
1 1

NX Nastran 10

PARALLEL PROCESSING GUIDE

2 2

Proprietary & Restricted Rights Notice

© 2014 Siemens Product Lifecycle Management Software Inc. All Rights Reserved.

This software and related documentation are proprietary to Siemens Product Lifecycle

Management Software Inc.

NASTRAN is a registered trademark of the National Aeronautics and Space

Administration. NX Nastran is an enhanced proprietary version developed and

maintained by Siemens Product Lifecycle Management Software Inc.

MSC is a registered trademark of MSC.Software Corporation. MSC.Nastran and

MSC.Patran are trademarks of MSC.Software Corporation.

All other trademarks are the property of their respective owners.

TAUCS Copyright and License

TAUCS Version 2.0, November 29, 2001. Copyright (c) 2001, 2002, 2003 by Sivan

Toledo, Tel-Aviv University, stoledo@tau.ac.il. All Rights Reserved.

TAUCS License:

Your use or distribution of TAUCS or any derivative code implies that you agree to this

License.

THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY

EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.

Permission is hereby granted to use or copy this program, provided that the Copyright,

this License, and the Availability of the original version is retained on all copies. User

documentation of any code that uses this code or any derivative code must cite the

Copyright, this License, the Availability note, and "Used by permission." If this code or

any derivative code is accessible from within MATLAB, then typing "help taucs" must

cite the Copyright, and "type taucs" must also cite this License and the Availability note.

Permission to modify the code and to distribute modified code is granted, provided the

Copyright, this License, and the Availability note are retained, and a notice that the code

was modified is included. This software is provided to you free of charge.

Availability (TAUCS)

As of version 2.1, we distribute the code in 4 formats: zip and tarred-gzipped (tgz), with

or without binaries for external libraries. The bundled external libraries should allow you

to build the test programs on Linux, Windows, and MacOS X without installing

additional software. We recommend that you download the full distributions, and then

perhaps replace the bundled libraries by higher performance ones (e.g., with a BLAS

library that is specifically optimized for your machine). If you want to conserve

bandwidth and you want to install the required libraries yourself, download the lean

distributions. The zip and tgz files are identical, except that on Linux, Unix, and MacOS,

unpacking the tgz file ensures that the configure script is marked as executable (unpack

with tar xvpf), otherwise you will have to change its permissions manually.

3 3

 Table of Contents

Table of Contents .. 3
Preface - About this Book ... 5

Chapter 1 – Introduction and Fundamentals ... 6
1.1 Parallel Computing in NX Nastran ... 6
1.2 Keywords in NX Nastran Parallel Computing.. 8
1.3 Getting Started .. 9
1.4 Parallel machine architectures .. 10

1.5 Parallelism in NX Nastran .. 12
1.6 Parallel Solution Methods in NX Nastran .. 13
1.7 Expectation from NX Nastran Parallel Solutions ... 14

Chapter 2 – Running Parallel Solutions .. 15

2.1 Computational Methods at a Glance ... 16
2.2 Running SMP Jobs .. 19

2.3 Environment Setup for DMP .. 20
2.4 Running DMP Jobs ... 21

Chapter 3 - Methods for Linear Static Analysis ... 23
3.1 Geometric Domain Static Analysis (GDSTAT) ... 23
3.2 Load Domain Static Analysis (LDSTAT) .. 25

3.3 Recommendations for the Method Selection .. 28
Chapter 4 - Methods for Normal Modes Analysis .. 29

4.1 Geometric Domain Normal Modes Analysis (GDMODES) 29
4.2 Frequency Domain Normal Modes Analysis (FDMODES) 34
4.3 Hierarchic Domain Normal Modes Analysis (HDMODES) 38

4.4 Recursive Domain Normal Modes Analysis (RDMODES) 43

4.5 Recommendations for Method Selection .. 48
Chapter 5 - Methods for Response Analysis and Optimization .. 50

5.1 Frequency Domain Frequency Response Analysis (FDFREQR) 50

5.2 DMODES + FDFREQR for SOL 111 .. 53
5.3 DMODES + Serial transient calculation for SOL 112.. 55

5.4 DMODES + serial optimization process for SOL 200 ... 56
Chapter 6 – Performance Study .. 60

6.1 Performance of Parallel Processing .. 60
6.2 Industrial Case Study 1 ... 60
6.3 Industrial Case Study 2 ... 64

Chapter 7 - Installation and Configuration of DMP ... 67
7.1 Overview ... 67

7.2 Requirements .. 67
7.3 Windows Single Host Instructions.. 71

7.4 Windows Multiple Host Instructions (True Cluster) .. 73
7.5 Determining Hosts .. 84
7.6 Managing Host-Database Directory Assignments .. 86
7.7 Managing Files.. 87
7.8 Performance Issues ... 87
7.9 Overview of Running a DMP job ... 88

4 4

Appendix ... 90

SEQP STYLE DMP SOLUTIONS .. 90
References ... 97

5 5

Preface - About this Book

NX NASTRAN is a general-purpose finite element program which solves a wide variety

of engineering problems. The NX NASTRAN Parallel Processing Guide is intended to

help you choose among the different parallel processing and computational methods, and

ultimately increase the performance of analysis by reducing CPU time, memory and disk

space requirements.

This main material in this book covers the parallel processing methods for the linear

static, normal modes, direct frequency response, modal frequency response, modal

transient response, and design optimization.

This book is composed of 7 chapters:

1. Introduction and fundamentals

2. Running parallel NX Nastran solutions

3. DMP computational methods for linear static analysis

4. DMP computational methods for normal modes analysis

5. DMP computational methods for response analysis and optimization

6. Performance study

7. Installation and Configuration of Distributed Memory Parallel (DMP)

To effectively use this book, it is important for you to be familiar with the basic structure

of NX Nastran. For more information about the mathematical foundation, refer to NX

Nastran Numerical Methods User’s Guide.

This book will continue to be revised to reflect future enhancements to NX Nastran

parallel processing methods. Changes and additions are encouraged, and can be

communicate through Siemens PLM technical support http://support.ugs.com/.

http://support.ugs.com/

6 6

Chapter 1 – Introduction and Fundamentals

1.1 Parallel Computing in NX Nastran

In many applications today, the volume of analysis is going up, the physics being

modeled is increasingly complex, and the time allocated to development is under

increasing pressure. Although the recent significantly advancement in computer

environment, such as higher speed processors and larger memory, has eased the

investigation into increasingly complex problems, there are still limitations on

computational performance in serial computation even with optimized processes and

data flows.

Parallel computing is an approach that uses multiple computers, processors or cores

working together on a common task. Each processor works on a section of the

problem and exchanges information (data in local memory) with other processors.

With parallel computing, NX Nastran provides simultaneous use of multiple

processors on one or more machines to decrease solution times. The benefits of

parallel processing include:

 Reduced solution time on large problems

 Reduced hardware requirements by utilizing smaller and less expensive machines

 Decreased turnaround time for each solution; allowing you to analyze more

designs under more conditions in a shorter amount of time

The following are basic parallelism concepts in NX Nastran.

Types of parallelism. There are basically two types – data parallel and task parallel.

In data parallel, each processor performs the same task on different data. In task

parallel, each processor performs a different task. In NX Nastran, as in most real

applications, parallelism falls somewhere on the continuum between these data and

task parallelism types and involve more than one type of problem mapping.

Parallel computer architectures. The control mechanism of parallel computing in

NX Natran is based on Multiple Instruction, Multiple Data (MIMD) which refers to a

parallel execution model in which each processor is essentially acting independently.

The processors work on their own data with their own instructions. Tasks executed by

different processors can start or finish at different times.

Parallel programming models. NX Nastran supports shared memory (or threads)

and message passing. Parallel programming models exits as an abstraction above

hardware and memory architectures. In hybrid model any two or more parallel

programming model are combined.

7 7

Message passing is a widely used communication model in programming parallel

processor machines for DMP processing. You can access the communication

hardware only through the message passing library. Message passing libraries like

Message Passing Interface (MPI) or Parallel Virtual Machine (PVM) send and

receive data from a program running on one node to a program running on another

node. In particular, MPI is a standard message passing library that has been

efficiently implemented on a variety of platforms.

MPI is portable, efficient, expressive, and provides thread safety. In addition,

 Point-to-point communications handle data transmission between any two

processors in a communicator.

 Collective communications handle simultaneous communication between all

processors in a communicator.

NX Nastran offers the ability to run certain solution sequences in parallel using a

Message Passing Interface (MPI), an industry-wide standard library for C and Fortran

message-passing programs. MPI programs can be run on SMP computers, DMP

computers, and a cluster of computers supported by the MPI package. In most cases,

NX Nastran uses the hardware vendor‘s MPI implementation. While this usually

results in the highest performance levels, it also limits a DMP job to computers

supported by the vendor‘s MPI package.

Further information on the MPI standard is available online at the MPI forum

website: http://www.mpi-forum.org.

http://www.mpi-forum.org/

8 8

1.2 Keywords in NX Nastran Parallel Computing

The following keywords are used in parallel NX Nastran.

Execution keywords: dmp, hosts, slaveout, parallel, numseg, nclust, nrec, dstat.

Performance keywords: memory, scratch, sdirectory, sscr, buffsize, rdscale.

In the appendix, gpart is described as an execution keyword, and it is typically not

required. More keywords are described in the NX Nastran Installation and Operation

Guide.

9 9

1.3 Getting Started

The following steps give you a basic idea how to use parallel processing for the

desired analysis in NX Nastran.

 Step 1. Know your machine architectures. SMP or DMP machine (see section

1.4). Memory size and etc.

 Step 2. Choose parallelism scheme. SMP or DMP scheme (see section 1.5). If

SMP only, refer to running SMP section (2.2). Most solution sequences support

SMP, as well as the RDMODES method (section 4.4). If DMP, refer to running

DMP section (2.3). In many cases, a combination of SMP and DMP is possible.

 Step 3. Select and run an appropriate method for the desired analysis. Refer

to the section ―computational method at a glance‖ (section 2.1)

 Step 4. Tune the performance. Best performance may depend on the machine

architecture. Refer to sections (2.4.4) and (4.5) for general guidelines.

10 10

1.4 Parallel machine architectures
Hardware can be divided roughly into two categories.

Shared Memory Parallel (SMP) Machines. A SMP machine is defined as a single

machine with multiple processors that share a common memory and I/O as illustrated

in Figure 1.1. Multiple processors can operate independently, but changes in a

memory location affected by one processor are visible to all other processors. The

primary disadvantage is the lack of scalability between memory and processors.

CPU CPUCPUCPU

MEMORY

DISK

DISK

DISK

Figure 1.1 SMP Machine architecture

 Distributed Memory Parallel (DMP) Machines. A Distributed Memory Parallel

(DMP) machine uses multiple machines or clusters with one or more processors

communicating over a network, or multiprocessors with multiple I/O channels. Figure

1.2 shows a typical architecture of a DMP machine. Each machine has its own

memory and one or more disks. In DMP, data is private to each node and it is

necessary to exchange data across different nodes. Therefore, the programmer must

decide which data is to be sent/received to/from which node. The main advantage is

that memory (and local disk) is scalable with multiple processors.

11 11

CPU

MEMORY

DISK

CPU

MEMORY

DISK

CPU

MEMORY

DISK

CPU

MEMORY

DISK

Network

Figure 1.2 DMP Machine architecture

12 12

1.5 Parallelism in NX Nastran

NX Nastran supports both shared memory parallel (SMP) and distributed memory

parallel (DMP) processing.

In NX Nastran, SMP is used only for lower level operations such as matrix

decomposition and matrix multiplication for all solution sequences. Therefore, as

long as suitable hardware is available, all solutions can utilize SMP processing.

The DMP is based on domain decomposition on geometry domain or frequency

domain, or load domain. DMP methods achieve their solution speed by dividing the

FE model into smaller pieces to be solved simultaneously. This division is performed

with respect to geometry or frequency range individually or both at the same time.

Although each processor is working on its own partition of the geometry or frequency

range, it communicates with the others to share information. Once the solution is

complete, the results are merged, creating a single result file.

Most of the discussions and examples in this book focus on the DMP computational

methods and solution methods.

The differences between DMP and SMP are listed in the table below.

Feature

DMP

SMP

Hardware environment

High performance
workstation clusters

Shared memory multi-
processor workstations

Parallelism level

Partition finite element
model

Subdivided matrix and
vector operations

Software mechanism

Message Passing Interface
(MPI)

OpenMP API(or pthreads)

13 13

1.6 Parallel Solution Methods in NX Nastran

NX Nastran offers several solution sequences in parallel for both static and dynamic

analyses. As mentioned in previous section, two parallelisms (SMP and DMP) are

available.

In SMP, it parallelizes the computing for decomposition and matrix multiplications.

Since every solution sequence involves at least matrix multiplications, SMP can be

activated in all solution sequences for all analyses as long as the hardware supports

SMP. An SMP RDMODES run is available for SOL 103 and SOL 111 which can

significantly reduce regular run time if an approximate solution is acceptable. See

section 2.1 on how to activate SMP.

In contrast to SMP, which focuses on parallelizing computational modules (such

DMCP, MPYAD), DMP provides parallelism on the algorithm level, which can

provide greater speedup. They can be categorized into the following three methods:

 Domain Static Analysis (DSTAT) method (see chapter 3)

 Domain Normal Modes Analysis (DMODES) method (see chapter 4)

 Domain Frequency Response Analysis (DFREQR) method (see chapter 5)

They are for linear static analysis, normal modes analysis, and frequency response

analysis, respectively. Modal frequency and transient responses require computing

modes for modal space. Therefore, DMODES can be applied during mode

computation. In design optimization, if it involves computing modes, DMODES also

can be activated. In summary, DMP computational methods support the following

solution methods.

 SOL 101 Linear statics (see chapter 3)

 SOL 103 Normal modes (see chapter 4)

 SOL 105 Buckling (see chapter 4)

 SOL 108 Direct frequency response (see chapter 5)

 SOL 111 Modal frequency response (see chapter 5)

 SOL 112 Modal transient response (see chapter 5)

 SOL 200 Design optimization (see chapter 5)

The DMP computational methods will be discussed in chapters 3-5.

14 14

1.7 Expectation from NX Nastran Parallel Solutions

An NX Nastran parallel solution should able to solve a large problem with

significantly less run time compared to a standard serial (single processor) run. Note

that (as in most parallel codes), speedup will be less than the number of processors,

due to MPI startup cost, communication overhead, and inherent limitations in the

parallelizability of the algorithms used. Furthermore, if the computation can already

be done on a single processor in minimal runtime, there will not be much opportunity

for improvement, especially for small problems (less than 10,000 DOFs).

15 15

Chapter 2 – Running Parallel Solutions

An NX Nastran parallel job can be selected by the Nastran command with either

keywords or system cells. The Nastran command permits the keywords, dmp and

parallel, to request DMP and SMP runs, respectively. Alternatively, system cells 231 and

107 can also be used for DMP and SMP runs.

It is strongly recommended to use keywords to request a parallel job. The following table

provides keywords and their descriptions as well as the system cells that can be used for

DMP and SMP runs.

 Keywords Description System Cell

DMP

dmparallel

(or dmp)

Default = 0 (deselect DMP processing)

Specifies the number of tasks for a DMP

analysis

1-256 processors are available in a DMP job

231

SMP

parallel

(or smp)

Default =0 (deselect SMP processing)

Specifies the maximum number of CPUs

selected for SMP processing

1-1023 processors are available in a SMP job.

107

16 16

2.1 Computational Methods at a Glance

The SMP computational methods are

Analysis Comp. Method
Submittal

Command

Suggested Model

Type

All Analysis:

SOL XYZ
None parallel=p All models

One of the computational methods that is based on the domain decomposition but can run

in serial fashion (not DMP) is RDMODES, as an alternative to ACMS. It can reduce the

runtime significantly even in single processor, compared to a conventional single

processor Lanczos run. Unlike other domain decomposition methods, RDMODES does

not require DMP.

Analysis Comp. Method
Submittal

Command

Suggested Model

Type

Normal modes

analysis:

SOL 103

RDMODES parallel=p, nrec=n

Large models,

allow approximate

solution

Modal frequency

response analysis:

SOL 111

RDMODES +Serial

frequency calculation
parallel =p, nrec=n Large models

17 17

The DMP computational methods are:

Analysis Comp.Method
Submittal

Command

Suggested Problem

Type

Linear Static Analysis:

SOL 101

GDSTAT dmp=p Large models

LDSTAT dmp=p, dstat=1
Small models with

large number of loads

Normal modes analysis:

SOL103

GDMODES dmp =p

Large models, small

frequency range

request, also support

buckling (SOL 105)

FDMODES dmp =p, numseg=p

Small models, large

frequency range

request

HDMODES dmp =p, nclust=c
Large models, large

frequency range

RDMODES dmp =p, nrec=n
Large models, allow

approximate solution

Direct frequency

response analysis:

SOL 108

FDFREQR dmp =p All models

The DMP computational methods with application of normal modes computation are:

Analysis
Modal Comp.

Method

Additional

Comp. Method
Submittal Command

Modal frequency analysis:

SOL111

Modal transient analysis:

SOL112
Design optimization:

SOL 200

GDMODES If SOL 111:

FDFREQR
If SOL 112:

Serial transient

calculation

If SOL 200:

Serial
optimization

process

dmp =p

FDMODES dmp =p, numseg=p

HDMODES dmp =p, nclust=c

RDMODES dmp =p, nrec=n

Note that RDMODES deactivates the sparse eigenvector recovery option in SOL 200.

The suggested problem type for a particular method is the same as in SOL 103.

18 18

FINITE ELEMENT MODEL

GDSTAT

LDSTAT

FDMODES

GDMODES

HDMODES

RDMODES

FDFREQR

SOL

101
SOL

111

S
o

lu
ti
o

n

S
e

q
u

e
n

c
e

C
o

m
p

u
ta

ti
o

n
a

l

M
e

th
o

d
 (

D
M

P
)

SOL

103

112

200

SOL

108

FDMODES

GDMODES

HDMODES

RDMODES

FDFREQR

Figure 2.1 Overview of NX Nastran DMP solution tasks

In Figure 2.1, the method selection for SOL 101 is described in Section 3.3. The method

selection for DMODES is described in Section 4.5. Overview is summarized as follows.

Linear Statics

DSTAT=1

GDSTAT LDSTAT

Yes

No (default)

Normal Modes

NREC>0 RDMODES

NUMSEG>0 FDMODES

NCLUST>0 HDMODES

GDMODES

Yes

Yes

Yes

No

No

No

19 19

2.2 Running SMP Jobs

The following example illustrates how to run an NX Nastran job named ‗example.dat‘ in

an SMP environment with p processors.

nastran example parallel=p

In SOL 103 and SOL 111, one also can specify RDMODES for large problems as

follows:

nastran example parallel=p nrec=n

Where n is the number of external components. Refer to RDMODES (section 4.4) for

how to choose the number of components.

20 20

2.3 Environment Setup for DMP

System Prerequisites

NX Nastran supports the following systems:

X86_64 Linux and Windows-64

The detailed requirements of hardware and software are described in Chapter 7 -

Installation and Configuration of DMP, and in the NX Nastran Installation and Operation

Guide.

Message Passing Prerequisites

NX Nastran uses a Message Passing Interface (MPI) to manage a DMP task. Each

compute node must be able to access its local data. It is also necessary to communicate

between compute nodes. For these purposes, each local node (host) must have:

 NX Nastran installed properly. NX Nastran must be properly installed on all the

hosts listed by the "hosts" keyword or in the ‗host.list‘ file.

 MPI program available. The MPI program start command must be available in

the path of the local host. (for example, "mpirun‖)

 Input data file (including all bulk data and include files) must be accessible on

the local host.

 Do NOT assign output file names in data file.

 "r-" commands available and configured properly. such as rsh, rcp, and rlogin

to communicate between nodes.

 “scp” and “ssh” are supported on Linux. Need to put ―s.rcp=scp‖ and

―s.rsh=ssh‖ and set the environment variable MPI_REMSH=ssh. These ―s.‖

commands can be in the command line or in the nastran.ini file.

More details are described in Chapter 7 - Installation and Configuration of Distributed

Memory Parallel (DMP).

21 21

2.4 Running DMP Jobs

2.4.1 Quick Start
When running an NX Nastran DMP job, it is necessary to specify a computational

method for desired solution sequence and a host list of the compute nodes. The Nastran

keywords DMP and HOSTS are required in a DMP run. See section 2.1 for keywords to

activate a particular DMP computational method.

 nastran example [computational method] [host list]

Here is an example to run GDMODES with 4 processors for a SOL 103 example, called

‗example.dat‘, on a four-node DMP machine. Assume these nodes are named node1,

node2, node3 and node4.

 nastran example dmp=4 hosts=node1:node2:node3:node4

Notes:

 The "master" node is the first computer named by the "hosts" keywords, and

"slave" nodes are the remaining systems.

 The nastran keywords are processed in both the local and master/slave system.

 It is strongly recommended to use the nastran keyword "slaveout=yes" to print out

analysis procedures from all processors. With "slaveout=yes", the f04, .f06,

and .log files contain the outputs of master and slave processors.

2.4.2 I/O Enhancement Consideration

The performance of an NX Nastran parallel job is very much dependent on the CPU,

memory system, and I/O system performance. A DMP job is extremely sensitive to I/O

system performance, since each task independently accesses the I/O system. Especially,

the performance of the disk subsystem that contains the permanent and SCRATCH

DBSets can have a significant impact on NX Nastran performance. The impact is even

greater if multiple tasks are using the same file system.

The scratch directory can be on a global or local file system. Siemens PLM recommends

that the "sdirectory" be local to each node, if possible.

The following example illustrates how to run ‗example.dat‘ in parallel with four

processors with "hosts", and "sdirectory" local to each node.

 nastran example dmp=4 hosts=node1:node2:node3:node4 \

 scratch=yes sdirectory=/scr1:/scr2:/scr3:/scr4

22 22

Note that MIO may be used to reduce the overall run time by using some available

computer memory for I/O buffering. The nastran keyword ‗mio_cachesize‘ is used to

control such memory size. See the NX Nastran Installation and Operation Guide.

2.4.3 Running DMP Jobs with Restart Option

There are two steps to run jobs using the restart option: cold start and restart. The first

step, called the cold start, generates the database that will be used in the second step. The

restart step runs related jobs with the given database. Note that the first step can be run

either in serial or DMP, while the restart step can be run only in serial.

Here is an example where the cold start is a SOL 103 job running DMP on 2 processors,

and restart is a SOL 103 example ‗exampler.dat‘ on node1. Assume that the 2 processors

are named node1 and node2.

Cold Start:

 nastran example dmp=2 hosts=node1:node2 dbs=example

Restart:

 nastran exampler dbs=example.t0

Note that the database name in cold start is example. Since the cold start is a DMP run,

the database saved on the master node (to be used for the restart) will be labeled as

example.t0. The database example.t1 from the slave node is not required for restart.

Hence for restart jobs, the given database is example.t0.

2.4.4 Other Considerations

 Memory (memory) – additional memory usually benefits DCMP; the memory

usage high water generally occurs in the partitioning module (GPARTN or

GPARTNS) for large models. Over-allocation should be avoided in order to have

better performance. Generally, allocated memory should be less than 80% of

available physical memory (as a rule of thumb, 50% or less for best I/O

performance on Linux systems).

 Scratch (sscr) – Adequate scratch space should be provided.

 SMP and MIO could affect the performance of a DMP job.

 Restarts are supported for a SOL 103 cold start in DMP and serial 103 and 111

restart.

 Contact conditions can be included in SMP and RDMODES runs. See Recursive

Domain Normal Modes Analysis (RDMODES).

 Contact conditions cannot be included in GDMODES, FDMODES, or

HDMODES runs.

23 23

Chapter 3 - Methods for Linear Static Analysis

3.1 Geometric Domain Static Analysis (GDSTAT)

nastran example dmp=p

The GDSTAT provides an efficient parallel solution for the linear static analysis of large

models. The static solution is performed on the l-set. The l-set is identical to the a-set if

there is no rigid body support (r-set). The mathematical expression for the static

equilibrium of the finite element model can be expressed as:

llll PuK

where llK is the global stiffness matrix, lP is the load, and lu is the displacement.

The finite element model in the GDSTAT method is automatically partitioned into p

domains, where p is the number of processors. Figure 3.1 shows each domain that

contains the portion of the geometry (O1, O2, O3, or O4) plus the boundary t. Think of

geometric decomposition as an automated super-element approach. After the domain is

partitioned, each processor performs the linear static analysis only on its local domain

with boundary. GDSTAT allows a problem that is not possible to solve on one processor

to be solved in the DMP environment by reducing a significant amount of disk space and

memory.

O1 O2

O4O3

t

t

24 24

Figure 3.1 Partitioning a finite element model for geometry domain static analysis

(GDSTAT)

In terms of partitioning, GDSTAT is available with both the GPARTN module and the

SEQP module. The GPARTN module is chosen by default with gpart=1 (the default

value). The module SEQP is activated by setting gpart=0. Note that the GPARTN-based

GDSTAT does not handle rigid body support (r-set). To avoid rigid body support,

constraints should be added using SPC rather than SUPORT cards.

The following example applies to the GPARTN module only. An example for the SEQP

module will be given in the appendix.

Example:

nastran example dmp=4

The static analysis is performed for a finite element model that has 2635 grid points for

200 CHEXA elements and 1210 CTETRA elements. GDSTAT is implemented in a DMP

run. The module GPARTN partitioned the global finite element model into four sub-

domains and a boundary. The following information in the .f06 describes the detailed

statistics of partitioning for the 1st subdomain.

 GLOBAL NUMBER OF SHARED ROWS : 681

 LOCAL NUMBER OF SHARED ROWS : 342

 LOCAL NUMBER OF SHARED EXCLUSIVE ROWS : 182

 DESIRED SHARED EXCL. ROWS PER PROCESSOR: 171

Each processor performs static analysis with the corresponding local domain and the

boundary, and the master processor collects the results that you requested through

communications. These outputs are printed only on the master processor.

 D I S P L A C E M E N T V E C T O R

 POINT ID. TYPE T1 T2 T3 R1 R2 R3

 101 G 3.577434E-10 8.877456E-03 -6.229324E-09 0.0 0.0 0.0

 102 G -7.238482E-03 9.248573E-03 -2.078553E-03 0.0 0.0 0.0

 103 G 7.267472E-03 1.094641E-02 1.412802E-03 0.0 0.0 0.0

 104 G 1.680989E-09 1.056371E-02 -6.529265E-09 0.0 0.0 0.0

 105 G -7.267469E-03 1.094641E-02 -1.412815E-03 0.0 0.0 0.0

 106 G 7.455581E-03 1.201167E-02 8.828554E-04 0.0 0.0 0.0

 107 G 6.009865E-10 1.160408E-02 -6.159031E-09 0.0 0.0 0.0

 108 G -7.455579E-03 1.201167E-02 -8.828678E-04 0.0 0.0 0.0

25 25

 109 G 7.623844E-03 1.262617E-02 4.984383E-04 0.0 0.0 0.0

It is strongly recommended to use the nastran keyword "slaveout=yes" to print out

analysis procedures from all processors. With "slaveout=yes", the f04, .f06, and .log files

contain the outputs of master and slave processors in the following format.

master processor

 * * * END OF JOB * * *

 S L A V E 1

 slave 1 processor

 * * * END OF JOB * * *

 S L A V E 2

 slave 2 processor

 * * * END OF JOB * * *

 S L A V E 3

 slave 3 processor

 * * * END OF JOB * * *

3.2 Load Domain Static Analysis (LDSTAT)

nastran example dmp=p DSTAT=1

26 26

LDSTAT is useful when there are a large number of load cases in the linear static

analysis problem llll PuK . Instead of partitioning the finite element model, the load

matrix lP is partitioned among the processors as evenly as possible, and the linear

solution is calculated within each of the respective processors for its own load cases. The

mathematical expression for the linear static analysis can be expressed as:

kkll PuK , pk ,,1

where p is the number of processors. Once all processors finish their own linear solutions,

the master processor collects and forms the overall solution as

],,,[21 pl uuuu

Note that each processor contains the full model, so that finite element model partitioning

is not required. LDSTAT is applied to a large number of loads with the same boundary

condition, i.e. only one stiffness matrix llK is solved in LDSTAT.

Example:

nastran example dmp=4 dstat=1

For a model with 500 subcases, 125 subcases are assigned to each processor when four

processors are available. Without partitioning into domains, each processor performs the

static analysis with the partitioned load cases. The outputs are printed only on the master

processor after the master processor collects the requested output results from the slaves

 SUBCASE

101

 D I S P L A C E M E N T V E C T O R

 POINT ID. TYPE T1 T2 T3 R1 R2 R3

 151000 G 3.392543E-07 1.089757E-21 1.783046E-08 .0 -1.204824E-07 -3.644054E-2

 151010 G 3.392543E-07 1.426177E-21 -1.783046E-08 .0 1.204824E-07 -1.336866E-2

 SUBCASE

102

 D I S P L A C E M E N T V E C T O R

 POINT ID. TYPE T1 T2 T3 R1 R2 R3

 150205 G -6.509690E-07 -2.062356E-07 8.779039E-22 .0 -1.718401E-21 -1.224331E-

07

150206 G -5.072370E-07 -1.837194E-07 -4.060963E-08 .0 1.252286E-07 2.982923E-08

 SUBCASE

500

27 27

 D I S P L A C E M E N T V E C T O R

 POINT ID. TYPE T1 T2 T3 R1 R2 R3

 150205 G -1.303690E-06 -6.062316E-08 9.779011E-20 .0 -3.418412E-22 -8.223322E-

06

150206 G -2.172310E-06 -1.937191E-06 -3.060233E-05 .0 4.652283E-08 6.975915E-06

28 28

3.3 Recommendations for the Method Selection

SOL 101 has two DMP methods for static analysis. It is recommended to use

GDSTAT if you have a very large model. LDSTAT is useful when there are large

numbers of load cases and a relatively small model.

The selection between GDSTAT and LDSTAT depends on the DSTAT keyword. The

method selection is described in Figure 3.2. The default value of DSTAT is 0.

FINITE ELEMENT MODEL

DSTAT=1

GDSTAT LDSTAT

Yes

No (default)

SOL 101

Figure 3.2 DMP Linear Static Analysis (SOL 101)

29 29

Chapter 4 - Methods for Normal Modes Analysis

4.1 Geometric Domain Normal Modes Analysis (GDMODES)

nastran example dmp=p

GDMODES is executed by automatically subdividing the geometry obtained from the

finite element model. Such a subdivision of a finite element model is shown in Figure 4.1.

Here the o partition refers to the interior of the domains and the t partition is the common

boundary shared by the domains.

The geometric domain decomposition is mathematically represented with the following

reordering for the p partitioned domains.

0

2

1

,,2,2,1,1,

2222

1111

t

p

o

o

o

tttt

pT

oo

pT

oo

T

oo

T

oo

T

oo

T

oo

p

ot

p

ot

p

oo

p

oo

ototoooo

ototoooo

MKMKMKMK

MKMK

MKMK

MKMK

This partitioned eigenvalue problem may be solved by a special formulation of the

Lanczos method. Once each processor contains the portion of the local domain with

boundary, each processor computes its part of the global eigensolution and exchanges

boundary components with other processors.

 Table 4-1 shows the eigensolution obtained from each processor, in which the global

eigensolutions are obtained by merging all distributed eigensolutions.

Notes:

 The formulation yields a computationally exact solution. The efficiency depends

on the relative size of the boundaries with respect to the interiors.

 The geometric domain decomposition is important to reduce the very large

problem sizes, but it does not affect the frequency spectrum.

 It is important to use the EIGRL card, not EIGR. In addition, the number of

processors p should be greater than 1. The value of the keyword "dmp" must be

an integer greater than or equal to 2, and a power of 2. For example, 2, 4, 8, 16,

etc. are valid.

30 30

O1 O2

O4O3

t

t

frequency range

[fmin fmax]

Figure 4.1. Geometry domain partitioning for the normal mode analysis of a finite

element model

 Table 4-1 The distribution of eigensolution (,) with GDMODES parallel run, where
Tp},, ,{ 21 .

Geometry

domain

partition 1),(1

partition i

),(i

partition p),(p

In terms of partitioning, GDMODES uses GPARTN by default (see appendix). The

module GPARTN performs both degree of freedom-based and grid-based partitioning, in

which p domains are created by an automatic partitioner from the connectivity graph of

the model. PARAM OLDSEQ can be used to specify the desired ordering method.

31 31

OLDSEQ Description

10 Metis with super-nodal and grid compressions

11
MLV with super-nodal and grid compressions

(default)

110 Metis with super-nodal compression

111 MLV with super-nodal compression

210 Metis with grid compression

211 MLV with grid compression

Notes:
1. If both super-nodal and grid compressions are selected (OLDSEQ=10 or 11), then

the GPARTN returns the coloring with smallest boundary.

2. The default OLDSEQ value is 11. System (294) = 1 prints additional diagnostic

information to the f06 file.

3. Note that in some cases, grid compression produces much smaller boundary size

than supernodal compression. As a result, the eigensolver (READ module) in

GDMODES can have a large run time difference.

Example:

nastran example dmp=4

A finite element plate model with 110 grid points and 100 CQUAD4 elements is

executed in parallel with SOL 103 analysis. The total number of degrees of freedom is

660. Four processors are used for the DMP run.

The partitioning statistics from the GPARTN module are shown as:

 RESULT OF SESET PARTITIONS:

 TOTAL PARTITIONS TOTAL GRIDS TOTAL BDY. GRIDS MOVES

 4 496 138 0

 PARTITION INTERIOR GRIDS BDY. GRIDS FRACTION

 1 88 74 .8409

 2 91 74 .8132

 3 88 74 .8409

 4 91 74 .8132

 GEOMETRY DOMAIN PARALLEL LANCZOS METHOD

Note that the output is related to the degrees of freedom (DOF), not grid points, even

though the output uses GRIDS terminology instead of DOF. This example has 88 internal

degrees of freedom and 74 boundary degrees of freedom for domain 1. There are 91 and

32 32

74, 88 and 74, 91 and 74 degrees of freedom for the interior and boundary of domain 2, 3,

and 4, respectively.

The .f06 file of the master processor prints the summary of eigenvalue analysis.

EIGENVALUES FOUND IN DOMAIN # 1

 E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE)

 BLOCK SIZE USED 7

 NUMBER OF DECOMPOSITIONS 3

 NUMBER OF ROOTS FOUND 208

 NUMBER OF SOLVES REQUIRED 41

$---

$ The list of eigensolutions collected from the slave processor

$---

 R E A L E I G E N V A L U E S

 MODE EXTRACTION EIGENVALUE RADIANS CYCLES GENERALIZED NERALIZED

 NO. ORDER MASS STIFFNESS
 1 1 1.696349E+07 4.118676E+03 6.555076E+02 1.000000E+00 1.696349E+07

 2 2 1.848026E+07 4.298867E+03 6.841859E+02 1.000000E+00 1.848026E+07

 207 207 3.073819E+09 5.544203E+04 8.823873E+03 1.000000E+00 3.073819E+09

 208 208 3.123167E+09 5.588530E+04 8.894422E+03 1.000000E+00 3.123167E+09

However, with the gpart=1 option, the master processor does not broadcast the collected

eigenvalues and/or eigenvectors to the slave processors, so no eigensolutions are printed

in the.f06 file except the eigenvalue summary.

 S L A V E 1

208 EIGENVALUES FOUND IN DOMAIN # 2

 E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE)

 BLOCK SIZE USED 7

 NUMBER OF DECOMPOSITIONS 3

 NUMBER OF ROOTS FOUND 208

 NUMBER OF SOLVES REQUIRED 41

33 33

 S L A V E 2

208 EIGENVALUES FOUND IN DOMAIN # 3

 E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE)

 BLOCK SIZE USED 7

 NUMBER OF DECOMPOSITIONS 3

 NUMBER OF ROOTS FOUND 208

 NUMBER OF SOLVES REQUIRED 41

 S L A V E 3

208 EIGENVALUES FOUND IN DOMAIN # 4

 E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE)

 BLOCK SIZE USED 7

 NUMBER OF DECOMPOSITIONS 3

 NUMBER OF ROOTS FOUND 208

 NUMBER OF SOLVES REQUIRED 41

34 34

4.2 Frequency Domain Normal Modes Analysis (FDMODES)

nastran example dmp=p numseg=p

To analyze the dynamic behavior of structures, modal solution techniques are commonly

used. The essence of the modal solution is efficient calculation of the mechanical

system's free, undamped vibration. That is the eigenvalue analysis problem of:

0)(aaaaa MK

Here the eigenvalue represents a natural frequency, and the eigenvector is a free

vibration shape of the finite element model. The a subscript refers to the a-set, which is

the analysis partition of the finite element model. This is one of the most time consuming

computations of large scale global analyses in the automobile and the aerospace

industries.

The frequency range of interest specified on the EIGRL entry is automatically

decomposed into multiple frequency segments—one for each processor. Table 4-2 shows

the frequency segment of each processor when s processors are available.

Table 4-2 Partition of frequency for FDMODES parallel run

Processor
Frequency

segment

Lower

frequency

Upper

frequency

1 1 f0 f1

2 2 f1 f2

j j fj-1 fj

s s fs-1 fs

Note that each processor contains the full model in the FDMODES computation, so that

the mode shapes in the individual frequency segments are independent of each other.

Figure 4.2 represents the schematic diagram: each processor solves the full model within

its frequency segment. The only communication needed is when gathering the results for

the master processor. Table 4-3 shows the eigensolutions obtained from each processor.

Notes:

 Although FDMODES reduces the frequency range for a process by decomposing

the frequency domain, it is still ineffective with respect to large problem size.

 Each processor contains the full model, so that finite element model partitioning

is not required. For best load balance, V1 and V2 of EIGRL should be specified

and ND omitted.

35 35

frequency range segment

[f1 f2] [fs-2 fs-1] [fs-1 fs]. . . .[f0 f1]

0)(aaaaa MK

Figure 4.2 Frequency domain partitioning for the normal mode analysis of a whole finite

element model

 Table 4-3. The distribution of eigensolution (,), },, ,{ 21 s

 and },,,{ 21 sdiag , with FDMODES parallel run

Frequency domain

Segment 1 … Segment j … Segment s

),(11 …),(jj …),(ss

Example:

nastran example dmp=4 numseq=4

This is the example used in GDMODES. FDMODES does not require domain

decomposition. The .f06 file shows the number of eigenvalues calculated in each

36 36

processor. Each processor computes 94, 61, 26, and 27 eigenvalues, respectively. The

total number of modes found is 208.

The master processor collects the eigenvalues and eigenvectors of slave processors, and

prints out the merged eigensolutions.

 FREQUENCY DOMAIN PARALLEL LANCZOS METHOD

 94 EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 1

 61 EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 2

 26 EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 3

 27 EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 4

 E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE)

 BLOCK SIZE USED 7

 NUMBER OF DECOMPOSITIONS 5

 NUMBER OF ROOTS FOUND 208

 NUMBER OF SOLVES REQUIRED 45

$---

$ The list of all eigenvalues collected from the slave processor

$---

 R E A L E I G E N V A L U E S

MODE EXTRACTION EIGENVALUE RADIANS CYCLES GENERALIZED GENERALIZED

 NO. ORDER MASS STIFFNESS

 1 1 1.696349E+07 4.118676E+03 6.555076E+02 1.000000E+00 1.696349E+07

 2 2 1.848026E+07 4.298867E+03 6.841859E+02 1.000000E+00 1.848026E+07

207 207 3.073819E+09 5.544203E+04 8.823873E+03 1.000000E+00 3.073819E+09

208 208 3.123167E+09 5.588530E+04 8.894422E+03 1.000000E+00 3.123167E+09

With "slaveout=yes", you can see the information about the eigenvalue problem on each

slave processor. It also shows the number of eigenvalues found on the slave processors.

 S L A V E 1

 FREQUENCY DOMAIN PARALLEL LANCZOS METHOD

EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 2

 S L A V E 2

37 37

 FREQUENCY DOMAIN PARALLEL LANCZOS METHOD

EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 3

 S L A V E 3

 FREQUENCY DOMAIN PARALLEL LANCZOS METHOD

EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 4

38 38

4.3 Hierarchic Domain Normal Modes Analysis (HDMODES)

nastran example dmp=p nclust=c

The HDMODES scheme simultaneously combines the two previously presented methods,

GDMODES and FDMODES. With this approach, a subset of processors or a cluster

solves the eigenvalue problem for the local geometry while communicating with other

subsets of processors or other clusters in order to consider the other frequency ranges.

The HDMODES computation is based on the processor assignment shown in Table 4-4,

where we have p * s processors available. For each frequency segment, p processors are

used for GDMODES. In other words, s processors are used for FDMODES for each

geometric portion. For example, the ((j - 1) p+i)-th processor computes the eigenvalues

of the j-th frequency segment j and the i-th geometric partition of the corresponding

eigenvectors i

j . The selection of the s and p value is problem dependent.

Note that HDMODES solves the eigenvalue problem computationally exactly, just as the

GDMODES and FDMODES methods do.

Table 4-4 Hierarchic domain decomposition concept

Frequency domain

segment

1
…

segment

j
…

Segment

s

Geometry

domain

partition

1

1

),(1

1

1

(j-1)*p+1

),(1

jj

(s-1)*p+1

),(1

ss

partition

i

i

),(11 i

(j-1)*p+i

),(j

i

j

(s-1)*p+i

),(s

j

s

partition

p

p

),(11 p

j*p

),(j

p

j

s*p

),(s

p

s

The preferred hardware environment for HDMODES is a cluster of multiprocessor

workstations that is usually tied together by either a hardware switch or a network, as

illustrated in Fig. 4.3.

Assuming m workstations with n processors each, based on the scheme of Table 4-4, the

tasks of each column (the geometric partitions of a particular frequency segment) reside

39 39

on one workstation. The tasks of each row (the various frequency segments of a

particular geometry partition) are spread across the cluster, as shown in Fig. 4.4.

CPU

DISK

CPU

CPU

CPU

M

E

M

O

R

Y CPU

DISK

CPU

CPU

CPU

M

E

M

O

R

Y CPU

DISK

CPU

CPU

CPU

M

E

M

O

R

Y CPU

DISK

CPU

CPU

CPU

M

E

M

O

R

Y

NETWORK

Figure 4.3. A scheme of cluster of multi-processor workstations

Pn,S1

DISK

P1, S1

P2, S1

...

M

E

M

O

R

Y Pn,S2

DISK

P1, S2

...

...

M

E

M

O

R

Y ...

DISK

...

...

Pi, Sj

M

E

M

O

R

Y Pn,Sm

DISK

P1, Sm

...

...

M

E

M

O

R

Y

Figure 4.4. Mapping the hierarchic domain decomposition with n geometric domain

partition and m frequency partition (Pi: geometric domain partition and Sj: frequency

segment) to a cluster of multi-processor workstations.

The HDMODES solution sequence combines two existing techniques of DMP

processing: GDMODES and FDMODES. While the geometry partitions are solved

within a set of processors called a cluster, frequency segments are also solved in parallel

across multiple clusters. The advantage is a faster eigenvalue problem solution time for

very large models.

The keyword "dmp" defines the number of processors p, and the keyword "nclust"

defines the number of clusters c. The number of geometry partitioning g in a cluster does

not have to be defined explicitly. Note that 1<c<p and p=c*g. The number of clusters c

should be properly selected so that g is an integer greater than or equal to 2, and a power

of 2. For example, 2, 4, 8, 16, etc. are valid.

40 40

Example:

nastran example dmp=4 nclust=2

In the example below, HDMODES is executed with ‗dmp=4‘ and ‗nclust=2‘ keywords.

Among the four processors, the first processor is the master processor, and the other

processors are the slave processors.

Note that HDMODES defines the local master and local slave processors inside of each

cluster.

The partitioning statistics with GPARTN describe the number of degrees of freedom for

each cluster. In the example below, the first cluster has 223 degrees of freedom in the

interior of domain 1, and 50 degrees of freedom in the boundary. The second cluster has

the same local size as the first one.

TOTAL PARTITIONS TOTAL GRIDS TOTAL BDY. GRIDS MOVES

 2 496 50 0

 PARTITION INTERIOR GRIDS BDY. GRIDS FRACTION

 1 223 50 .2242

 2 223 50 .2242

 HIERARCHIC DOMAIN PARALLEL LANCZOS METHOD

In the .f06 file, the master processor prints the summary of the eigenvalue analysis and

the list of eigenvalues. Be careful when interpreting the "number of roots found"

information in the summary. This information concerns the cluster in which the master is

included. For example, in the model below, interpret the "number of roots found"

message as indicating that cluster 1 found 155 eigenvalues. The master processor lists all

208 eigenvalues that are merged from all of the local master processors. You should

determine the total number of modes from the list of eigenvalues.

VALUES FOUND IN DOMAIN # 1

 E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE)

 BLOCK SIZE USED 7

 NUMBER OF DECOMPOSITIONS 3

 NUMBER OF ROOTS FOUND 155

 NUMBER OF SOLVES REQUIRED 41

$---

$ The list of all eigensolutions collected from the slave processor

$---

41 41

 R E A L E I G E N V A L U E S

 MODE EXTRACTION EIGENVALUE RADIANS CYCLES GENERALIZED NERALIZED

 NO. ORDER MASS STIFFNESS

 1 1 1.696349E+07 4.118676E+03 6.555076E+02 1.000000E+00 1.696349E+07

 2 2 1.848026E+07 4.298867E+03 6.841859E+02 1.000000E+00 1.848026E+07

 207 207 3.073819E+09 5.544203E+04 8.823873E+03 1.000000E+00 3.073819E+09

 208 208 3.123167E+09 5.588530E+04 8.894422E+03 1.000000E+00 3.123167E+09

Again, be cautious when interpreting the output from slave processors. The summary of

eigenvalue analysis for slave processors is confined to the corresponding processor. In

the list of eigenvalues on the slave processors, the mode number does not represent the

global mode number.

With gpart=1, the master process does not broadcast the collected output to slave

processors, so no eigenvalues are listed in the information from the slave processors.

 S L A V E 1

53 EIGENVALUES FOUND IN DOMAIN # 1

 E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE)

 BLOCK SIZE USED 7

 NUMBER OF DECOMPOSITIONS 2

 NUMBER OF ROOTS FOUND 53

 NUMBER OF SOLVES REQUIRED 40

 S L A V E 2

155 EIGENVALUES FOUND IN DOMAIN # 2

 E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE)

 BLOCK SIZE USED 7

 NUMBER OF DECOMPOSITIONS 3

 NUMBER OF ROOTS FOUND 155

 NUMBER OF SOLVES REQUIRED 41

 S L A V E 3

53 EIGENVALUES FOUND IN DOMAIN # 2

42 42

 E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE)

 BLOCK SIZE USED 7

 NUMBER OF DECOMPOSITIONS 2

 NUMBER OF ROOTS FOUND 53

 NUMBER OF SOLVES REQUIRED 40

43 43

4.4 Recursive Domain Normal Modes Analysis (RDMODES)

nastran example dmp=p nrec=m

The Recursive Domain Normal Modes (RDMODES) analysis extends the DMP parallel

capability via substructuring technology for very large scale normal nodes analysis. It is

currently available in SOL 103 and 111. It also supports modal analysis in superelement

jobs. The RDMODES approach generally computes fewer modes with lower accuracy

compared to standard Lanczos approaches in order to gain performance.

RDMODES begins with partitioning the eigenvalue problem MxKx into nrec

external partitions. The following represents a reordering for the nrec=4 with total 7

(=2*nrec-1) components for matrix K .

1

1,33

1,73,77

1,63,66

1,22

1,52,55

1,42,44

**

**

oo

otoo

ototoo

ototoo

otoo

ototoo

ototoo

K

KK

KKK

KKK

KK

KKK

KKK

K

(here the asterisks denote the transpose of the corresponding blocks in the upper

triangular portion, as the matrices are symmetric). Matrix M has the same structure.

This partitioned eigenvalue problem may be solved by a special formulation of the sub-

structuring method. All components are distributed evenly into processors. Each interior

eigensolution corresponding to its external partition is performed in serial, independent of

the others. If the keyword nclust is specified, the processors are divided into n clusters as

in HDMODES. In this case, each interior eigensolution is performed in GDMODES

fashion in its own cluster.

Contact conditions can be included in an RDMODES run. The input file should include a

static subcase with the contact conditions, and a consecutive normal modes subcase

which includes the STATSUB case control command. When you run with RDMODES

and contact conditions combined, an automatic static condensation is performed by

default during the static portion of the solution such that the contact iterations occur in a

reduced representation. As a result, performance gains occur in both the static and the

RDMODES portions. To run RDMODES without the static condensation, include the

parameter setting PARAM,RDCNT,NO.

The following is not supported when you combine RDMODES and contact conditions:

 Inertia relief, which is defined with the INREL parameter.

44 44

 The constraint mode method of enforced motion. The absolute method can be

selected instead with the system cell ENFMOTN.

RDMODES Sparse Eigenvector Recovery

In many instances, a user is only interested in the solutions at a few key locations instead

of all degrees of freedom, especially for large problems with millions of degrees of

freedom. In such cases, the sparse eigenvector recovery method can significantly reduce

the overall computation time and storage resource.

In RDMODES, the sparse eigenvector recovery option will be determined automatically

based on the user‘s output request. If full eigenvectors are desired with only few output

requests, a user can deactivate sparse data recovery with PARAM,RDSPARSE,NO in the

BULK data.

RDMODES with the rdsparse option supports residual vectors (PARAM, RESVEC),

panel participation factors (PARAM, PANELMP), absolute displacement enforced

motion (sys422=1), and modal contributions. Note that PARAM,RESVINER is not

supported.

Note that the accelerated residual vector calculation with RDMODES takes advantage of

the rdsparse option, and is more efficient than the original one in terms of computational

time and I/O usage. The residual vectors with the accelerated calculation may differ

slightly from the original, which cannot be used in conjunction with rdsparse. If

necessary, the original resvec method may be requested by specifying PARAM,

RDRESVEC, NO in the bulk data. In this case, the rdsparse option will be disabled

automatically, which is likely to result in dramatically reduced performance.

Running RDMODES

RDMODES is activated by the Nastran keyword nrec. It can run in serial, SMP, and

DMP with optional keywords nclust=c and rdscale.

Serial Nastran example nrec=n

SMP Nastran example parallel=p nrec=n

DMP Nastran example dmp=p nrec=n

Notes:

1. p is an integer equal to a power of 2. It can be 1 (i.e. p=1).

45 45

2. The keyword nrec must be a positive number. The efficiency of the method requires

carefully choosing m, which should not be too small or too large. A nrec value with

power of 2 is required for better performance. For a large problem (>1M DOFs) nrec

equal to 128 or 256 would be a good choice.

Number of grids NREC value

1 ~ 5,000 4

5,000 ~ 40,000 8

15,000 ~ 80,000 16

30,000 ~ 150,000 32

60,000 ~ 300,000 64

120,000 ~ 600,000 128

250,000 ~1,200,000 256

> 1,200,000 512

This table does not suggest a unique nrec value for a given model. The best choice will

depend on the model and on the user‘s machine configuration.

3. If the keyword nclust is used, c should be properly selected so that p/c is an integer

greater than or equal to 2 and a power of 2.

4. The optional keyword rdscale is used to increase the accuracy of the solution. In most

practical circumstances values in the range of 1.0 to 5.0 are acceptable. The trade off is

that the computational time increases with higher values of rdscale. The default value is

2.5.

5. PARAM,OLDSEQ in the input file can be used to specify the method of creating the

substructures. OLDSEQ is an existing parameter for geometric domain partitioning.

OLDSEQ Description

10 Metis with super-nodal and grid compressions

11
MLV with super-nodal and grid compressions

(default)

110 Metis with super-nodal compression

111 MLV with super-nodal compression

210 Metis with grid compression

211 MLV with grid compression

Example:

nastran example dmp=4 nrec=8

46 46

In the example below, RDMODES is executed with ‗dmp=4‘ and ‗nrec=8‘ keywords.

Among the four processors, the first processor is the master processor, and the other

processors are the slave processors.

After the special formulation of the substructuring method, RDMODES calls 4-way

FDMODES for the reduced eigenvalue problem to obtain the global eigensolution. The

master processor collects the eigenvalues and eigenvectors of slave processors, and prints

out the merged eigensolution.

FREQUENCY DOMAIN PARALLEL LANCZOS METHOD

 94 EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 1

 61 EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 2

 26 EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 3

 27 EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 4

 E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE)

 BLOCK SIZE USED 7

 NUMBER OF DECOMPOSITIONS 4

 NUMBER OF ROOTS FOUND 208

 NUMBER OF SOLVES REQUIRED 43

 R E A L E I G E N V A L U E S

 (BEFORE AUGMENTATION OF RESIDUAL VECTORS)

 MODE EXTRACTION EIGENVALUE RADIANS CYCLES GENERALIZED GENERALIZED

 NO. ORDER MASS STIFFNESS

 1 1 1.696475E+07 4.118829E+03 6.555319E+02 1.000000E+00 1.696475E+07

 2 2 1.848272E+07 4.299153E+03 6.842314E+02 1.000000E+00 1.848272E+07

 207 207 3.087263E+09 5.556315E+04 8.843149E+03 1.000000E+00 3.087263E+09

 208 208 3.125765E+09 5.590854E+04 8.898121E+03 1.000000E+00 3.125765E+09

With "slaveout=yes", you can see the information about the eigenvalue problem on each

slave processor. It also shows the number of eigenvalues found on the slave processors.

 S L A V E 1

 FREQUENCY DOMAIN PARALLEL LANCZOS METHOD

 61 EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 2

 S L A V E 2

 FREQUENCY DOMAIN PARALLEL LANCZOS METHOD

 26 EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 3

 S L A V E 3

 FREQUENCY DOMAIN PARALLEL LANCZOS METHOD

 27 EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 4

47 47

48 48

4.5 Recommendations for Method Selection

It is recommended that you use FDMODES if you have a small model and a large

frequency range of interest. If you have a very large model and insufficient disk space,

use either GDMODES or HDMODES. Especially, HDMODES is recommended for a

cluster of multiprocessor workstations. RDMODES is recommended for large frequency

range, large models, and best performance when reduced accuracy is acceptable.

Fig. 4.5 illustrates the general guide for selecting a suitable DMP computational method

for normal modes analysis.

Frequency

range

FE model

size

FDMODES

GDMODES

RDMODES

HDMODES

Figure 4.5 General guideline for the selection of DMP computational methods

The selection of DMP computational methods introduced in this chapter is made

according to the keywords, NREC, NUMSEG, and NCLUST. The method selection is

described in Figure 4.6. Note the default value of NREC, NUMSEG and NCLUST is 0.

49 49

FINITE ELEMENT

MODEL

NREC>0 RDMODES

NUMSEG>0 FDMODES

NCLUST>0 HDMODES

GDMODES

Yes

Yes

Yes

No

No

No

SOL 103

Figure 4.6 DMP normal mode analysis (SOL 103)

50 50

Chapter 5 - Methods for Response Analysis and

Optimization

5.1 Frequency Domain Frequency Response Analysis
(FDFREQR)

nastran example dmp=p

The excitation frequencies, as specified on the FREQi entries, are split among the

processors as evenly as possible, and the responses for the partitioned excitation

frequencies are then calculated within each of the respective processors as shown in.

Fig.5.1. The whole range of excitation frequencies is partitioned into many sub-intervals

such as [Fi Fi+1]. Note that each processor contains the full model.

excitation frequency range segment

[F1 F2] [Fs-2 Fs-1] [Fs-1 Fs]. . . .[F0 F1]

(Direct or Modal)

Frequency Response Problem

Figure 5.1 Excitation frequency domain partitioning for (direct or modal) frequency

response analysis of a whole finite element model

For SOL 108, if there are many forcing frequencies, FDFREQR should be used. In

FDFREQR, the resource requirements such as disk space and memory are as large as the

resource requirements of a serial run.

51 51

Note that, for SOL 111, running a job with GDMODES, FDMODES, or HDMODES

automatically performs FDFREQR without requesting it explicitly. Performing

FDFREQR partitions the excitation frequencies among the number of processors defined

with the "dmp" keyword.

Example: SOL 108

nastran example dmp=4

For a finite element plate model that has 110 grid points and 100 CQUAD4 elements,

SOL 108 analysis is performed in parallel with the FDFREQR method. The total number

of excitation frequencies is 89 in the following entry of FREQ1.

FREQ1 10 3.0 3.0 88

The .f06 file describes the partitioned frequency range. In the example below, processors

1, 2, 3, and 4 execute 23, 22, 22, and 22 excitation frequency ranges. Once each

processor finishes its own analysis, the master processor collects the results and prints the

output.

 DISTRIBUTED MEMORY PARALLEL FREQUENCY RESPONSE

 NUMBER OF FREQUENCY DOMAINS = 4

 NUMBER OF FREQUENCIES ON LOCAL PROCESSOR (ID= 1) = 23

$--

$ The list of all responses collected from the slave processor

$--

R E S P O N S E O U T P U T

 S L A V E 1

 DISTRIBUTED MEMORY PARALLEL FREQUENCY RESPONSE

 NUMBER OF FREQUENCY DOMAINS = 4

 NUMBER OF FREQUENCIES ON LOCAL PROCESSOR (ID= 2) = 22

 S L A V E 2

 DISTRIBUTED MEMORY PARALLEL FREQUENCY RESPONSE

 NUMBER OF FREQUENCY DOMAINS = 4

 NUMBER OF FREQUENCIES ON LOCAL PROCESSOR (ID= 3) = 22

52 52

 S L A V E 3

 DISTRIBUTED MEMORY PARALLEL FREQUENCY RESPONSE

 NUMBER OF FREQUENCY DOMAINS = 4

 NUMBER OF FREQUENCIES ON LOCAL PROCESSOR (ID= 4) = 22

53 53

5.2 DMODES + FDFREQR for SOL 111

In SOL 111, the FDMODES, GDMODES, HDMODES, RDMODES methods will

automatically continue to perform FDFREQR after the eigenvalue analysis is finished, so

you do not need to request FDFREQR explicitly for the modal frequency response.

Therefore, the parallel SOL 111 job can be run in exactly the same ways as the parallel

SOL 103. The DMP tasks in SOL 111 are described in Figure 5.2. The method selection

of DMP normal mode analysis is similar to that of SOL 103, which was introduced in

Figure 4.6.

FINITE ELEMENT

MODEL

FDFREQR

SOL 111

DMP normal mode analysis

RDMODES / FDMODES / HDMODES /GDMODES

Depends on NREC, NUMSEG, NCLUST

Figure 5.2 DMP modal frequency response analysis (SOL 111)

Example: SOL 111 (FDMODES + FDFRQR)

nastran example dmp=4

Each processor computes 94, 61, 26, and 27 eigenvalues, respectively, for the whole

finite element model. For the modal frequency response analysis, 19 excitation

frequencies are split to 5, 5, 5, and 4, and distributed to each processor.

54 54

$--

$ The number of eigenvalues found at each processor

$--

 94 EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 1

 61 EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 2

 26 EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 3

 27 EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 4

E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE)

$--

$ The number of excitation frequencies partitioned for each processor

$--

 PERFORMANCE SUMMARY TABLE FOR DISTRIBUTED MEMORY FREQUENCY RESPONSE

 NUMBER OF FREQUENCY DOMAINS = 4

 NUMBER OF FREQUENCIES = 19

 PROCESSOR # FREQ. CPU (SEC) ELAPSED (SEC)

 --------- ------- --------- -------------

 1. ugs001 5 1.57 2.22

 2. ugs002 5 1.87 2.22

 3. ugs003 5 1.75 2.22

 4 ugs004 4 1.49 2.20

$--

$ The list of all responses collected from the slave processor

$--

R E S P O N S E O U T P U T

 S L A V E 1

E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE)

 S L A V E 2

E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE)

 S L A V E 3

E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE)

55 55

5.3 DMODES + Serial transient calculation for SOL 112

In the parallel SOL 112 run, once the eigenvalue analysis is performed in parallel, the

modal transient response analysis is executed in serial. During the modal transient

response analysis, all slave processors are idle. The DMP task SOL112 is described in

Figure 5.3. Note that transient response analysis (TRD1 module) does not benefit from

DMP. The method selection of DMP normal mode analysis is similar to that of SOL 103,

which is introduced in Figure 4.6.

FINITE ELEMENT

MODEL

Serial

transient

calculation

SOL 112

DMP normal mode analysis

RDMODES / FDMODES / HDMODES /GDMODES

Depends on NREC, NUMSEG, NCLUST

Figure 5.3 DMP modal transient response analysis (SOL 112)

Example: SOL 112 (GDMODES + Serial transient calcuation)

nastran example dmp=4

The output of responses in the .f06 file is printed only on the master processor.

56 56

E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE)

$--

-$ Only the master processor run the transient responses analysis

$--

-

R E S P O N S E O U T P U T

 S L A V E 1

E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE)

 S L A V E 2

E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE)

 S L A V E 3

E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE)

5.4 DMODES + serial optimization process for SOL 200

 In the optimization procedures, several different types of analyses may be involved. If

any eigensolution is required, the eigenvalue analysis may be performed in parallel with

the computational methods FDMODES, GDMODES, and HDMODES used as in SOL

103.

In each iteration of the optimization procedure, the optimization algorithm runs in serial

on each processor except for the eigenvalue analysis. Whenever the eigenvalue analysis

is performed in parallel, the collected and merged eigensolutions from the master

processors are broadcast to all processors. This approach results in the same optimization

results for every processor, because all processors proceed with the optimization using

the same eigensolutions inside the optimization loop. The DMP task of optimization

57 57

procedure is described in Figure 5.4. The method selection of DMP normal mode

analysis is similar to that of SOL 103, which is introduced in Figure 4.6.

DMP normal mode analysis

RDMODES / FDMODES / HDMODES /GDMODES

Depends on NREC, GPART, NCLUST

ANALYSIS

OPTIMIZATION

IMPROVED

DESIGN

INITIAL

DESIGN

SOL 200

Figure 5.4 DMP design optimization (SOL 200)

Example: SOL 200 (DMODES + Serial optimization process)

nastran example dmp=4 (and/or nclust=2/numseq=4/nrec=n)

The following .f06 is a typical output format in SOL 200 with DMP, in which all

processors print the same output.

58 58

i-th I T E R A T I O N

$---

$ run FDMODES, GDMODES, or HDMODES, and collect the local eigensolutions

$ from the slave processors

$---

E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE)

O P T I M I Z A T I O N O U T P U T

j-th I T E R A T I O N

 S L A V E 1

i-th I T E R A T I O N

$---

$ run FDMODES, GDMODES, or HDMODES, and have the same eigensolutions

$ as the master processor

$---

E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE)

O P T I M I Z A T I O N O U T P U T

j-th I T E R A T I O N

 S L A V E 2

i-th I T E R A T I O N

$---

$ run FDMODES, GDMODES, or HDMODES, and have the same eigensolutions

$ as the master processor

$---

E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE)

O P T I M I Z A T I O N O U T P U T

59 59

j-th I T E R A T I O N

 S L A V E 3

i-th I T E R A T I O N

$---

$ run FDMODES, GDMODES, or HDMODES, and have the same eigensolutions

$ as the master processor

$---

E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE)

O P T I M I Z A T I O N O U T P U T

j-th I T E R A T I O N

60 60

Chapter 6 – Performance Study

6.1 Performance of Parallel Processing

The performance of a parallel processing is rated by its speedup or efficiency. The

speedup Sp is defined as:

 pE
T

T
S

p

s
p *

where Ts is the time to run a serial job, and Tp is the time it takes to run the same job

with p processors.

The efficiency E is defined as:

)*(p

s

Tp

T
E

For better performance, it is helpful to minimize the communication overhead by using

high speed network switches. The ideal is to have high bandwidth and low latency.

6.2 Industrial Case Study 1

A trimmed car body FE model with SOL 103 is used as a case study to analyze the

technologies presented in NX Nastran. This type of car model has all major components

of the car, such as wheels, engine, etc. incorporated. Tables 6-1 and 6-2 present the

details for this finite element model.

Table 6-1 Model statistics of trimmed car body FE model

Number of

Nodes

Number of

shell elements

Number of

solid elements

Number of

rigid elements

380,007 361,249 3,762 9,056

Table 6-2 The size of sets for the trimmed car body FE model

The size of set

g-set n-set f-set a-set

2,280,042 2,223,139 2,223,109 1,937,282

61 61

Table 6-3 demonstrates the effect of the automated geometric domain decomposition on

this model by showing the number of interior and boundary nodes of the partitions.

Several observations can be made. The interior range size depends on the quality of the

automated partitioning. The boundary size increases with the number of partitions.

Finally, the boundary size is at least two orders of magnitude smaller than the interior

size, which is important to the computational efficiency.

Table 6-3 Results of geometry domain decomposition

Number of

Partitions

Maximum

Interior

Minimum

Interior

Maximum

Boundary

Minimum

Boundary

2 197,460 182,199 354 354

4 104,788 90,791 572 418

8 54,496 40,067 518 450

The automated frequency domain decomposition results are shown in Table 6-4. There

are 840 modes in the frequency range of interest.

Table 6-4. Frequency domain decomposition statistics

Number of

segments

Minimum number of

modes among segments

Maximum number of

modes among segments

2 380 460

4 193 252

6 133 165

7 105 141

8 92 119

The automated geometric domain partitioning techniques usually provide only even, and

preferably binary, numbered domains. This is because these techniques are primarily

based on binary graph partitioning. This is not a restriction, as shared memory

workstations tend to have an even number of processors. On the other hand, in the

frequency domain decomposition, odd numbers of segments are also allowed. This

technology is insensitive to that issue and enables the use of odd-numbered workstations

via the hierarchic technology in a workstation cluster environment.

The analysis was executed on a cluster of eight workstations, each containing eight

processors with a 1.5 GHz clock cycle. The cluster had a one gigabyte Ethernet network

connection. The option gpart=1 is used.

62 62

Table 6-5. Execution times on workstation cluster with HDMODES

Number of

processors

Number of

partitions

Number of

segments
I/O (GB)

Elapsed

time[min:sec]
Speedup

1 1 1 1,028.4 528:58 1.00

4 2 2 431.4 167:15 3.13

8 4 2 266.9 83:41 6.26

16 8 2 191.1 45:16 11.57

32 8 4 98.3 34:07 15.35

48 8 6 77.8 27:14 19.23

56 8 7 67.1 24:41 21.22

64 8 8 61.4 27:00 19.40

The task of finding the natural frequencies and mode shapes of such a model is an

enormous one. It is an overnight job with more than a terabyte of I/O operations. The

execution on a single processor is impractical considering the work environment and time

schedule at automobile companies.

Fig. 6.1 and Fig. 6.2 show the elapsed time and disk I/O of HDMODES with 8 geometry

partitions for different numbers of frequency segments. With 56 processors, 8 geometry

partitions in each workstation and 7 frequency segments across workstations are used.

The elapsed time for 32 processors is already a practical execution. The efficiency above

decreases, but the speedup is still increasing. It peaks at 56 processors, although a wider

frequency range for this model may extend that peak to 64 or higher. It means that 7

frequency segments with 8 geometry partitioning for each frequency segment is the most

suitable partitioning for this test FE model in this workstation cluster environment.

63 63

HDMODES

(8 geometry partitions)

0

50

100

150

200

250

300

350

400

450

500

550

600

1 16 32 48 56 64

Number of processors

E
la

p
s
e
d

 t
im

e
 (

m
in

.)

Fig. 6.1 Elapsed time of HDMODES with 8 geometry partitions for different numbers of

frequency segment.

64 64

HDMODES

(8 geometry partitions)

0

100

200

300

400

500

600

700

800

900

1000

1100

1 16 32 48 56 64

Number of processors

D
is

k
 I

/O
 (

G
B

)

Fig. 6.2 Disk I/O of HDMODES with 8 geometry partitions for different numbers of

frequency segment.

6.3 Industrial Case Study 2

A trimmed car body FE model with SOL 103 is used as a case study to analyze the

performance of RDMODES in NX Nastran. This model has g-size around 20 million and

f-size about 10 million. The number of grid points is around 3.6 million, and the number

of ctetra elements is about 2.3 million.

The example was run through RDMODES with rdsparse (sparse eigenvector recovery,

new in NX Nastran 7.0) turned on and nrec=256.

Scalability – elapsed time vs. number of processors

It computed modes up to 10,000 Hz. The following table and graph will show the

summary of the performance from one processor to 64 processors.

65 65

Table 6-6. Execution times on workstation cluster with RDMODES

Number of
processors

Elapsed time
(min:sec)

I/O
(G-bytes)

CPU
(seconds) speedup

1 4370:52 9110.7G 186277 1.00

2 2548:23 5136.2G 110519.1 1.78

4 1402:05 2711.5G 58795.8 3.12

8 1019:13 1431.5G 29086.3 4.29

16 678:09 945.6G 19272.7 6.45

32 505:36 637.8G 10731.6 8.64

64 354:53 526.3G 8920.1 12.32

RDMODES for 20M G-size Car Model up to 10,000 Hz (about 260 modes)

0

50,000

100,000

150,000

200,000

250,000

300,000

1 2 4 8 16 32 64

number of processors

e
la

p
s
e
d

 t
im

e
 (

s
e
c
)

rdmoes

Fig. 6.3 Elapsed time of RDMODES with 256 geometry partitions for the different

number of processors.

The analysis was also executed on a Linux cluster of 64 nodes; each processor is 1.8 GHz

clock cycle. The cluster had a one gigabyte Ethernet network connection.

Due to the large dimension of this model, the task of finding the natural frequencies and

mode shapes of such a model is more enormous. The elapsed time is saved significantly

through RDMODES with more processors.

Table 6-6 and Figure 6.3 showed that, when 64 processors are used, the computation is

speedup by 12. The elapsed time is around 6 hours with 64 processors, while the time of

one processor is 73 hours.

66 66

Scalability – elapsed time vs. number of modes

The following table and graph show multi-level RDMODES runs (dmp=64, nrec=256)

with respect to frequency range up to 10000, 20000, 30000, 40000 and 50000 Hz. It took

about 110 extra minutes and found about 2900 more modes by increasing frequency

range from 10000 to 50000. It clearly demonstrates that the RDMODES is capable for

computing large number of modes.

Modes

below (Hz)

RDMODES

Elapsed

time

Number

of modes

10000 354:53 295

20000 430:47 764

30000 441:20 1453

40000 455:09 2276

50000 462:04 3255

Mode scaling

0

5000

10000

15000

20000

25000

30000

10000 20000 30000 40000 50000

find modes up to frequency (Hz)

e
la

p
s
e
d

 t
im

e

rdmodes

67 67

Chapter 7 - Installation and Configuration of DMP

7.1 Overview

NX Nastran offers the ability to run certain solution sequences in parallel using the

Message Passing Interface (MPI), an industry-wide standard library for C and Fortran

message-passing programs. MPI programs can be run on SMP computers, NUMA

computers, distributed computers, and any collection of computers supported by the MPI

package.

Note: Further information on MPI can be obtain online at

http://www.mpi-forum.org

MPI is included with the installation of NX Nastran.

Special Considerations

To install NX Nastran for Distributed Memory Parallel (DMP) operations, you must

select one of the following three installation schemes if you want to use more than one

host in a single NX Nastran job:

 Install NX Nastran on a filesystem that is global to every host. This provides the

easiest installation and system administration, but may present network load

issues when the NX Nastran is started and the delivery databases are being read.

 Install NX Nastran on every host on host-private filesystems. This is harder to

install and administer, but reduces the network load when NX Nastran is started.

 A combination of the above.

Note: In all cases, the nastran command must have the same pathname, or be in the

default PATH of every host that will run a DMP job. Recall that your ―.profile‖ and

―.login‖ files are not used for rcp(1) and rsh(1) operations.

7.2 Requirements

Platform MPI

X86_64 Linux Intel MPI is included with the NX Nastran installation, and is

automatically invoked when a DMP job is executed on Linux. Intel

MPI has specific requirements, for example, Python must be

installed. These requirements are documented in the Intel MPI

release notes found at:

https://software.intel.com/en-us/articles/intel-mpi-library-

documentation

http://www.mpi-forum.org/
https://software.intel.com/en-us/articles/intel-mpi-library-documentation
https://software.intel.com/en-us/articles/intel-mpi-library-documentation

68 68

Windows-64 Intel MPI is included with the NX Nastran installation. See the

Windows Single Host Instructions.

In the descriptions that follow, the ―local‖ node is the computer you issue the nastran

command on, the ―master‖ node is the first computer named by the ―hosts‖ keyword, and

the ―slave‖ nodes are the remaining systems listed in the ―hosts‖ list.

The following are some general requirements for running NX Nastran DMP jobs:

 NX Nastran must be properly installed on all the hosts listed by the ―hosts‖

keyword.

 On Linux, either rsh or ssh can be used as a remote command. Secure Shell (ssh)

is supported on Linux provided that:

a. The environment variable MPI_REMSH is set to ssh.

b. The argument s.rsh=ssh is included on the nastran command line.

c. The argument s.rcp=scp is included on the nastran command line.

 You must have access to each system you want to access in a distributed job. For

example, when using rsh, you can test this with the command:
rsh <node> [-1 <username>] date

where <node> is the name of the node and <username> is an alternate username

on the remote system if your current username is not valid. For example:
rsh node1 date

The output from the above command should be in a single line containing the

current date on node1 in a format similar to
Thu Jul 17 13:06:49 EST 2003

If any other output is present, you should determine the source of the output and

correct the problem. If you cannot eliminate the output, you will not be able to use

the distributed execution capabilities of the nastran command.

 You must have ―remote execution‖ privileges on all the hosts listed by the ―hosts‖

keyword. That is, a password must not be required to execute a remote copy (rcp)

or remote shell (rsh or remsh) command. See your system administrator for

information on this.

 The input data file must be accessible on the local host.

 INCLUDE files must be local-to, or visible-from, each host.

 All default output files, i.e., those without ASSIGN statements, will be written to

a directory accessible to the local host.

 The scratch directory can be a global or local file system. Your scratch directory

should be local to each host, i.e., you specify per-host ―sdirectory‖ values.

 The pathname of the nastran command must be the same on all hosts, or on the

default PATH of each host, used in the analysis.

 If you execute a restart, you must specify the identical values for ―dmparallel‖ and

―hosts‖ as were used on the cold start.

 In a restart, i.e., a job that uses an existing database, the DBSets must be local-to,

or visible-from, the remote system.

Note: Recall that remote executions do not run a ―login‖ shell. That is, your ―.profile‖ or

―.login‖ script is not executed.

69 69

When running a DMP job, nastran keywords are processed on both the local and

master/slave systems. Keywords that control the job‘s output and interaction with you are

processed on the local system. These are:

Keyword Description

append Requests the .f06, .f04, and .log files to be concatenated.

dmparallel (or dmp) Specifies the number of tasks for a Distributed Memory Parallel

(DMP) analysis. This value may only be set on the command line.

gpart Selects the geometry partitioning option for a hierarchic dmp

(HDMP) solution.

hostovercommit Requests more tasks per host than CPUs.

hosts Specifies list of hosts to use. Separate hosts with the PATH

separator, i.e, ;.

mergeresults Specifies the results from each DMP task are to be merged into

the standard files from the master host.

nclust Specifies the number of frequency segments for a hierarchic dmp

(HDMP) solution.

ncmd Specifies an alternate notification command

notify Requests notification when the job completes.

old Specifies versioning or deletion of previously existing output

files.

oldtypes Specifies additional user file types to be versioned or deleted.

out Specifies an alternate output file prefix.

rcmd Specifies the nastran command path on the master/slave systems.

scratch Specifies the database DBSets are to be deleted at job completion.

sdirectory Specifies each per-host directory to contain NX Nastran

temporary files. Separate directories with the PATH separator.

slaveout Specifies the .f04 and .f06 files from the slave tasks are to be

appended to the .f04 and .f06 files of the master task.

xmonitor Requests XMONITOR to monitor the master task‘s progress.

The ―sdirectory‖ keyword is special, as the command line, RC files on the current host,

and RC files on the each master and slave host will all be considered when establishing a

scratch directory. All remaining keywords are only scanned on the master and slave

systems.

Once ―dmparallel=number‖ is processed, the following processing takes place:

1. Process the RC files on the local system if the ―version‖ keyword has been

defined in the command initialization file or the command line.

2. Process the RC file specified by the ―rcf‖ keyword if it was defined on the

command line.

3. Determine the full pathname of the input file so that its visibility from the master

and each slave host can be tested.

4. Create a ―touch‖ file in the specified output file so that its visibility from the

master and each slave host can be tested.

70 70

5. If the ―dmpdeny‖ utility, i.e., install_dir/nxnr/arch/dmpdeny, exists and is

executable, run it, and save its output.

6. If the ―dmpaccept‖ utility, i.e., install_dir/nxnr/arch/ dmpaccept, exists and is

executable, run it, and save its output.

7. Ensure ―scratch=no‖ was set if the ―dbs‖ keyword was set.

8. Determine every possible pairing of host and sdirectory by scanning each list in a

round-robin order. That is, the first host is paired with the first sdirectory, the

second host with the second sdirectory, and so on.

9. Execute the following steps for each host-sdirectory pair determined above until

host-sdirectory pairs have been assigned to each of the tasks requested by the

―dmparallel‖ keyword or no more host-sdirectory pairs are available. Steps 9a.

through 9f. are executed only once per host-sdirectory pair.

a) Verify that host exists and you are able to run a command on that

system.

b) If the ―rcmd‖ keyword was specified, attempt to execute that

command on host, display an error and cancel the job if it fails.

Otherwise attempt to execute the pathname of the current nastran

command on host. If it fails, attempt to execute the basename of

the current nastran command on host. Display an error and cancel

the job if both checks fail.

c) Run the remote nastran command identified in the previous step to

determine: if the input data file is visible; if the ―touch‖ file is

visible, if the ―sdirectory‖ (if identified on the local system) exists;

if the ―dbs‖ directory (if identified on the local system) exists; the

―sdirectory‖ value in the RC files defined on host; and finally the

numeric format of host.

d) Drop this host-sdirectory pair from further consideration if a

scratch directory was identified on the command line or in a local

RC file, but does not exist on host.

e) Display an error and cancel the job if the numeric format of host

differs from the numeric format of the local host.

f) Display an error and cancel the job if the directory specified by a

―dbs‖ keyword on the command line or in a local RC file does not

exist on host.

g) Assign the current host-sdirectory pair to the next task; save the

per-host visibility flags, ―rcmd‖, and ―sdirectory‖ values.

10. Display an error and cancel the job if one or more of the tasks requested by the

―dmparallel‖ keyword have not been assigned.

11. Delete the ―touch‖ file created above.

12. The remaining steps are done in a background process (possibly some time later)

if ―batch=yes‖ or ―after‖ was specified.

a) Copy the input data file to the scratch directory of any host that

could not see the input data file.

b) Set ―out‖ to the host-specific scratch directory value of every host

that could not see the output directory.

71 71

c) Copy the remaining keywords on the command line that were not

processed, to a local RC file in the scratch directory on the remote

node.

d) Run the DMP job using the system‘s MPI startup command. Note

that each task will write its files to task-specific names.

e) Process the ―old‖ and ―oldtypes‖ keywords on the local node.

f) Copy the output files (.f04, .f06, .log, .ndb, .pch, .plt) from the

master task to the directory specified by the ―output‖ keyword and

delete the files from the master node if it could not see the output

directory.

g) Process the ―append‖ keyword on the local node.

h) Process the ―notify‖ keyword on the local node.

Once the job has completed, the .f06, .f04, .log, .ndb, .op2, .plt, .pch, and .xdb files from

the master task will be present as if the job were run locally.

Note: No attempt is made to copy DBSet files between the local and master/slave

systems. If this is required, you must handle this yourself and set the ―dbs‖ keyword

appropriately.

7.3 Windows Single Host Instructions

The following instructions describe how to install Windows DMP on a single host which

includes multiple cores.

Step 1: Before you can follow the remaining steps, an administrator will need to perform

the following tasks.

 You must have a login directory that you own.

 You must have full permissions to all working directories and scratch directories.

 Your working directory must be shared, for example, D:\workdir shared as

\\host\workdir.

Step 2: Install NX Nastran to the Windows host

 Install NX Nastran to a directory with no spaces in the path. For example, do not

install to the default path of C:\Program Files. Spaces in the path will prevent

environment variables from being properly interpreted.

Step 3: Set up the Intel MPI Windows Service

 Login as the local administrator and open a DOS shell.

 Go to the bin directory:
cd /d …installation_path\nxnr\em64tnt\impi\bin

 Enter the following:
hydra_service.exe –install

72 72

Step 4: Unset PLATFORM_MPI

 The environment variable PLATFORM_MPI was required in previous releases

to run DMP. It must be unset if it is still defined on your system. Enter the

following to check if it is defined:
echo %PLATFORM_MPI%

%PLATFORM_MPI% will return if it is undefined.

If it is defined, a file system path will appear.

Enter the following if you need to unset the variable:
set PLATFORM_MPI=

Step 5: Each user must set up password-less MPI in a DOS shell

 Go to the bin directory:
cd /d …installation_path\nxnr\em64tnt\impi\bin

 Enter the following:
mpiexec.hydra.exe –register

 Follow the prompts to cache your password.

 Repeat these steps whenever you change your password.

Step 6: Define MPI_ROOT and update PATH

 Define the MPI_ROOT environment variable:
set MPI_ROOT=installation_path\nxnr\em64tnt\impi

 Include the following ‗bin‘ directory in your PATH variable:
set PATH=installation_path\nxnr\em64tnt\impi\bin;%PATH%

Step 7: Test Windows DMP with a .BAT script

 Use a text editor to create the following .BAT file, replacing hostname with the

actual host name. The example assumes a ‗workdir‘ and enabled sharing for this

folder, and an NX Nastran installation location of D:\NXNr. Note the use of

quoted, forward slashes for the shared directory.

Name the file dmptest.BAT:
@ECHO OFF

set NXN_BASE=D:\NXNr

%NXN_BASE%\bin\nastran.exe ^

“// hostname /workdir/plan10g.dat” ^

out=”// hostname /workdir” ^

mem=130mw dmp=2 hosts= hostname ^

sdir=D:\Scratch slaveout=yes scr=yes

 Open a DOS shell, and change directories to ‗workdir‘:
cd \\hostname\workdir

 Copy the file plan10g.dat from the tpl directory:
installation_path\nxnr\nast\tpl\plan10g.dat

to //hostname/workdir/

 Execute the .BAT file:
dmptest.bat

 The results should look similar to the following:

73 73

7.4 Windows Multiple Host Instructions (True Cluster)

The following instructions describe how to install Windows DMP across multiple hosts

(in a cluster). See the Windows Single Host Instructions to install and run Windows DMP

on a single host which includes multiple cores.

General Requirements

 NX Nastran must be installed in the same location on each node and must be

accessible to each user.

 Each user must have full permissions to all working directories and scratch

directories.

 All working directories must be shared to all nodes.

 Only Server 2008 and Server 2012 are supported in the true cluster mode.

 DMP Jobs must be launched from a DOS shell.

Step 1: SUA Removal Instructions

Since June 1, 2013, Microsoft has removed support for SUA and recommends that

Cygwin be installed in its place:

http://technet.microsoft.com/library/hh831568.aspx

If SUA is installed on your cluster, it must be removed before installing Cygwin 64-bit.

You can follow the following SUA removal instructions. Note that the SUA removal

instructions must be repeated on each node of the cluster.

If you do not have SUA installed, skip forward to the Cygwin 64-bit installation

instructions in Step 2.

A. Stop the SSHD service

 Login as Administrator

http://technet.microsoft.com/library/hh831568.aspx

74 74

 Start Computer Management (Start, Search, ―Computer Management‖)

 Select Services, right-click the sshd service, and select stop

 When the service is stopped, close the Manage window

B. Remove the SSHD service

 Login as Administrator

 Open a Command Prompt and cd to C:\Windows\System32

 Remove the SSHD service with the command
 sc delete “sshd”

C. Remove the SUA SDK

 Login as Administrator

 Open Control Panel, select Uninstall a program

 Select ―Utilities and SDK for UNIX-based Applications‖, and select Uninstall

75 75

D. Remove SUA as a Windows Feature

 Login as Administrator

 Open Control Panel, select Programs, then Programs and Features

 Select Turn Windows features on or off

 Un-check Subsystem for UNIX-based applications, and select OK

 When asked to reboot the computer, select Restart Now.

E. Verify that SUA is no longer a part of any environment variable.

 After the previous re-boot, login as Administrator.

 Right click on the desktop Computer icon, select Properties, Advanced System

Settings.

 Select Environment Variables and edit out any references to SUA for both User

and System.

F. Remove the SUA directory (optional)

 After the previous re-boot, login as Administrator

76 76

 Right click on the SUA directory, and select Delete

Step 2: Cygwin 64-bit Installation

Prerequisites

 Cygwin 64-bit is required for NX Nastran

 If a previous version of Cygwin is installed, it should be removed before installing

Cygwin 64-bit.

 Instructions for removing previous versions of Cygwin can be found at

http://cygwin.wikia.com/wiki/Uninstalling_Cygwin

 NX Nastran requires Cygwin-64 to be installed to the C:\ drive under

C:\cygwin64.

 Cygwin-64 must be installed on each node of the cluster

Begin the Installation

A. Login as local Administrator

B. Go to http://cygwin.com/install.html, right-click ―setup-x86_64.exe‖, choose save as

target. Save to a local directory, such as C:\Temp.

C. Double-click on C:\Temp\setup-x86_64.exe to begin the installation. Select Next

on the setup window:

D. Select ―Install from Internet‖, then Next.

http://cygwin.wikia.com/wiki/Uninstalling_Cygwin
http://cygwin.com/install.html

77 77

E. Make sure the installation directory is C:\cygwin64, select ―All Users‖, then Next.

F. Select a suitable scratch directory to hold installation files, such as C:\Temp. Select

Next.

G. Select your internet connection, then Next.

H. Choose a download site, for example http://mirrors.kernel.org. Select Next.

I. From Select Packages:

 Expand Shells, select tcsh and mksh.

http://mirrors.kernel.org/

78 78

 Expand Archive and select unzip and zip.

 Expand Net category and select openssh and openssl.

Additional packages can be selected later after the installation. Select Next to

continue.

J. A window will open listing dependencies. Select Next to resolve dependencies.

K. A window will open to show the installation progress. Select Finish after the

installation completes.

Step 3: Cygwin 64-bit Configuration

79 79

A. Right-click the Computer icon, select Advanced Settings, then Environment

Variables. Add C:\cygwin64\bin to the global PATH in the System

Variables.

B. Administrator setup of SSH service

Login as Administrator, open a Cygwin64 terminal, and issue the command:
 ssh-host-config
You will be prompted to answer several questions:

Questions Answers

Should privilege separation be used? Yes

Should this script create a new local account ‗sshd‘? Yes

Do you want to install sshd as a service? Yes

Enter the value of CYGWIN for the daemon. ntsec

Do you want to use a different name for the SSH service? This is optional, but

it is simplest to enter

No.

Once the setup of the SSH service is complete, you should see something similar

to the following:

Note: If you plan to use a Management Agent, then follow the instructions given

here:

http://docs.oracle.com/cd/E24628_01/install.121/e22624/preinstall_req_cygwin_s

sh.htm

C. Startup the SSH service from a Cygwin64 terminal with:
 cygrunsrv –S sshd

Once the service starts, the command prompt should return without error. The

service will also automatically start after each reboot. You can also verify that the

http://docs.oracle.com/cd/E24628_01/install.121/e22624/preinstall_req_cygwin_ssh.htm
http://docs.oracle.com/cd/E24628_01/install.121/e22624/preinstall_req_cygwin_ssh.htm

80 80

service is running by opening Control Panel, System and Security, and Selecting

Administrative tools, and clicking on Services.

D. Logout from the local Administrator account, then login as one of the cluster

users. Double-click on the Cygwin64 Terminal icon from the desktop. Note

that a new home directory is created as each user logs in.

Verify that your shell shows correctly with

 ‗echo $SHELL‘ (as shown below).

Also verify that ssh is working, and that you can run ssh on the localhost (as

shown below).

Note: The Administrator can edit /etc/passwd to change the shell assigned to each

user, after each user has logged in and their /home directory has been created.

E. Final Cygwin 64-bit Configuration Steps

 For each user of the cluster, repeat the previous step until all users have a

home directory on the local node, and each can run ssh on the local node.

(Instructions to setup password-less ssh are provided later.)

 If necessary, the local Administrator can open a Cygwin64 terminal and

edit /etc/passwd to define the appropriate shell for each user.

 Each user‘s login directory must exist on all nodes with normal

permissions to the user

 Each user‘s shell should be set (for example, to /bin/ksh)

 Repeat all of the above installation instructions for Cygwin 64-bit on each

additional node in the cluster.

After the installation and configuration of Cygwin 64-bit on each node of the cluster, the

final step below shows how to setup password-less ssh for each user, install the latest

version of NX Nastran, and configure MPI on the cluster for each user.

Step 4: Remaining Installation Tasks for NX Nastran DMP

81 81

The remaining tasks to be completed in Step 4 are:

A. Set up password-less SSH with Cygwin 64-bit for each user

B. Install the latest release of NX Nastran or modify an existing release

C. Set up Intel MPI Windows services

D. Set up password-less MPI

E. Test Windows DMP with a .BAT file from a DOS shell

Note: If a previous version of NX Nastran with HP MPI is installed on the cluster,

there is no need to remove it. It is not used with Intel MPI and NX Nastran 10.

A. Set up password-less SSH with Cygwin 64-bit for each user

Each user must open a Cygwin64 terminal, which will place them in their home directory.

 Enter the command:
ssh-keygen –t dsa (or, alternately with –t rsa)

 Press Enter when you are presented a prompt.

A text image will be displayed when ssh-keygen is done:

 Enter the .ssh directory with: cd .ssh

 Display .ssh directory contents with: ls –alt

 Copy the public key with: cp id_dsa.pub authorized_keys

 Change permissions with: chmod 644 authorized_keys

 The first time you run ‗ssh hostname date‘, answer ‗yes‘ if prompted. All subsequent

ssh commands to hostname will be password-less, as shown below.

82 82

 The final step in this process is to provide password-less ssh between all nodes for

each user. In order to provide password-less ssh between any two nodes, each user

needs to collect all of the public keys created in the /home/username/.ssh

directories and insert them into /home/username/.ssh/authorized_keys on all the

nodes.

For example, if user harry created the following public keys on these nodes:

Master: C:\cygwin64\home\harry\.ssh\id_dsa.pub

Slave1: C:\cygwin64\home\harry\.ssh\id_dsa.pub

Slave2: C:\cygwin64\home\harry\.ssh\id_dsa.pub

Then, user harry must insert the contents of those 3 public keys into authorized_keys

on the following nodes:

Master: C:\cygwin64\home\harry\.ssh\authorized_keys

Slave1: C:\cygwin64\home\harry\.ssh\authorized_keys

Slave2: C:\cygwin64\home\harry\.ssh\authorized_keys

When all public keys for all the nodes are contained in the authorized_keys file on

each node, then any node may run ssh between any other node without being

prompted for a password.

Note that the permissions for authorized_keys must be set to 0600 from a Cygwin64

Terminal.

Also note that if a user‘s home directory is shared to all of the nodes, then it is only

necessary to run ssh-keygen once, and create a single authorized_keys file in the

user‘s $HOME/.ssh/ directory.

Even though a node-name will appear at the end of the security string in the public

key file (e.g., id_dsa.pub), which will be the name of the node on which ‗ssh-keygen‘

was launched, it is merely a comment and is ignored by SSH.

If the home directories are not shared among the nodes, then it is necessary to run

ssh-keygen on each node and copy all of the public keys generated into the

authorized_keys file on each node.

B. Install NX Nastran 10 to each Windows node

 Install NX Nastran 10 on all the nodes of the cluster in the same location on each

node.

83 83

 Using your Webkey account, download the NX Nastran installation (.zip file) from

https://download.industrysoftware.automation.siemens.com/.

 Unzip the installation file and launch autorun. Install to any directory that does not

have spaces in the path name, for example, D:\NXNr. Do not install to the default path

of C:\Program Files(x86). Spaces in the path will prevent several Environment

variables from being properly interpreted.

C. Set up Intel MPI Windows Service on each node

 Login as local Administrator and open a Command Prompt.

 Change directory with:
cd /d D:\NXN10\nxn10\em64tnt\impi\bin

 Type the following command:
hydra_service.exe –install

 Verify that the service is running under Administrative Tools/Services

D. Set up password-less MPI for each user on each node

Each user must enter the following commands at a Command Prompt on each node of

the cluster:

set MPI_ROOT=D:\NXN10\nxn10\em64tnt\impi

set PATH=D:\NXN10\nxn10\em64tnt\impi\bin;%PATH%

cd /d D:\NXN10\nxn10\em64tnt\mpi\bin

mpiexec.hydra.exe –register

E. Test Windows DMP with a .BAT script

 Use a text editor to create the following .BAT file, replacing nodei with the actual

host names available on your cluster. Name the file dmptest.BAT.

@ECHO OFF

set NXN_BASE=D:\NXN10

%NXN_BASE%\bin\nastran.exe

"//node0/Workdir/UserName/plan10g.dat"

out="//node0/Workdir/UserName"

mem=130mw dmp=2 hosts=node0;node1

sdir=D:\Scratch slaveout=yes scr=yes

https://download.industrysoftware.automation.siemens.com/

84 84

 Open a DOS shell, then cd \\node0\Workdir\UserName, where node0, Workdir

and UserName are replaced with correct values for your hosts.

 Copy a test file from the NX Nastran tpl to your current directory

copy D:\NXN10\nxn10\nast\tpl\plan10g.dat

 Execute the .BAT file:

dmptest.bat

7.5 Determining Hosts

The nastran command uses the following hierarchy to determine the list of hosts to use:

 The nastran command ―hosts‖ keyword on the command line

 The nastran command ―hosts‖ keyword in an RC file.

 The local host.

Consider the following example:

The following job will run on the local host:
nxnr nastran example dmparallel=4

The following job will run on the first four available nodes from the set ―node1‖, ―node2‖,

―node3‖, ―node4‖, ―node5‖.
nxnr nastran example dmparallel=4 hosts=node1:node2:node3:node4:node5

The following job reads the file ―my.host.list‖.
nxnr nastran example dmparallel=4 hosts=my.host.list

The nastran command provides a simple host allocation method. If a host listed by the

―hosts‖ keyword is unavailable, it will be skipped and the next host considered. As long

as at least the number of processors specified by the ―dmparallel‖ keyword are available

on one or more of the listed hosts, the job will be allowed to run.

Hosts on Linux

On Linux systems, the ―hosts‖ keyword needs to specify the host name of the compute

nodes. A Linux example of job submittal is:
nxnr nastran example dmparallel=4 hosts=n1:n2:n3:n4

Using the “hosts” Keyword (Distributed Jobs Under LSF)

The ―hosts‖ keyword will default to the value set by LSF when running as a distributed

job and no other value for ―hosts‖ was set on the command line or in an RC file.

Example:

85 85

bsub -n 4 nxnr nastran example dmp=4

This job will use four hosts selected by LSF. Note, the number of tasks appears twice:

once for use by LSF, and once for use by NX Nastran.

Using PBS with NX Nastran

Portable Batch System (PBS) is a queuing system that can be used to submit NX Nastran

serial and DMP jobs. Once you have downloaded and installed PBS, you can use the

following sample script to run an NX Nastran DMP job under PBS.

The ―hosts‖ keyword will default to the value set by PBS_NODEFILE when running as a

distributed job and no other value for ―hosts‖ was set on the command line or in an RC

file.

#!/bin/ksh

pbs_nast: PBS script to use with NX Nastran

Usage: qsub -lnodes=Number-Of-Nodes pbs-nast

Assume the data file is located in the directory whence the qsub

command was issued.

dat=$PBS_O_WORKDIR/d10101d.dat

jobdat=${dat##*/}

Change the working directory to the scratch directory.

TMPDIR=/scratch

cd $TMPDIR

Pull the bulk data file over.

rcp $PBS_O_HOST:$dat .

Determine the number of ranks.

dmparallel=$(sed -n -e „$=‟ $PBS_NODEFILE)

Build the hosts keyword value.

hostskwd=‟sed -e :a -e „/$/N; s/\n/:/; ta‟ $PBS_NODEFILE‟

Run the NX Nastran job. If using version 4.1 or above, comment the

following

two lines and uncomment the next two commented lines.

nxnr nastran $jobdat dmparallel=$dmparallel hosts=$hostskwd \

scratch=yes batch=no

If using version 4.1 or above, uncomment the following two commented

lines

86 86

comment out the two lines preceeding the comment lines here

nxnr nastran $jobdat dmparallel=$dmparallel hosts=$PBS_NODEFILE \

scratch=yes batch=no

Push the files back to the submitting host.

jobout=${jobdat%.*}

out=${dat%/*}

rcp -p $jobout.log $PBS_O_HOST:$out

rcp -p $jobout.f04 $PBS_O_HOST:$out

rcp -p $jobout.f06 $PBS_O_HOST:$out

rcp -p $jobout.op2 $PBS_O_HOST:$out

END

Note: Be aware that in order to receive your job‘s stdout and stderr, your .rhosts file on

the node issuing the ―qsub‖ command must permit access from the remote host(s).

7.6 Managing Host-Database Directory Assignments

The performance of the disk subsystem containing the permanent end SCRATCH

DBSets can have a significant impact on NX Nastran performance. In the case of a DMP

job, the impact can be even greater if multiple tasks are using the same file system. To

allow unique directories to be assigned to each task, the ―dbs‖, ―hosts‖, and ―sdirectory‖

keywords are treated as lists scanned in a round-robin order. With this feature, you can

finely control the use of disk I/O access paths by your job.

The following examples show the effect of the round-robin ordering.

nxnr nastran example dmparallel=4 hosts=a:b

sdirectory=/aa:/ba:/ab:/bb dbs=/aa:/ba:/ab:/bb

This example will assign the following host-sdirectory pairs (assuming hosts ―a‖ and ―b‖

each have at least two processors):

Task Host Scratch Directory DBS Directory

1 a /aa /aa

2 b /ba /ba

3 a /ab /ab

4 b /bb /bb

If directory ―/ba‖ was not available for writing by you on host ―b‖, the tasks assignments

would be (assuming host ―a‖ has at least three processors):

Task Host Scratch Directory DBS Directory

1 a /aa /aa

2 a /ab /ab

3 b /bb /bb

4 a /aa /aa

87 87

7.7 Managing Files

When an NX Nastran DMP job is running, the input file is directly read by each MPI task

that can read the file, for example, via NFS. Each host that cannot read the input file will

read a local copy of the file that is copied, via rcp(1), to the job‘s scratch directory

(―sdirectory‖ keyword) before the job begins.

A similar check is made for the output directory. Any host that can write to the output

directory (―out‖ keyword) will directly write its .f04, .f06, .log and other default output

files to that directory. Any host that cannot see the output directory will write its default

output files to the job‘s scratch directory. These files will then be copied, again via rcp(1),

back to the output directory at the end of the job.

Note: The nastran command will perform these tests by converting your pathname value

to an absolute pathname. As a result, a path that varies depending upon the host will be

labeled as unreadable.

If the ―sdirectory‖ keyword is not specified on the command line or in an RC file on the

local host, each master or slave host will use its own scratch directory. This directory is

determined on the master and each slave host by examining its command initialization

file and version-specific RC files if the ―version‖ keyword was defined.

Do not use an ASSIGN statement for any file that will be written by NX Nastran in a

Distributed Memory Parallel (DMP) job. Instead, use the ―sdirectory‖ and ―dbs‖

keywords to specify names of the SCRATCH and permanent DB Sets.

7.8 Performance Issues

In addition to the normal performance issues associated with a serial or SMP job, a DMP

job adds communication bandwidth as a critical performance characteristic. The basic

communications channels are:

 Shared memory - SMP and NUMA systems.

 Interconnect, adapter, or switch - NUMA and distributed systems.

 High-speed special-purpose network, for example, HIPPI - all systems.

 TCP/IP network - all systems.

 Infiniband, Myrinet and Quadrics network connections on Linux are supported

out of the box.

The performance of any NX Nastran job depends upon CPU, memory subsystem, and I/O

subsystem performance. A Distributed Memory Parallel (DMP) job on an SMP or

NUMA system is extremely sensitive to I/O subsystem performance since each task

independently accesses the I/O subsystem.

If you select independent disks (not in RAID configuration) for your scratch drives, you

are encouraged on SMP and NUMA systems to partition your scratch directory and

88 88

database assignments on DMP jobs using the ―sdirectory‖ and ―dbs‖ nastran command

keywords.

Example 1:

nxnr nastran example dmp=4

sdir=/scr1:/scr2:/scr3:/scr4\ dbs=/dbs1:/dbs2:/dbs3:/dbs4

The following assignments will be made in this job:

Task sdirectory dbs

1 /scr1 /dbs1

2 /scr2 /dbs2

3 /scr3 /dbs3

4 /scr4 /dbs4

The preceding example will perform substantially better than the following job, which

uses the default assignments for the ―sdirectory‖ and the ―dbs‖ keywords.

Example 2:

install-dir\nxnr nastran example dmp=4

While the ultimate effect of the communications channel on job performance is

dependent upon the solution sequence, for best overall job performance, you should try to

use the fastest communications channels available.

7.9 Overview of Running a DMP job

This section gives a brief overview of running DMP jobs. See the other sections of this

guide for more complete details on this topic.

Command-line Syntax

You can start an NX Nastran DMP job using the command:
$ nxnr nastran example dmp=2 hosts=n1:n2

where ―n1:n2‖ indicates the hosts to be used in the run.

Valid output is:
Determining available hosts, please wait...

DMP task 1: host="ugsclust1" sdir="/scratch" dbs="/scratch/plan10g";

DMP task 2: host="node1.local"; sdir="/scratch";

dbs="/scratch/plan10g";

NX Nastran beginning distributed job plan10g.

NX Nastran V4.0 (Intel Linux 2.4.20-20.7smp) Mon May 23 11:21:37 2005

NX Nastran V4.0 (Intel Linux 2.4.20-20.7bigmem) Mon May 23 11:21:37

2005

NX Nastran beginning child job plan10g.T22389_37.t1 on node1.local.

NX Nastran beginning child job plan10g.t0 on ugsclust1 (master).

Note: The ―beginning child job‖ lines may appear in a random order.

89 89

Error Examples

The following error is an authorization problem.

*** USER FATAL MESSAGE 3060 (PREFACE)

 SUBROUTINE MODEL - OPTION NAST NOT IN APPROVED LIST.

 SYSTEM DATE (MM/DD/YY): mm/dd/yy

 SYSTEM UGSID: n (DECIMAL) n (HEXADECIMAL)

Likely causes are:

 The license or authorization file does not include the ability to make DMP runs.

 The license or authorization file was not accessible to the first node in the hosts

list.

90 90

Appendix

SEQP STYLE DMP SOLUTIONS

In the parallel processing of a finite element application, finite element model data should

be distributed to each processor. There are two choices of method for domain partitioning

in an NX Nastran parallel processing task: grid-based partitioning and degree of freedom-

based partitioning. The SEQP module performs grid-based partitioning, in which p

domains are created by an automatic partitioner from the grid-based graph. The

GPARTN module performs graph partitioning for the graph based on degrees of freedom

or grids, whichever is better.

The GPARTN-based method is available in more solution sequences than the SEQP-

based, and generally, the GPARTN module gives better performance than the module

SEQP. For example, the GPARTN module provides better performance if the finite

element model includes many Multi-Point Constraints (MPCs). It should be noted that

the SEQP-based method can not handle a finite element model that includes acoustic

fluid, glue elements, weld/fast elements, or modal effective mass requests. Also, grid

point weight generator output reflects only the local portion of the model (rather than

global) with the SEQP module, and thus the results may be unexpected.

The partitioning method can be selected by the nastran command keyword „gpart‟ in the

following way.

Module Keyword

SEQP gpart = 0

GPARTN gpart = 1 default

Each module provides two different algorithms for graph partitioning. The algorithm can

be selected by the DMAP parameter oldseq.

Module Method DMAP parameter

SEQP
EXTREME param, oldseq = 9

MLV param, oldseq = 11 default

GPARTN
METIS param, oldseq = 10

MLV param, oldseq = 11 default

RDMODES, SOL111, SOL 112, and SOL 200 use GPARTN only.

91 91

GDMODES/HDMODES in SOL 103 and GDSTAT can use either partitioning module

(GPARTN is the default).

The following table lists the availability of domain partitioning modules for each

computational method:

 SEQP GPARTN

GDSTAT X X(default)

GDMODES X X(default)

HDMODES X X(default)

RDMODES Na X(default)

In the above table, ‗X‘ means the partitioning module is available. ‗na‘ refers to ‗not

applicable‘.

Note: Neither the module SEQP or GPARTN is used in LDSTAT, FDMODES, and

FDFREQR, because these computational methods do not require domain partitioning.

In chapter 4, we already provided examples for GDMODES and HDMODES with

GPARTN. Here we present examples with SEQP.

A finite element plate model with 110 grid points and 100 CQUAD4 elements is

executed in parallel with SOL 103 analysis. The total number of degrees of freedom is

660. Four processors are used for the DMP run.

1. GDMODES with SEQP

GDMODES with SEQP is implemented with the nastran keyword "gpart=0".

nastran example dmp=p gpart=0

nastran example dmp=4 gpart=0

When the domain is partitioned, the output from the SEQP module is shown as:

 STATISTICS FROM AUTOMATIC MODEL PARTITIONER

 THE NUMBER OF DOMAINS CREATED USING EDSMLV IS 4

 THE NUMBER OF GRID POINTS IN THE GLOBAL BOUNDARY IS 30

 THE NUMBER OF ELASTIC ELEMENTS IN THE RESIDUAL IS 0

 THE NUMBER OF RIGID ELEMENTS IN THE RESIDUAL IS 0

 DOMAIN ID # INTERNAL GRID POINTS # EXTERNAL GRID POINTS # OF ELEMENTS

 --------- ---------------------- ---------------------- -------------

 1 20 16 25

 2 20 16 25

 3 20 16 25

 4 20 16 25

 GEOMETRY DOMAIN PARALLEL LANCZOS METHOD

92 92

The partitioning statistics show the number of domains created, grid points, and elements

for each sub-domain.

Once the results of eigenvalue analysis on the slave processors are collected, the master

processor prints the summary of merged eigensolutions.

EIGENVALUES FOUND IN DOMAIN # 1

 E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE)

 BLOCK SIZE USED 7

 NUMBER OF DECOMPOSITIONS 3

 NUMBER OF ROOTS FOUND 208

 NUMBER OF SOLVES REQUIRED 41

$---

$ The list of all eigensolutions collected from the slave processor

$---

 R E A L E I G E N V A L U E S

 MODE EXTRACTION EIGENVALUE RADIANS CYCLES GENERALIZED NERALIZED

 NO. ORDER MASS STIFFNESS
 1 1 1.696349E+07 4.118676E+03 6.555076E+02 1.000000E+00 1.696349E+07

 2 2 1.848026E+07 4.298867E+03 6.841859E+02 1.000000E+00 1.848026E+07

 207 207 3.073819E+09 5.544203E+04 8.823873E+03 1.000000E+00 3.073819E+09

 208 208 3.123167E+09 5.588530E+04 8.894422E+03 1.000000E+00 3.123167E+09

With the gpart=0 option, the summary of eigenvalue analysis from the master processor

is broadcasted to the slave processors, so that all processors print the same summary

information.

S L A V E 1

 EIGENVALUES FOUND IN DOMAIN # 2

 E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE)

 BLOCK SIZE USED 7

 NUMBER OF DECOMPOSITIONS 3

 NUMBER OF ROOTS FOUND 208

 NUMBER OF SOLVES REQUIRED 41

$---

$ The list of all eigensolutions collected from the slave processor

$---

93 93

 R E A L E I G E N V A L U E S

 MODE EXTRACTION EIGENVALUE RADIANS CYCLES GENERALIZED NERALIZED

 NO. ORDER MASS STIFFNESS
 1 1 1.696349E+07 4.118676E+03 6.555076E+02 1.000000E+00 1.696349E+07

 2 2 1.848026E+07 4.298867E+03 6.841859E+02 1.000000E+00 1.848026E+07

 207 207 3.073819E+09 5.544203E+04 8.823873E+03 1.000000E+00 3.073819E+09

 208 208 3.123167E+09 5.588530E+04 8.894422E+03 1.000000E+00 3.123167E+09

2.HDMODES with SEQP

HDMODES with SEQP is implemented with the nastran keyword "gpart=0".

nastran example dmp=p nclust=c gpart=0

In the example below, HDMODES is executed with ‗dmp=4‘ and ‗nclust=2‘ keywords.

Among the four processors, the first processor is the master processor, and the other

processors are the slave processors.

Note that HDMODES defines the local master and local slave processors inside of each

cluster.

nastran example dmp=4 nclust =2 gpart=0

The partitioning statistics show the information of domains for each cluster. There are

two domains for each cluster. The first domain of the cluster has 50 internal grids and 10

external grids, and the second domain has the same local size. Generally, the size of each

domain is different.

 STATISTICS FROM AUTOMATIC MODEL PARTITIONER

 THE NUMBER OF DOMAINS CREATED USING EDSMLV IS 2

 THE NUMBER OF GRID POINTS IN THE GLOBAL BOUNDARY IS 10

 THE NUMBER OF ELASTIC ELEMENTS IN THE RESIDUAL IS 0

 THE NUMBER OF RIGID ELEMENTS IN THE RESIDUAL IS 0

 DOMAIN ID # INTERNAL GRID POINTS # EXTERNAL GRID POINTS # OF ELEMENTS

 --------- ---------------------- ---------------------- -------------

 1 50 10 50

 2 50 10 50

 HIERARCHIC DOMAIN PARALLEL LANCZOS METHOD

In this example, cluster 1 includes processors 1 and 3, and processors 2 and 4 are in

cluster 2. Processors 1 and 2 are the local masters in clusters 1 and 2, respectively. In

cluster 1, 155 eigenvalues are collected in processor 1. Similarly, in cluster 2, 53

eigenvalues are collected in processor 2. Once each local master processor collects the

94 94

results for each cluster, the master processor (processor 1) collects the information from

the local masters.

In the .f06 file, the master processor prints the summary of the eigenvalue analysis and

the list of eigenvalues. Be careful when interpreting the "number of roots found"

information in the summary. This information concerns the cluster in which the master is

included. For example, in the model below, interpret the "number of roots found"

message from the eigenvalue analysis summary as indicating that cluster 1 found 155

eigenvalues. The master processor eigenvalue table lists all 208 eigenvalues that are

merged from all of the local master processors. You should determine the number of

modes from the list of eigenvalues.

EIGENVALUES FOUND IN DOMAIN # 1

 E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE)

 BLOCK SIZE USED 7

 NUMBER OF DECOMPOSITIONS 3

 NUMBER OF ROOTS FOUND 155

 NUMBER OF SOLVES REQUIRED 41

$---

$ The list of all eigensolutions collected from the slave processor

$---

 R E A L E I G E N V A L U E S

 MODE EXTRACTION EIGENVALUE RADIANS CYCLES GENERALIZED NERALIZED

 NO. ORDER MASS STIFFNESS

 1 1 1.696349E+07 4.118676E+03 6.555076E+02 1.000000E+00 1.696349E+07

 2 2 1.848026E+07 4.298867E+03 6.841859E+02 1.000000E+00 1.848026E+07

 207 207 3.073819E+09 5.544203E+04 8.823873E+03 1.000000E+00 3.073819E+09

 208 208 3.123167E+09 5.588530E+04 8.894422E+03 1.000000E+00 3.123167E+09

Again, be cautious when interpreting the output from slave processors. The summary of

eigenvalue analysis for slave processors is confined to the corresponding processor. In

the list of eigenvalues on the slave processors, the mode number does not represent the

global mode number.

 Note that, with the gpart=0, the master process broadcasts the collected output only to

the local masters. In the example below, the local slave, processor 2, prints 208

eigenvalues, while another local slave, processor 4, prints 53 eigenvalues.

 S L A V E 1

95 95

53 EIGENVALUES FOUND IN DOMAIN # 1

 E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE)

 BLOCK SIZE USED 7

 NUMBER OF DECOMPOSITIONS 2

 NUMBER OF ROOTS FOUND 53

 NUMBER OF SOLVES REQUIRED 39

 R E A L E I G E N V A L U E S

 MODE EXTRACTION EIGENVALUE RADIANS CYCLES GENERALIZED NERALIZED

 NO. ORDER MASS STIFFNESS

1 1 1.632620E+09 4.040570E+04 6.430766E+03 1.000000E+00 1.632620E+09

2 2 1.633399E+09 4.041533E+04 6.432300E+03 1.000000E+00 1.633399E+09

 52 52 3.073819E+09 5.544203E+04 8.823873E+03 1.000000E+00 3.073819E+09

 53 53 3.123167E+09 5.588530E+04 8.894422E+03 1.000000E+00 3.123167E+09

 S L A V E 2

155 EIGENVALUES FOUND IN DOMAIN # 2

 E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE)

 BLOCK SIZE USED 7

 NUMBER OF DECOMPOSITIONS 3

 NUMBER OF ROOTS FOUND 155

 NUMBER OF SOLVES REQUIRED 41

 R E A L E I G E N V A L U E S

 MODE EXTRACTION EIGENVALUE RADIANS CYCLES GENERALIZED NERALIZED

 NO. ORDER MASS STIFFNESS

 1 1 1.696349E+07 4.118676E+03 6.555076E+02 1.000000E+00 1.696349E+07

 2 2 1.848026E+07 4.298867E+03 6.841859E+02 1.000000E+00 1.848026E+07

 207 207 3.073819E+09 5.544203E+04 8.823873E+03 1.000000E+00 3.073819E+09

 208 208 3.123167E+09 5.588530E+04 8.894422E+03 1.000000E+00 3.123167E+09

 S L A V E 3

53 EIGENVALUES FOUND IN DOMAIN # 2

 E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE)

 BLOCK SIZE USED 7

 NUMBER OF DECOMPOSITIONS 2

 NUMBER OF ROOTS FOUND 53

 NUMBER OF SOLVES REQUIRED 39

96 96

 R E A L E I G E N V A L U E S

 MODE EXTRACTION EIGENVALUE RADIANS CYCLES GENERALIZED NERALIZED

 NO. ORDER MASS STIFFNESS

 1 1 1.632620E+09 4.040570E+04 6.430766E+03 1.000000E+00 1.632620E+09

 2 2 1.633399E+0 4.041533E+04 6.432300E+03 1.000000E+00 1.633399E+09

 52 52 3.073819E+09 5.544203E+04 8.823873E+03 1.000000E+00 3.073819E+09

 53 3.123167E+09 5.588530E+04 8.894422E+03 1.000000E+00 3.123167E+09

3. GDSTAT with SEQP

GDSTAT with SEQP is implemented with the nastran keyword ―gpart=0‖.

nastran example dmp=p gpart=0

Example:

nastran example dmp=4 gpart=0

The static analysis is performed for a finite element cube model that has 2197 grid points

for 1728 CHEXA elements and 6048 CQUAD4 elements. GDSTAT is implemented in a

DMP run. The module SEQP partitioned the global finite element model into four sub-

domains and a boundary. The following information in the .f06 describes the detailed

statistics of partitioning.

 STATISTICS FROM AUTOMATIC MODEL PARTITIONER

 THE NUMBER OF DOMAINS CREATED USING EXTREME IS 4

 THE NUMBER OF GRID POINTS IN THE GLOBAL BOUNDARY IS 361

 THE NUMBER OF ELASTIC ELEMENTS IN THE RESIDUAL IS 0

 THE NUMBER OF RIGID ELEMENTS IN THE RESIDUAL IS 0

 DOMAIN ID # INTERNAL GRID POINTS # EXTERNAL GRID POINTS # OF ELEMENTS

 --------- ---------------------- ---------------------- -------------

 1 468 174 2060

 2 468 169 2016

 3 468 169 1880

 4 432 205 1820

Each processor performs static analysis with the corresponding local domain and the

boundary, and the master processor collects the results that you requested through

communications. These outputs are printed only on the master processor.

 D I S P L A C E M E N T V E C T O R

POINT ID. TYPE T1 T2 T3 R1 R2 R3

 30060 G 1.578281E-05 -9.678060E-05 -2.301274E-04 -4.363790E-06 -3.554464E-06 -4.259573E-

09

 40066 G -1.578241E-05 -9.678057E-05 -2.301267E-04 -4.363756E-06 3.554413E-06 4.257577E-

09

 70660 G -1.578268E-05 9.677987E-05 -2.301273E-04 -4.363777E-06 -3.554452E-06 4.259614E-

09

 80666 G 1.578229E-05 9.677984E-05 -2.301266E-04 -4.363744E-06 3.554401E-06 -4.257619E-

09

97 97

It is strongly recommended to use the nastran keyword "slaveout=yes" to print out

analysis procedures from all processors. With "slaveout=yes", the f04, .f06, and .log files

contain the outputs of master and slave processors in the following format.

master processor

 * * * END OF JOB * * *

 S L A V E 1

 slave 1 processor

 * * * END OF JOB * * *

 S L A V E 2

 slave 2 processor

 * * * END OF JOB * * *

 S L A V E 3

 slave 3 processor

 * * * END OF JOB * * *

References
[1] L. Komzsik, The Lanczos Method: Evolution and Application, 2003, SIAM.

[2] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with

the Message Passing Interface, 1997, MIT.

[3] NX Nastran Numerical Methods User‘s Guide.

	Table of Contents
	Preface - About this Book
	Chapter 1 – Introduction and Fundamentals
	1.1 Parallel Computing in NX Nastran
	1.2 Keywords in NX Nastran Parallel Computing
	1.3 Getting Started
	1.4 Parallel machine architectures
	1.5 Parallelism in NX Nastran
	1.6 Parallel Solution Methods in NX Nastran
	1.7 Expectation from NX Nastran Parallel Solutions

	Chapter 2 – Running Parallel Solutions
	2.1 Computational Methods at a Glance
	2.2 Running SMP Jobs
	2.3 Environment Setup for DMP
	2.4 Running DMP Jobs

	Chapter 3 - Methods for Linear Static Analysis
	3.1 Geometric Domain Static Analysis (GDSTAT)
	3.2 Load Domain Static Analysis (LDSTAT)
	3.3 Recommendations for the Method Selection

	Chapter 4 - Methods for Normal Modes Analysis
	4.1 Geometric Domain Normal Modes Analysis (GDMODES)
	4.2 Frequency Domain Normal Modes Analysis (FDMODES)
	4.3 Hierarchic Domain Normal Modes Analysis (HDMODES)
	4.4 Recursive Domain Normal Modes Analysis (RDMODES)
	4.5 Recommendations for Method Selection

	Chapter 5 - Methods for Response Analysis and Optimization
	5.1 Frequency Domain Frequency Response Analysis (FDFREQR)
	5.2 DMODES + FDFREQR for SOL 111
	5.3 DMODES + Serial transient calculation for SOL 112
	5.4 DMODES + serial optimization process for SOL 200

	Chapter 6 – Performance Study
	6.1 Performance of Parallel Processing
	6.2 Industrial Case Study 1
	6.3 Industrial Case Study 2

	Chapter 7 - Installation and Configuration of DMP
	7.1 Overview
	7.2 Requirements
	7.3 Windows Single Host Instructions
	7.4 Windows Multiple Host Instructions (True Cluster)
	7.5 Determining Hosts
	7.6 Managing Host-Database Directory Assignments
	7.7 Managing Files
	7.8 Performance Issues
	7.9 Overview of Running a DMP job

	Appendix
	SEQP STYLE DMP SOLUTIONS
	References

