only for ISRR (see “ISRR Option” on page 248).

OMEGACJUsed only for ISRR (see “ISRR Option” on page 248). 

Field
METHOD Field

HESS INV CLAN ISRR

NDj 
(Integer > 0)

Desired 
number of 
eigenvectors. 
(No default)

Desired 
number of 
roots and 
eigenvectors 
in j-th search 
region.
(Default = 3*
NEj)

Desired 
number of 
roots and 
eigenvectors 
to be 
extracted at j-
th shift point.  
(No default)

Desired 
number of 
eigenvectors. 
(No default)

ALPHAAj
OMEGAAj
Real and 
imaginary 
parts of Aj in 
radians/ 
time (Real).

Not used End point Aj 
of j-th search 
region in 
complex 
plane.  
(Default = 0.0)

j-th shift 
point.
(Default = 0.0
)

Fields have 
alternate 
meaning 
(See “ISRR 
Option” on 
page 248.) 

Field Contents
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Remarks:

Figure 7-4  Sample Search Regions

ALPHABj
OMEGABj
Real and 
imaginary 
parts of Bj in 
radians/ 
time (Real).

Not used End point Bj 
of j-th search 
region in 
complex 
plane.  
(Default = 0.0)

See alternate 
definition 

below.

Not used

Lj 
(Real > 0.0)

Not used Width of j-th 
search region.  
(Default = 1.0)

See alternate 
definition 

below.

Not used

NEj  
(Integer > 0)

Not used Estimated 
number of 
roots in j-th 
search region.  
(Default = 0)

Not used Not used

MBLKSZ
For block 
CLAN only

Not used Not used Maximum 
Block Size
Default = 7

Not used

IBLKSZ
For block 
CLAN only

Not used Not used Initial Block 
Size
Default = 2

Not used

Field
METHOD Field

HESS INV CLAN ISRR

OMEGA

ALPHA

A1

A2
B1

B2

L1

L2
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1. The EIGC entry must be selected in the Case Control Section with the 
command CMETHOD = SID. Methods of solution are also controlled by 
SYSTEM(108); see “Hessenberg and Lanczos Options” on page 245.

2. The “HESS” method is generally more reliable and economical for small and 
moderate-size problems.  It computes all eigenvalues and ND eigenvectors.

3. The “ISRR” method works well on sparse matrices, confines the search region to 
a circle centered on the origin of the complex plane, and provides some reliability 
that all modes within the circle have been found.

4. The EIGC entry may or may not require continuations as noted below.

• For the “HESS” method, continuations are not required; and their 
contents are ignored when present, except for ND1.  However, it is 
recommended that continuations are not used.

• For the “CLAN” method, when the continuation entry is not used a shift 
is calculated automatically. When a shift is input on the first continuation 
entry it is used as the initial shift. Only one shift is used. Data on other 
continuation entries is ignored.

• For METHOD = “INV”, each continuation defines a rectangular search 
region.  Any number of regions may be used and they may overlap.  
Roots in overlapping regions will not be extracted more than once.

• For METHOD = “ISRR” continuation, see “ISRR Option” on page 248.

• For all methods, if no continuation is present, then ND0 must be specified 
on the first entry.  If a continuation is present, then NDj must be specified 
on the continuation and not on the first entry.

5. The units of ALPHAAJ, OMEGAAJ, ALPHABJ, and OMEGABJ are radians per 
unit time.

6. See The NASTRAN Theoretical Manual, Sections 10.4.4.5 and 10.4.4.6, for a 
discussion of convergence criteria and the search procedure with the INV 
method.

7. DIAG 12 prints diagnostics for the inverse power method, the complex Lanczos 
method, the QZ HESS method and the ISRR method.

8. If METHOD = “HESS” and the LR or QR methods (non-default methods) are 
selected by system cell 108 the mass matrix must be nonsingular.

9. When using METHOD = CLAN, the following should be noted.  The modern 
CLAN method (default for METHOD entry of CLAN) has been enhanced to 
include a block complex Lanczos approach.  This method is more reliable and 
will not accept inaccurate roots which the old method had a tendency to do.  
Thus, given the same input, the new method may often accept fewer roots.  For 
continuity the old method has been maintained and may be selected by setting 
SYSTEM(108).

10. The initial block size (IBLKSZ) default is as follows:
If N < 1000, IBLKSZ = 1.
If N < 50,000, IBLKSZ = 2.
If N < 100,000, IBLKSZ = 4.
If N >100,000, IBLKSZ = 5.



243CHAPTER 7
Complex Eigenvalue Analysis
Alternate EIGC Bulk Data Entry

The following alternate format is valid for all methods except for the inverse power 
method:

where KEYWORD may be any of the parameters from the original entry except 
SID, as well as:

Examples:

Remarks about alternate entry options:

1. The first of the keyword-driven continuation entry must be blank.

1 2 3 4 5 6 7 8 9 10

EIGC SID METHOD NORM G C E ND0

KEYWORD1=<value> KEYWORD2=<value> KEYWORD3=<value>

NDj Number of desired roots at shift j. (Integer > 0).

SHIFTRj The real part of shift j. (Real)

SHIFTIj The imaginary part of shift j. (Real)

KSTEPSj Block tridiagonal solution frequency at shift j; (only 
block Lanczos).(Integer > 0)

MBLKSZj Maximum block size at shift j (only block Lanczos). 
(Integer > 0)

IBLKSZj Initial block size at shift j (only block Lanczos). (Integer > 
0)

Note: In the parameters above, the value of j ranges from 1 to 10.

EIGC 1 CLAN

eps=1.E-12, nd1=12, shiftr1=0, shifti1=2.4E2

EIGC 2 HESS

ND1=10

EIGC 3 CLAN

shiftr1=0.0, shifti1=20., nd1=5, iblksz1=2, mblksz1=5

shiftr2=0.0, shifti2=50., nd2=5, iblksz2=2, mblksz2=5

shiftr3=0.0, shifti3=100., nd3=5, iblksz3=1, mblksz3=5
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2. If any of the parameters METHOD, NORM, G, C, EPS, or ND1 are specified on 
the continuation entry, the corresponding field on the original entry must be 
blank.

3. A maximum of 10 shifts may be specified.
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7.6 Option Selection
Complex eigenvalue analysis in NX Nastran supports general damping and 
normalization options as well as specific Hessenberg and Lanczos options.

Damping Options
The presence of the  matrix indicates the viscous damping option when the 
following equation is solved:

Eq. 7-211

This problem is transformed into a linear problem that is twice the size of the 
original matrices and provides eigenvalue solutions in complex conjugate pairs.

When the  matrix is not present and damping is introduced via imaginary 
stiffness terms (structural damping), then the following problem is solved:

Eq. 7-212

In this case the roots are not complex conjugate pairs. The mixed case of having 
both viscous and structural damping is also possible.

Normalization Options
The default normalization (and the only method available for the Hessenberg and 
Lanczos methods) is MAX. This option normalizes the component of the 
eigenvector with the largest magnitude to one for the real part and zero for the 
imaginary part.

The POINT normalization option uses G for a grid and C for a component to set 
the component to a value of (1.0, 0.0). This option is not currently available for the 
complex eigenvalue methods.

Hessenberg and Lanczos Options

Hessenberg Spill Option.  The spill option of the Hessenberg method (with QR) 
is less robust than the default (with QZ), but the latter has no spill. Since the spill 
option requires a much smaller amount of memory to run a problem, larger 
problems can be solved on a given computer.

Single Vector Lanczos Option.  The adaptive block option of the Lanczos 
method is very robust and efficient even for large, direct complex eigenvalue 
analysis jobs, and is the default. Thus, the single vector option must be specified, 
to override the default.

B[ ]

M λ2 Bλ+ K+[ ]u 0=

B[ ]

λ2M K+[ ]u 0=
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These options are selected via NEWHESS = SYSTEM(108).

Since the cell is binary, appropriate combinations are also valid. For example, 
SYSTEM(108) = 12 is a proper setting for the block method with debug output.

Internal Block Lanczos Options.  There are several internal detailed options 
available for the block Lanczos method (also in SYSTEM(108)) as shown in the 
following table:

SYSTEM(108)

Bit Decimal EIGC Entry Selection

0 0 HESS QZ Hessenberg without spill (default)

1 1 HESS QR Hessenberg with spill

2 2 CLAN Single vector complex Lanczos

3 4 CLAN Adaptive, block complex Lanczos (default)

4 8 CLAN Debug output for both complex Lanczos

9 256 HESS Force LR Hess (aka old Hessenberg without 
spill)

10 512 HESS Force QZ Hess

Option Action

16 Turn off block size reduction in block Lanczos

32 Turn off block size augmentation in block Lanczos

64 Enforce full orthogonality in block Lanczos

128 Turn off initial vector preprocessing in block Lanczos

1024 Override defaults for small problems in block Lanczos

2048 Output XORTH matrix in place of ROOTS matrix

4096 Turn off block FBS for complex matrices in block Lanczos

8192 Turn off symmetric decomposition in block Lanczos

16384 Turn off real reduction phase (always use complex arithmetic)

32768 Force spill of Lanczos vectors (testing purposes only)

65536 Old semi-algebraic sorting criterion

131072 Force spill during eigenvector computation (testing purposes only)
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Alternative Methods

SVD Option.  The singular value decomposition of the  matrix is produced if  
and  are purged. If used in SOLs 107 or 110, and mass or damping terms are 
present, a user fatal exit is taken. The SVD operation decomposes the input 
stiffness matrix K into the factors U, , and V as described in “Solution Method 
Characteristics” on page 236. The ND1 value is interpreted differently for the SVD 
than for an eigensolution.

Linear Solution Option.  The new BLOCK method and the QZHESS method 
enable the solution of the  problem also. This option is 
automatically selected when the M matrix is purged.

262144 Turn off autoshift logic

2097152 Turn off warning message 5411 if mass matrix has negative diagonal 
entries

Option Action

ND1 Output

>0 All vectors of U and V are output.

=0 U and V are returned in a purged state, that is, only the 
singular value matrix  is computed..

<0  is returned as a square matrix whose number of 
columns is equal to the minimum number of rows or 
columns of the input matrix. U and V are truncated to be 
commensurate with . This is a method to reduce the 
costs of solving very rectangular input matrices by 
providing a partial solution for the most interesting 
vectors.

K B
M
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ISRR Option.  Using the METHOD=ISRR alternate continuation card, field 7 
(ISRRFLG) can be used to define the following instructions;

The above ISRRFLG values may be summed to obtain a combination of settings. 
For example ISRRFLG = 323 would indicate options “1”, “2” and a maximum 
subspace of 10 vectors (1 + 2 + (10*32) = 323).

ISRRFLG Instruction

1 Reserves fields 2 (ALPHACJ) and 3 (OMEGACJ) for a 
user supplied shift. Shift does not redefine search region, 
but is only used during decomposition to avoid a 
singularity. The use of the shift is recommended for 
better performance.

2 Forces the out-of-core path in the code.

4 Overrides system cell 405.

8 Forces balanced iteration for real unsymmetrical 
problems only.

16 Forces generation of starting vectors for quadratic 
problems from the values found for the linear case when 
damping is ignored. In all other cases, the starting 
vectors are randomly generated.

M * 32 Sets the maximum size of the subspace to M vectors.
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7.7 Complex Eigenvalue Diagnostics

Hessenberg Diagnostics
The Hessenberg method has no internal diagnostics when the no spill option is 
used. The spill option has the following diagnostics:

• NEW HESSENBERG ROUTINE

• TIME OF TRANSFORMATION TO HESS FORM: X (REDUCTION 
TIME)

• STARTING QR ITERATION WITH NINC = X

The NINC value is the number of columns that are in memory. 

• INFINITY NORM = X

This is the maximum term (in magnitude) in the Hessenberg matrix. 

• FINAL EPSILON = 

The E convergence criterion (from the EIGC entry) is adjusted for the 
problem.

• TIME OF FINDING EIGENVALUES=X (QR ITERATION TIME)

• VECTOR GENERATION WITH NINC=X

The number of columns of the Hessenberg matrix held in core.

• TIME OF VECTOR GENERATION=X 

• VECTOR REVERSE TRANSFORMATION WITH NINC=X

The number of eigenvectors held in core is NINC.

• TIME OF VECTOR TRANSFORMATION = X (MULTIPLICATION BY 
HOUSEHOLDER VECTORS).

Hessenberg diagnostics contain both numerical and performance information. The 
performance is low if NINC N at any phase where N is the problem size.

The adjusted convergence criterion is

Eq. 7-213

where  is the infinity norm of the Hessenberg matrix and  is the user-given 
(or default) convergence criterion.

Complex Lanczos Internal Diagnostics
Here, the newer block method diagnostics is shown.

ε
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Complex Lanczos Diagnostics DIAG 12.  The two levels of internal diagnostics 
of complex Lanczos are requested via DIAG 12 and SYSTEM(108) = 8. The structure 
of the DIAG 12 diagnostics is as follows:

The accuracy required is an echo of  on the EIGC entry or the default if  is not 
used. Default . The number of shifts equals to the number of the continuation 
entries. The damping mode flag is 0 when damping matrix is present; otherwise, it 
is 1.

CURRENT SHIFT IS AT X,Y
CURRENT BLOCK SIZE IS X
NUMBER OF MODES REQUIRED AT THIS SHIFT IS XX

The most important parts of the debugging diagnostics (requested by SYSTEM(108) 
= 8) are as follows:

This message may appear any number of times. It indicates the end of an internal 
Lanczos process.

At the end of the Lanczos run, the following table is printed:

Eq. 7-214

Mathematical Solution.  This table contains the shifted solutions where  is the 
reduced size at shift .

*** USER INFORMATION MESSAGE 6361 - COMPLEX LANCZOS DIAGNOSTICS

THIS DIAGNOSTICS IS REQUESTED BY DIAG 12.

INITIAL PROBLEM SPECIFICATION

DEGREES OF FREEDOM = XXX ACCURACY REQUIRED = XXX

REQUESTED MODES = XXX NUMBER OF SHIFTS = XXX

DAMPING MODE FLAG = XXX SIZE OF WORKSPACE = XXX

BLOCK SIZE = XXX STEP SIZE = XXX

E E
10 6–=

MATHEMATICAL EIGENVALUE ESTIMATED ACCURACY

EIGENVALUE # REAL IMAGINARY LEFT RIGHT

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

λi real( )  λi imag( ) i 1 … NRj, ,=

MATHEMATICAL EIGENVALUES

NRj
j
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Besides the diagnostics detailed above, additional information is printed for 
debugging purposes, such as the dynamic matrix calculation and the eigenvectors 
of the tridiagonal form. These outputs are not explained here. This part of the 
diagnostics may be extensive, therefore the user should not use SYSTEM(108) = 8 
on large problems.

The acceptance of these approximate roots is documented in the following table, 
again requested by DIAG12:

When the error value is less than the  convergence criterion set by the user on the 
EIGC entry, then the i-th approximate eigenvalue is accepted as a physical 
eigenvalue. These accepted eigenvalues are printed in the following table:

Eq. 7-215

where  is the number of acceptable roots found at shift .

The final acceptance is documented by the state equation summary table as 
follows:

Any rejected roots are printed in a similar table preceded by the following 
message:

THE FOLLOWING ROOTS HAD AN UNACCEPTABLY LARGE
STATE EQUATION RESIDUAL

The accepted physical eigenvalues are also printed in the regular complex 
eigenvalue summary output of the CEAD module: CLAMA. Finally, an eigenvalue 
summary table is always printed as follows:

MATHEMATICAL SOLUTION DIRECT RESIDUALS

REAL IMAGINARY LEFT RIGHT

PHYSICAL SOLUTION STATE EQUATION RESIDUALS

REAL IMAGINARY LEFT RIGHT

λi real( ) λi imag( ) yi
T A λi I–( ) A λi I–( )xi

E

λk real( )  λk imag( ) k 1 … NFj, ,=

PHYSICAL EIGENVALUES

NFj j

λi real( ) λi imag( ) ψi
T M λi

2 B λi K+ +( ) M λi
2 B λi

2 K+ +( )Φi
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EIGENVALUE ANALYSIS SUMMARY (COMPLEX LANCZOS METHOD)

Complex Lanczos Messages and Errors

To help the user monitor the process (especially in the case of multiple shifts), the 
complex Lanczos method may issue the following messages:

UWM 5451:
NO ROOTS FOUND AT THIS SHIFT.

UIM 5453:
FEWER ROOTS THAN REQUIRED HAVE BEEN FOUND.

UWM 5452:
NO ROOTS ACCEPTED AT THIS SHIFT.

UIM 5445:
NO ROOTS FOUND AT ALL.

UIM 5444:
ALL ROOTS HAVE BEEN FOUND.

The following message may be repeated up to three times:

UIM 5443:
DYNAMIC MATRIX IS SINGULAR AT THE SHIFT OF X, Y.

The program attempts to perturb the shift point (up to three times) to obtain an 
acceptable decomposition.

SWM 6938,*:
BREAKDOWN IN BLOCK LANCZOS METHOD.

This message is given on the various (*) breakdown conditions of the Lanczos 
process along with a recommendation.

UFM 5446:
COMPLEX LANCZOS NEEDS X MORE WORDS.

This message could come from various places.

The user must provide more memory.

NUMBER OF MODES FOUND X

NUMBER OF SHIFTS USED X

NUMBER OF DECOMPOSITIONS X

NUMBER OF VECTORS IN CORE X
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SIM 6941:
INVARIANT SUBSPACE DETECTED IN BLOCK LANCZOS.

This message indicates the need for augmenting the current block.

SFM 6939.*:
UNABLE TO READ EIGENVECTORS FROM SCRATCH FILE.
USER ACTION: CLEAN UP DEVICE.

These I/O related messages should not occur normally. If they do occur, the user 
should clean up the disk, verify the database allocations, etc. (* = 0, 1 or 2)
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Performance Diagnostics

Block CLAN Performance Analysis

Orthogonality Analysis

Two additional orthogonality criteria (see theory in “Theory of Complex 
Eigenvalue Analysis” on page 195) that can be used for solution testing purposes 
are the  matrices.

The matrices created by these criteria should be diagonal. The off-diagonal terms 
are supposed to be computational zeroes. The absolute magnitude of the 
off-diagonal terms is a good indicator of the correctness of the solution.

The user can use the following DMAP to calculate these matrices in connection with 
the CEAD module:

The EIGENV matrix is a matrix containing the eigenvalues on the diagonal. This 
matrix can be created as a conversion of the CLAMA table by

*** USER INFORMATION MESSAGE 5403 (CLASD*)
BREAKDOWN OF CPU USAGE DURING COMPLEX LANCZOS ITERATIONS:
OPERATION REPETITIONS TIMES (SEC): AVERAGE TOTAL
SHIFT AND FACTOR 5 .8 3.9
MATRIX-VECTOR MULTIPLY & FBS 908 .1 93.2
REORTHOGONALIZATION 574 .1 38.3
SOLVE BLOCK TRIDIAGONAL PROBLEM 74 .5 34.5
EIGENVECTORS AND RESIDUALS 5 13.8 69.2

*** SYSTEM INFORMATION MESSAGE 6940 (CLRRDD)
SPILL OCCURRED WHEN CALCULATING LANCZOS VECTORS.
X OUT OF A TOTAL OF Y LANCZOS VECTORS HAVE BEEN STORED OUT OF CORE.
USER ACTION: TO PREVENT SPILL, INCREASE OPEN CORE SIZE BY AT LEAST Z WORDS

*** SYSTEM INFORMATION MESSAGE 6940 (CLRVRD)
SPILL OCCURRED WHEN CALCULATING PHYSICAL EIGENVECTORS.
USER ACTION: TO PREVENT SPILL, INCREASE MAXIMUM BLOCK SIZE BY AT LEAST Z

SMPYAD LCPHX,K,CPHX,,,/PTKP/3////1 $

MPYAD CPHX,EIGENV,/PL $

MPYAD LCPHX,EIGENV,/PTL $

SMPYAD PTL,M,PL,,,PTKP/O2/3//-1//1 $

SMPYAD LCPHX,B,CPHX,,,/PTBP/3////1 $

SMPYAD LCPHX,M,PL,,,PTBP/SUM2/3////1 $

SMPYAD PTL,M,CPHX,,,SUM2/O1/3//+1//1 $

LAMX ,,CLAMA/EIGENV/-2 $

O1 O2,
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The user can filter out the small terms by using:

The filtered matrices will only contain those off-diagonal terms greater than  
in magnitude. Terms greater than point to those eigenpairs that do not satisfy 
the orthogonality criterion.

The DMAP statement

can be used to print out the matrices. 

MATMOD O1,O2,,,,/ORTHO1F,ORTHO2F/2////1.-6 $

MATPRN ORTHO1F,ORTHO2F// $

10 6–

10 6–
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7.8 Complex Lanczos Estimates and Requirements
The time estimates for single vector complex Lanczos are detailed below.

Shifting time (sec) is

Eq. 7-216

Recursion time (sec) is

Eq. 7-217

Normalization time (sec) is

Eq. 7-218

Packing time (sec) is

Eq. 7-219

where:

The minimum storage requirements are as follows: 

where:

The rest of the available memory is used for temporary storage of accepted 
eigenvectors to reduce the I/O cost of outer orthogonalization.

Td

4 Nsteps N C M Ts+⋅ ⋅( )⋅

2 IPREC⋅( )Ndes N2 M⋅ ⋅

2 IPREC⋅( )Ndes N P⋅ ⋅

= number of modes desired

=  number of Lanczos steps

= decomposition time (see “Decomposition Estimates and Requirements” on 
page 71 for details)

= solution time (see “Decomposition Estimates and Requirements” on page 71 
for details)

= average front size

Ndes

Nsteps

Td

Ts

C

Memory: 2 IPREC⋅( ) 6 MBLKSZ2 8 N MBLKSZ 8 MBLKSZ MSZT⋅ ⋅+⋅ ⋅+⋅( )

= maximum block size

= maximum size of matrix

= problem size

MBLKSZ

MSZT Tj

N
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AVG Average.

BUFFER An area of memory reserved for data transfer between 
secondary storage and memory.

BUFFPOOL A pool of buffers used by the executive system.

BUFFSIZE Buffersize in words (in machine precision).

C Average front size.

CEAD Complex eigenvalue analysis module.

cell An element of the SYSTEM common block of NX Nastran.

CLAN Complex Lanczos method identifier.

DECOMP Matrix decomposition functional module.

Dense A matrix or vector is dense when it has few or no zero 
elements.

DIAGs Diagnostic flags of NX Nastran.

DOF(s) Degree(s)-of-freedom.

EXECUTIVE The portion of NX Nastran controlling the execution of the 
program.

FACTOR Triangular matrix, computed in the DECOMP module.

FBS Forward-backward substitution functional module.

GINO General input-output system.

GIV Givens method identifier.

HESS Hessenberg method identifier.

HOU Householder method identifier.

ID Identification.

IPREC Machine precision: 1 for short-word machines.
2 for long-word machine.

Kernel Internal numerical and I/O routines used heavily by 
functional modules.

Keyword A word specific to a particular function or operation in NX 
Nastran.

LHS Left-hand side.

M M value, unit numerical kernel time in msec.

MAXRATIO A diagnostics parameter to show ill-conditioning.

MEM Memory area reserved for memory files.
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MPC Multipoint constraint.

MPYAD Matrix multiply and add functional module.

N Problem size.

NZ Nonzero words in matrix.

P P value, unit data packing time using columns.

PARALLEL Keyword to specify multiple CPU execution.

Pi Pi value, unit data packing time using terms.

Ps Ps value, unit data packing time using strings.

RAM Random access memory area used by the executive system.

READ Real eigenvalue analysis module.

RHS Right-hand side.

RMS Root mean squared.

SEQP Sequencing module.

SOLVIT Iterative equation solution module.

Sparse A matrix or vector is sparse when it has many zero elements.

SPARSE Keyword to specify indexed kernel usage.

String A sequence of consecutive nonzero terms in a matrix column.

STRL Average string length.

STURM Number Number of negative terms on the factor diagonal.

Trailer An information record following (trailing) a matrix, which 
contains the main characteristics.

Matrix density.ρ
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ill-conditioning, 66
incompatible

matrices, 45
IORATE, 3
ISRR, 234, 236
iterative, 124

K
kernel

functions, 11

L
Lanczos, 124, 188, 236
left-handed, 76
loop

inner
outer, 14

outer, 15

M
matrix

condition, 66
decomposition, 50
multiplication, 22
trailers, 8

MAXRATIO
parameter, 67

memory estimates, 18
MPYAD

module, 38

N
negative

terms on factor diagonal, 67
normalization, 176, 245

O
orthogonality

test, 254

P
PARALLEL, 3
performance

analysis, 19
pivot

threshold, 65

Q
QZ algorithm, 212
QZ step, 213
QZHESS, 236, 246

R
REAL, 3
REDMULT, 177
REDORTH, 177
reduction

method, 124
RITZ

vectors, 189

S
selection

MPYAD method, 41
shifting scale, 189
singularity, 66
SMPYAD

module, 38
space

saver, 177
SPARSE, 3
sparse

decomposition, 67
spill

algorithm, 245
storage

requirements, 18
STURM

number, 67
SVD, 233, 236
system cells, 3
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T
THRESH, 65
trailer

matrix, 8

U
USPARSE, 3

V
vector

kernels, 11
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