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NASTRAN is a registered trademark of the National Aeronautics and Space 

Administration. NX Nastran is an enhanced proprietary version developed and 

maintained by Siemens Product Lifecycle Management Software Inc. 

MSC is a registered trademark of MSC.Software Corporation. MSC.Nastran and 

MSC.Patran are trademarks of MSC.Software Corporation. 

All other trademarks are the property of their respective owners. 

 

TAUCS Copyright and License 
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TAUCS License: 
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License. 
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EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. 
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Preface - About this Book 

 

NX NASTRAN is a general-purpose finite element program which solves a wide variety 

of engineering problems. The NX NASTRAN Parallel Processing Guide is intended to 

help you choose among the different parallel processing and computational methods, and 

ultimately increase the performance of analysis by reducing CPU time, memory and disk 

space requirements.  

 

This main material in this book covers the parallel processing methods for the linear 

static, normal modes, direct frequency response, modal frequency response, modal 

transient response, and design optimization.   

 

This book is composed of 7 chapters: 

 

1. Introduction and fundamentals 

2. Running parallel NX Nastran solutions 

3. DMP computational methods for linear static analysis 

4. DMP computational methods for normal modes analysis 

5. DMP computational methods for response analysis and optimization 

6. Performance study 

7. Installation and Configuration of Distributed Memory Parallel (DMP) 

 

To effectively use this book, it is important for you to be familiar with the basic structure 

of NX Nastran. For more information about the mathematical foundation, refer to NX 

Nastran Numerical Methods User’s Guide.    
 

 

This book will continue to be revised to reflect future enhancements to NX Nastran 

parallel processing methods. Changes and additions are encouraged, and can be  

communicate through Siemens PLM technical support  http://support.ugs.com/. 

 
 

 

 

 
 
 
 
 
 
 

http://support.ugs.com/
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Chapter 1 – Introduction and Fundamentals 

 
 

1.1 Parallel Computing in NX Nastran 

In many applications today, the volume of analysis is going up, the physics being 

modeled is increasingly complex, and the time allocated to development is under 

increasing pressure. Although the recent significantly advancement in computer 

environment, such as higher speed processors and larger memory, has eased the 

investigation into increasingly complex problems, there are still limitations on 

computational performance in serial computation even with optimized processes and 

data flows. 

Parallel computing is an approach that uses multiple computers, processors or cores 

working together on a common task. Each processor works on a section of the 

problem and exchanges information (data in local memory) with other processors. 

With parallel computing, NX Nastran provides simultaneous use of multiple 

processors on one or more machines to decrease solution times. The benefits of 

parallel processing include:  

 Reduced solution time on large problems 

 Reduced hardware requirements by utilizing smaller and less expensive machines 

 Decreased turnaround time for each solution; allowing you to analyze more 

designs under more conditions in a shorter amount of time  

The following are basic parallelism concepts in NX Nastran. 

Types of parallelism. There are basically two types – data parallel and task parallel. 

In data parallel, each processor performs the same task on different data. In task 

parallel, each processor performs a different task. In NX Nastran, as in most real 

applications, parallelism falls somewhere on the continuum between these data and 

task parallelism types and involve more than one type of problem mapping. 

Parallel computer architectures. The control mechanism of parallel computing in 

NX Natran is based on Multiple Instruction, Multiple Data (MIMD) which refers to a 

parallel execution model in which each processor is essentially acting independently. 

The processors work on their own data with their own instructions. Tasks executed by 

different processors can start or finish at different times.  

Parallel programming models. NX Nastran supports shared memory (or threads) 

and message passing. Parallel programming models exits as an abstraction above 

hardware and memory architectures. In hybrid model any two or more parallel 

programming model are combined.  
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Message passing is a widely used communication model in programming parallel 

processor machines for DMP processing. You can access the communication 

hardware only through the message passing library. Message passing libraries like 

Message Passing Interface (MPI) or Parallel Virtual Machine (PVM) send and 

receive data from a program running on one node to a program running on another 

node. In particular, MPI is a standard message passing library that has been 

efficiently implemented on a variety of platforms. 

 

MPI is portable, efficient, expressive, and provides thread safety.  In addition,  

 Point-to-point communications handle data transmission between any two 

processors in a communicator. 

 Collective communications handle simultaneous communication between all 

processors in a communicator. 

 

NX Nastran offers the ability to run certain solution sequences in parallel using a 

Message Passing Interface (MPI), an industry-wide standard library for C and Fortran 

message-passing programs. MPI programs can be run on SMP computers, DMP 

computers, and a cluster of computers supported by the MPI package. In most cases, 

NX Nastran uses the hardware vendor‘s MPI implementation. While this usually 

results in the highest performance levels, it also limits a DMP job to computers 

supported by the vendor‘s MPI package. 

Further information on the MPI standard is available online at the MPI forum 

website:   http://www.mpi-forum.org. 

http://www.mpi-forum.org/
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1.2 Keywords in NX Nastran Parallel Computing 

The following keywords are used in parallel NX Nastran.  

Execution keywords: dmp, hosts, slaveout, parallel, numseg, nclust, nrec, dstat. 

Performance keywords: memory, scratch, sdirectory, sscr, buffsize, rdscale.  

In the appendix, gpart is described as an execution keyword, and it is typically not 

required. More keywords are described in the NX Nastran Installation and Operation 

Guide.  
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1.3 Getting Started 

The following steps give you a basic idea how to use parallel processing for the 

desired analysis in NX Nastran.  

 Step 1. Know your machine architectures. SMP or DMP machine (see section 

1.4). Memory size and etc. 

 Step 2. Choose parallelism scheme. SMP or DMP scheme (see section 1.5). If 

SMP only, refer to running SMP section (2.2).  Most solution sequences support 

SMP, as well as the RDMODES method (section 4.4). If DMP, refer to running 

DMP section (2.3).  In many cases, a combination of SMP and DMP is possible. 

 Step 3. Select and run an appropriate method for the desired analysis. Refer 

to the section ―computational method at a glance‖ (section 2.1) 

 Step 4. Tune the performance.  Best performance may depend on the machine 

architecture.  Refer to sections (2.4.4) and (4.5) for general guidelines. 
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1.4 Parallel machine architectures 
Hardware can be divided roughly into two categories.  

 

Shared Memory Parallel (SMP) Machines. A SMP machine is defined as a single 

machine with multiple processors that share a common memory and I/O as illustrated 

in Figure 1.1. Multiple processors can operate independently, but changes in a 

memory location affected by one processor are visible to all other processors. The 

primary disadvantage is the lack of scalability between memory and processors. 

 

 
   

CPU CPUCPUCPU

MEMORY

DISK

DISK

DISK

  
 

Figure 1.1 SMP Machine architecture 

 

 

 Distributed Memory Parallel (DMP) Machines. A Distributed Memory Parallel 

(DMP) machine uses multiple machines or clusters with one or more processors 

communicating over a network, or multiprocessors with multiple I/O channels. Figure 

1.2 shows a typical architecture of a DMP machine. Each machine has its own 

memory and one or more disks. In DMP, data is private to each node and it is 

necessary to exchange data across different nodes. Therefore, the programmer must 

decide which data is to be sent/received to/from which node.  The main advantage is 

that memory (and local disk) is scalable with multiple processors.  
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Figure 1.2 DMP Machine architecture 
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1.5 Parallelism in NX Nastran 

NX Nastran supports both shared memory parallel (SMP) and distributed memory 

parallel (DMP) processing.  

In NX Nastran, SMP is used only for lower level operations such as matrix 

decomposition and matrix multiplication for all solution sequences. Therefore, as 

long as suitable hardware is available, all solutions can utilize SMP processing.  

The DMP is based on domain decomposition on geometry domain or frequency 

domain, or load domain. DMP methods achieve their solution speed by dividing the 

FE model into smaller pieces to be solved simultaneously. This division is performed 

with respect to geometry or frequency range individually or both at the same time. 

Although each processor is working on its own partition of the geometry or frequency 

range, it communicates with the others to share information. Once the solution is 

complete, the results are merged, creating a single result file.  

Most of the discussions and examples in this book focus on the DMP computational 

methods and solution methods. 

The differences between DMP and SMP are listed in the table below. 

 

 

 
Feature 

 

 
DMP 

 
SMP 

 
Hardware environment 

 
High performance 
workstation clusters 

 
Shared memory multi-
processor workstations 
 
 

 
Parallelism level 

 
Partition finite element 
model 

 
Subdivided matrix and 
vector operations 
 

 
Software mechanism 

 
Message Passing Interface 
(MPI) 
 

 
OpenMP API(or pthreads) 
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1.6 Parallel Solution Methods in NX Nastran 

NX Nastran offers several solution sequences in parallel for both static and dynamic 

analyses. As mentioned in previous section, two parallelisms (SMP and DMP) are 

available.  

In SMP, it parallelizes the computing for decomposition and matrix multiplications. 

Since every solution sequence involves at least matrix multiplications, SMP can be 

activated in all solution sequences for all analyses as long as the hardware supports 

SMP. An SMP RDMODES run is available for SOL 103 and SOL 111 which can 

significantly reduce regular run time if an approximate solution is acceptable. See 

section 2.1 on how to activate SMP. 

In contrast to SMP, which focuses on parallelizing computational modules (such 

DMCP, MPYAD), DMP provides parallelism on the algorithm level, which can 

provide greater speedup. They can be categorized into the following three methods: 

 Domain Static Analysis (DSTAT) method (see chapter 3) 

 Domain Normal Modes Analysis (DMODES) method (see chapter 4)  

 Domain Frequency Response Analysis (DFREQR) method (see chapter 5) 

They are for linear static analysis, normal modes analysis, and frequency response 

analysis, respectively. Modal frequency and transient responses require computing 

modes for modal space. Therefore, DMODES can be applied during mode 

computation. In design optimization, if it involves computing modes, DMODES also 

can be activated. In summary, DMP computational methods support the following 

solution methods. 

 SOL 101     Linear statics (see chapter 3) 

 SOL 103     Normal modes (see chapter 4) 

 SOL 105     Buckling (see chapter 4) 

 SOL 108     Direct frequency response (see chapter 5) 

 SOL 111     Modal frequency response (see chapter 5) 

 SOL 112     Modal transient response (see chapter 5) 

 SOL 200     Design optimization (see chapter 5) 

The DMP computational methods will be discussed in chapters 3-5.  
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1.7 Expectation from NX Nastran Parallel Solutions 

An NX Nastran parallel solution should able to solve a large problem with 

significantly less run time compared to a standard serial (single processor) run. Note 

that (as in most parallel codes), speedup will be less than the number of processors, 

due to MPI startup cost, communication overhead, and inherent limitations in the 

parallelizability of the algorithms used. Furthermore, if the computation can already 

be done on a single processor in minimal runtime, there will not be much opportunity 

for improvement, especially for small problems (less than 10,000 DOFs). 
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Chapter 2 – Running Parallel Solutions 

 
An NX Nastran parallel job can be selected by the Nastran command with either 

keywords or system cells. The Nastran command permits the keywords, dmp and 

parallel, to request DMP and SMP runs, respectively. Alternatively, system cells 231 and 

107 can also be used for DMP and SMP runs. 

 

It is strongly recommended to use keywords to request a parallel job.  The following table 

provides keywords and their descriptions as well as the system cells that can be used for 

DMP and SMP runs. 

 

 Keywords Description System Cell 

DMP 

dmparallel 

(or dmp) 

 

Default = 0 (deselect DMP processing) 

Specifies the number of tasks for a DMP 

analysis 

1-256 processors are available in a DMP job 

231 

SMP 

parallel  

(or smp) 

 

Default =0 (deselect SMP processing) 

Specifies the maximum number of CPUs 

selected for SMP processing 

1-1023 processors are available in a SMP job. 

107 
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2.1 Computational Methods at a Glance 
 

The SMP computational methods are 

 

Analysis Comp. Method 
Submittal 

Command 

Suggested Model 

Type 

All Analysis:             

SOL XYZ 
None parallel=p All models  

 

One of the computational methods that is based on the domain decomposition but can run 

in serial fashion (not DMP) is RDMODES, as an alternative to ACMS. It can reduce the 

runtime significantly even in single processor, compared to a conventional single 

processor Lanczos run. Unlike other domain decomposition methods, RDMODES does 

not require DMP.  

 

Analysis Comp. Method 
Submittal 

Command 

Suggested Model 

Type 

Normal modes 

analysis:        

SOL 103 

RDMODES parallel=p, nrec=n 

Large models, 

allow approximate 

solution 

Modal frequency 

response analysis:     

SOL 111 

RDMODES +Serial 

frequency calculation 
parallel =p, nrec=n Large models 
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The DMP computational methods are:  

 

Analysis Comp.Method 
Submittal 

Command 

Suggested Problem 

Type 

Linear Static Analysis: 

SOL 101 

GDSTAT dmp=p Large models 

LDSTAT dmp=p, dstat=1 
Small models with 

large number of loads 

Normal modes analysis: 

SOL103 

GDMODES dmp =p 

Large models, small 

frequency range 

request, also support 

buckling (SOL 105) 

FDMODES dmp =p, numseg=p 

Small models, large 

frequency range 

request 

HDMODES dmp =p, nclust=c 
Large models, large 

frequency range 

RDMODES dmp =p, nrec=n 
Large models, allow 

approximate solution 

Direct frequency 

response analysis:     

SOL 108 

FDFREQR dmp =p All models 

 

The DMP computational methods with application of normal modes computation are:  

 

Analysis 
Modal Comp. 

Method 

Additional 

Comp. Method 
Submittal Command 

Modal frequency analysis: 

SOL111 

Modal transient analysis:    

SOL112 
Design optimization:    

SOL 200 

GDMODES If SOL 111: 

FDFREQR 
If SOL 112:    

Serial transient 

calculation 

If SOL 200: 

Serial 
optimization 

process 

dmp =p 

FDMODES dmp =p, numseg=p 

HDMODES dmp =p, nclust=c 

RDMODES dmp =p, nrec=n 

 

Note that RDMODES deactivates the sparse eigenvector recovery option in SOL 200.  

The suggested problem type for a particular method is the same as in SOL 103. 
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Figure 2.1 Overview of NX Nastran DMP solution tasks 

 
In Figure 2.1, the method selection for SOL 101 is described in Section 3.3. The method 

selection for DMODES is described in Section 4.5. Overview is summarized as follows. 

Linear Statics

DSTAT=1

GDSTAT LDSTAT

Yes

No (default)

Normal Modes

NREC>0 RDMODES

NUMSEG>0 FDMODES

NCLUST>0 HDMODES

GDMODES

Yes

Yes

Yes

No

No

No
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2.2 Running SMP Jobs 
 

The following example illustrates how to run an NX Nastran job named ‗example.dat‘ in 

an SMP environment with p processors.  

 

 
nastran example parallel=p 

 

 

In SOL 103 and SOL 111, one also can specify RDMODES for large problems as 

follows: 

 

 
nastran example parallel=p nrec=n 

 

 

Where n is the number of external components. Refer to RDMODES (section 4.4) for 

how to choose the number of components. 
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2.3 Environment Setup for DMP 
 

System Prerequisites 
 

NX Nastran supports the following systems: 

 

X86_64 Linux and Windows-64 

 

The detailed requirements of hardware and software are described in Chapter 7 - 

Installation and Configuration of DMP, and in the NX Nastran Installation and Operation 

Guide. 
 

Message Passing Prerequisites 
 

NX Nastran uses a Message Passing Interface (MPI) to manage a DMP task. Each 

compute node must be able to access its local data. It is also necessary to communicate 

between compute nodes. For these purposes, each local node (host) must have: 

 

 NX Nastran installed properly. NX Nastran must be properly installed on all the 

hosts listed by the "hosts" keyword or in the ‗host.list‘ file.  

 MPI program available. The MPI program start command must be available in 

the path of the local host. (for example, "mpirun‖)  

 Input data file (including all bulk data and include files) must be accessible on 

the local host. 

 Do NOT assign output file names in data file. 

 "r-" commands available and configured properly. such as rsh, rcp, and rlogin 

to communicate between nodes. 

 “scp” and “ssh” are supported on Linux. Need to put ―s.rcp=scp‖ and 

―s.rsh=ssh‖ and set the environment variable MPI_REMSH=ssh. These ―s.‖ 

commands can be in the command line or in the nastran.ini file. 

 

More details are described in Chapter 7 - Installation and Configuration of Distributed 

Memory Parallel (DMP). 
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2.4 Running DMP Jobs 
 

2.4.1 Quick Start 
When running an NX Nastran DMP job, it is necessary to specify a computational 

method for desired solution sequence and a host list of the compute nodes. The Nastran 

keywords DMP and HOSTS are required in a DMP run. See section 2.1 for keywords to 

activate a particular DMP computational method.  
 

 
  nastran example [computational method] [host list] 

 

 

Here is an example to run GDMODES with 4 processors for a SOL 103 example, called 

‗example.dat‘, on a four-node DMP machine. Assume these nodes are named node1, 

node2, node3 and node4. 

 
 

  nastran example dmp=4 hosts=node1:node2:node3:node4                        

 

 

Notes: 

 The "master" node is the first computer named by the "hosts" keywords, and 

"slave" nodes are the remaining systems. 

 The nastran keywords are processed in both the local and master/slave system. 

 It is strongly recommended to use the nastran keyword "slaveout=yes" to print out 

analysis procedures from all processors. With "slaveout=yes", the f04, .f06, 

and .log files contain the outputs of master and slave processors.  

 

2.4.2 I/O Enhancement Consideration 
 
The performance of an NX Nastran parallel job is very much dependent on the CPU, 

memory system, and I/O system performance. A DMP job is extremely sensitive to I/O 

system performance, since each task independently accesses the I/O system. Especially, 

the performance of the disk subsystem that contains the permanent and SCRATCH 

DBSets can have a significant impact on NX Nastran performance. The impact is even 

greater if multiple tasks are using the same file system.  

 

The scratch directory can be on a global or local file system. Siemens PLM recommends 

that the "sdirectory" be local to each node, if possible. 

The following example illustrates how to run ‗example.dat‘ in parallel with four 

processors with "hosts", and "sdirectory" local to each node. 

 
 

  nastran example dmp=4 hosts=node1:node2:node3:node4  \                      

  scratch=yes sdirectory=/scr1:/scr2:/scr3:/scr4   
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Note that MIO may be used to reduce the overall run time by using some available 

computer memory for I/O buffering. The nastran keyword ‗mio_cachesize‘ is used to 

control such memory size. See the NX Nastran Installation and Operation Guide. 

 

2.4.3 Running DMP Jobs with Restart Option 
 

There are two steps to run jobs using the restart option: cold start and restart. The first 

step, called the cold start, generates the database that will be used in the second step. The 

restart step runs related jobs with the given database. Note that the first step can be run 

either in serial or DMP, while the restart step can be run only in serial. 

 

Here is an example where the cold start is a SOL 103 job running DMP on 2 processors, 

and restart is a SOL 103 example ‗exampler.dat‘ on node1. Assume that the 2 processors 

are named node1 and node2. 

 
Cold Start: 

 nastran example dmp=2 hosts=node1:node2 dbs=example                        

 

Restart:  

 nastran exampler dbs=example.t0 

 

 

Note that the database name in cold start is example. Since the cold start is a DMP run, 

the database saved on the master node (to be used for the restart) will be labeled as 

example.t0.  The database example.t1 from the slave node is not required for restart. 

Hence for restart jobs, the given database is example.t0. 

 

2.4.4 Other Considerations 
 

 Memory (memory) – additional memory usually benefits DCMP; the memory 

usage high water generally occurs in the partitioning module (GPARTN or 

GPARTNS) for large models. Over-allocation should be avoided in order to have 

better performance. Generally, allocated memory should be less than 80% of 

available physical memory (as a rule of thumb, 50% or less for best I/O 

performance on Linux systems). 

 Scratch (sscr) – Adequate scratch space should be provided. 

 SMP and MIO could affect the performance of a DMP job. 

 Restarts are supported for a SOL 103 cold start in DMP and serial 103 and 111 

restart.  

 Contact conditions can be included in SMP and RDMODES runs. See Recursive 

Domain Normal Modes Analysis (RDMODES).  

 Contact conditions cannot be included in GDMODES, FDMODES, or 

HDMODES runs. 
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Chapter 3 - Methods for Linear Static Analysis  

 

3.1 Geometric Domain Static Analysis (GDSTAT)  
 

  

nastran example dmp=p 

 

 

The GDSTAT provides an efficient parallel solution for the linear static analysis of large 

models. The static solution is performed on the l-set. The l-set is identical to the a-set if 

there is no rigid body support (r-set). The mathematical expression for the static 

equilibrium of the finite element model can be expressed as: 

 

llll PuK   

 

where llK  is the global stiffness matrix, lP  is the load, and lu  is the displacement.  

 

The finite element model in the GDSTAT method is automatically partitioned into p 

domains, where p is the number of processors. Figure 3.1 shows each domain that 

contains the portion of the geometry (O1, O2, O3, or O4) plus the boundary t. Think of 

geometric decomposition as an automated super-element approach. After the domain is 

partitioned, each processor performs the linear static analysis only on its local domain 

with boundary. GDSTAT allows a problem that is not possible to solve on one processor 

to be solved in the DMP environment by reducing a significant amount of disk space and 

memory.  

 
 
 

O1 O2

O4O3

t

t
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Figure 3.1 Partitioning a finite element model for geometry domain static analysis 

(GDSTAT) 

 

 

In terms of partitioning, GDSTAT is available with both the GPARTN module and the 

SEQP module. The GPARTN module is chosen by default with gpart=1 (the default 

value). The module SEQP is activated by setting gpart=0. Note that the GPARTN-based 

GDSTAT does not handle rigid body support (r-set). To avoid rigid body support, 

constraints should be added using SPC rather than SUPORT cards.  

 

The following example applies to the GPARTN module only. An example for the SEQP 

module will be given in the appendix. 

 
Example: 
  
nastran example dmp=4 

 

The static analysis is performed for a finite element model that has 2635 grid points for 

200 CHEXA elements and 1210 CTETRA elements. GDSTAT is implemented in a DMP 

run. The module GPARTN partitioned the global finite element model into four sub-

domains and a boundary. The following information in the .f06 describes the detailed 

statistics of partitioning for the 1st subdomain. 
 
 

 

     GLOBAL NUMBER OF SHARED ROWS           :        681 

 

     LOCAL NUMBER OF SHARED ROWS            :        342 

 

     LOCAL NUMBER OF SHARED EXCLUSIVE ROWS  :        182 

 

     DESIRED SHARED EXCL. ROWS PER PROCESSOR:        171     

 

 

Each processor performs static analysis with the corresponding local domain and the 

boundary, and the master processor collects the results that you requested through 

communications. These outputs are printed only on the master processor.  

 
 

                                             D I S P L A C E M E N T   V E C T O R 

 

 

      POINT ID.   TYPE          T1             T2             T3             R1             R2           R3 

 

           101      G      3.577434E-10   8.877456E-03  -6.229324E-09   0.0            0.0            0.0 

 

           102      G     -7.238482E-03   9.248573E-03  -2.078553E-03   0.0            0.0            0.0 

 

           103      G      7.267472E-03   1.094641E-02   1.412802E-03   0.0            0.0            0.0 

 

           104      G      1.680989E-09   1.056371E-02  -6.529265E-09   0.0            0.0            0.0 

 

           105      G     -7.267469E-03   1.094641E-02  -1.412815E-03   0.0            0.0            0.0 

 

           106      G      7.455581E-03   1.201167E-02   8.828554E-04   0.0            0.0            0.0 

 

           107      G      6.009865E-10   1.160408E-02  -6.159031E-09   0.0            0.0            0.0 

 

           108      G     -7.455579E-03   1.201167E-02  -8.828678E-04   0.0            0.0            0.0 
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           109      G      7.623844E-03   1.262617E-02   4.984383E-04   0.0            0.0            0.0 

 

 

It is strongly recommended to use the nastran keyword "slaveout=yes" to print out 

analysis procedures from all processors. With "slaveout=yes", the f04, .f06, and .log files 

contain the outputs of master and slave processors in the following format.  
 

 

                                                                            




master processor 

                             * * * END OF JOB * * *  

 

**************** 

  S L A V E   1 

 ****************                                                     

                                                                                                                      




 slave 1 processor 

                             * * * END OF JOB * * * 

  

 **************** 

  S L A V E   2 

 **************** 

                                                                                                                     




 slave 2 processor 

                             * * * END OF JOB * * * 

  

 **************** 

  S L A V E   3 

 **************** 

                                                                                                                    




 slave 3 processor 

                             * * * END OF JOB * * * 

  

 

 

 

3.2 Load Domain Static Analysis (LDSTAT)  
 

 

nastran example dmp=p DSTAT=1 
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LDSTAT is useful when there are a large number of load cases in the linear static 

analysis problem llll PuK  . Instead of partitioning the finite element model, the load 

matrix lP  is partitioned among the processors as evenly as possible, and the linear 

solution is calculated within each of the respective processors for its own load cases.  The 

mathematical expression for the linear static analysis can be expressed as: 

 

kkll PuK  ,         pk ,,1  

 

where p is the number of processors. Once all processors finish their own linear solutions, 

the master processor collects and forms the overall solution as 

 

],,,[ 21 pl uuuu   

Note that each processor contains the full model, so that finite element model partitioning 

is not required. LDSTAT is applied to a large number of loads with the same boundary 

condition, i.e. only one stiffness matrix llK  is solved in LDSTAT.  

 
Example: 
  
nastran example dmp=4 dstat=1 

 

For a model with 500 subcases, 125 subcases are assigned to each processor when four 

processors are available. Without partitioning into domains, each processor performs the 

static analysis with the partitioned load cases. The outputs are printed only on the master 

processor after the master processor collects the requested output results from the slaves 

 

 
                                                                                                 SUBCASE 

101 

 

                                       D I S P L A C E M E N T   V E C T O R 

  

 POINT ID.   TYPE          T1             T2             T3             R1             R2             R3 

  151000      G      3.392543E-07   1.089757E-21   1.783046E-08    .0           -1.204824E-07  -3.644054E-2 

  151010      G      3.392543E-07   1.426177E-21  -1.783046E-08    .0            1.204824E-07  -1.336866E-2 

 

 

                                                                                                 SUBCASE 

102 

 

                                       D I S P L A C E M E N T   V E C T O R 

 POINT ID.   TYPE          T1             T2             T3             R1             R2             R3 

  150205      G     -6.509690E-07  -2.062356E-07   8.779039E-22    .0           -1.718401E-21  -1.224331E-

07 

150206      G     -5.072370E-07  -1.837194E-07  -4.060963E-08    .0            1.252286E-07   2.982923E-08 

 

 

 

 

                                                                                                                                                                                    

 

 

 

                                                                                                 SUBCASE 

500 
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                                       D I S P L A C E M E N T   V E C T O R 

 POINT ID.   TYPE          T1             T2             T3             R1             R2             R3 

  150205      G     -1.303690E-06  -6.062316E-08   9.779011E-20    .0           -3.418412E-22  -8.223322E-

06 

150206      G     -2.172310E-06  -1.937191E-06  -3.060233E-05    .0            4.652283E-08   6.975915E-06 
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3.3 Recommendations for the Method Selection 
 

SOL 101 has two DMP methods for static analysis.  It is recommended to use 

GDSTAT if you have a very large model. LDSTAT is useful when there are large 

numbers of load cases and a relatively small model. 

 

The selection between GDSTAT and LDSTAT depends on the DSTAT keyword. The 

method selection is described in Figure 3.2. The default value of DSTAT is 0. 

 

 

FINITE ELEMENT MODEL

DSTAT=1

GDSTAT LDSTAT

Yes

No (default)

SOL 101

 
 

Figure 3.2     DMP Linear Static Analysis (SOL 101)  
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Chapter 4 - Methods for Normal Modes Analysis 

 

 

4.1 Geometric Domain Normal Modes Analysis (GDMODES)  
 

 

nastran example dmp=p 

 

GDMODES is executed by automatically subdividing the geometry obtained from the 

finite element model. Such a subdivision of a finite element model is shown in Figure 4.1. 

Here the o partition refers to the interior of the domains and the t partition is the common 

boundary shared by the domains.  

 

The geometric domain decomposition is mathematically represented with the following 

reordering for the p partitioned domains. 
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This partitioned eigenvalue problem may be solved by a special formulation of the 

Lanczos method. Once each processor contains the portion of the local domain with 

boundary, each processor computes its part of the global eigensolution and exchanges 

boundary components with other processors.  

 

 Table 4-1 shows the eigensolution obtained from each processor, in which the global 

eigensolutions are obtained by merging all distributed eigensolutions. 

 

Notes:  

 The formulation yields a computationally exact solution. The efficiency depends 

on the relative size of the boundaries with respect to the interiors.  

 The geometric domain decomposition is important to reduce the very large 

problem sizes, but it does not affect the frequency spectrum. 

 It is important to use the EIGRL card, not EIGR. In addition, the number of 

processors p should be greater than 1. The value of the keyword "dmp" must be 

an integer greater than or equal to 2, and a power of 2.  For example, 2, 4, 8, 16, 

etc. are valid. 
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O1 O2

O4O3

t

t

frequency range 

[   fmin                                                                     fmax   ]

 
Figure 4.1. Geometry domain partitioning for the normal mode analysis of a finite 

element model 

 

 

 Table 4-1 The distribution of  eigensolution ( , ) with GDMODES parallel run, where 
Tp},, ,{ 21   . 

 

Geometry 

domain 

partition 1 ),( 1   

    

partition  i 
 

),(  i
 

    

partition  p ),(  p
 

 

In terms of partitioning, GDMODES uses GPARTN by default (see appendix). The 

module GPARTN performs both degree of freedom-based and grid-based partitioning, in 

which p domains are created by an automatic partitioner from the connectivity graph of 

the model. PARAM OLDSEQ can be used to specify the desired ordering method.  
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OLDSEQ Description 

10 Metis with super-nodal and grid compressions 

11 
MLV with super-nodal and grid compressions 

(default) 

110 Metis with super-nodal compression 

111 MLV with super-nodal compression 

210 Metis with grid compression 

211 MLV with grid compression 

 

Notes: 
1. If both super-nodal and grid compressions are selected (OLDSEQ=10 or 11), then 

the GPARTN returns the coloring with smallest boundary.  

2. The default OLDSEQ value is 11. System (294) = 1 prints additional diagnostic 

information to the f06 file. 

3. Note that in some cases, grid compression produces much smaller boundary size 

than supernodal compression. As a result, the eigensolver (READ module) in 

GDMODES can have a large run time difference. 

 

Example: 
  
nastran example dmp=4  

 

A finite element plate model with 110 grid points and 100 CQUAD4 elements is 

executed in parallel with SOL 103 analysis. The total number of degrees of freedom is 

660. Four processors are used for the DMP run.  

 

The partitioning statistics from the GPARTN module are shown as: 
 

 
   RESULT OF SESET PARTITIONS: 

 

   TOTAL PARTITIONS  TOTAL GRIDS TOTAL BDY. GRIDS  MOVES 

               4          496             138       0 

   PARTITION   INTERIOR GRIDS    BDY. GRIDS  FRACTION 

         1            88              74     .8409 

         2            91              74     .8132 

         3            88              74     .8409 

         4            91              74     .8132 

 

  GEOMETRY DOMAIN PARALLEL LANCZOS METHOD 

 

 

Note that the output is related to the degrees of freedom (DOF), not grid points, even 

though the output uses GRIDS terminology instead of DOF. This example has 88 internal 

degrees of freedom and 74 boundary degrees of freedom for domain 1.  There are 91 and 
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74, 88 and 74, 91 and 74 degrees of freedom for the interior and boundary of domain 2, 3, 

and 4, respectively. 

 

The .f06 file of the master processor prints the summary of eigenvalue analysis.  
 

 
EIGENVALUES FOUND IN DOMAIN # 1 

 

 

      E I G E N V A L U E  A N A L Y S I S   S U M M A R Y   (READ MODULE) 

 

 

                BLOCK SIZE USED ......................    7 

 

                NUMBER OF DECOMPOSITIONS .............    3 

 

                NUMBER OF ROOTS FOUND ................  208 

 

                NUMBER OF SOLVES REQUIRED ............   41 

 

$------------------------------------------------------------------------------- 

$          The list of eigensolutions collected from the slave processor 

$------------------------------------------------------------------------------- 

 

                          

                        R E A L   E I G E N V A L U E S 

   MODE    EXTRACTION    EIGENVALUE    RADIANS     CYCLES   GENERALIZED  NERALIZED 

    NO.       ORDER                                           MASS       STIFFNESS           
      1           1           1.696349E+07     4.118676E+03    6.555076E+02   1.000000E+00    1.696349E+07 

      2           2           1.848026E+07     4.298867E+03    6.841859E+02   1.000000E+00    1.848026E+07 

  

      207       207           3.073819E+09     5.544203E+04    8.823873E+03   1.000000E+00    3.073819E+09 

      208       208           3.123167E+09     5.588530E+04    8.894422E+03   1.000000E+00    3.123167E+09 

 

 

 

However, with the gpart=1 option, the master processor does not broadcast the collected 

eigenvalues and/or eigenvectors to the slave processors, so no eigensolutions are printed 

in the.f06 file except the eigenvalue summary. 

 

 

  
**************** 

  S L A V E   1 

 **************** 

  
208  EIGENVALUES FOUND IN DOMAIN # 2 

 

                  

         E I G E N V A L U E  A N A L Y S I S   S U M M A R Y   (READ MODULE)   

 

  

 

                    BLOCK SIZE USED ......................    7 

  

                    NUMBER OF DECOMPOSITIONS .............    3 

  

                    NUMBER OF ROOTS FOUND ................  208 

  

                    NUMBER OF SOLVES REQUIRED ............   41 
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**************** 

  S L A V E   2 

**************** 

  
208  EIGENVALUES FOUND IN DOMAIN # 3 

 

         E I G E N V A L U E  A N A L Y S I S   S U M M A R Y   (READ MODULE) 

 

 

                   BLOCK SIZE USED ......................    7 

 

                   NUMBER OF DECOMPOSITIONS .............    3 

 

                   NUMBER OF ROOTS FOUND ................  208 

 

                   NUMBER OF SOLVES REQUIRED ............   41 

 

 

 **************** 

  S L A V E   3 

 **************** 

  
208  EIGENVALUES FOUND IN DOMAIN # 4 

 

         

        E I G E N V A L U E  A N A L Y S I S   S U M M A R Y   (READ MODULE) 

 

                  BLOCK SIZE USED ......................    7 

 

                  NUMBER OF DECOMPOSITIONS .............    3 

 

                  NUMBER OF ROOTS FOUND ................  208 

 

                  NUMBER OF SOLVES REQUIRED ............   41 
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4.2 Frequency Domain Normal Modes Analysis (FDMODES)  
 

nastran example dmp=p numseg=p 

 

To analyze the dynamic behavior of structures, modal solution techniques are commonly 

used.  The essence of the modal solution is efficient calculation of the mechanical 

system's free, undamped vibration. That is the eigenvalue analysis problem of: 

 

0)(  aaaaa MK   

Here the eigenvalue   represents a natural frequency, and the eigenvector   is a free 

vibration shape of the finite element model. The a  subscript refers to the a-set, which is 

the analysis partition of the finite element model. This is one of the most time consuming 

computations of large scale global analyses in the automobile and the aerospace 

industries.  

 

The frequency range of interest specified on the EIGRL entry is automatically 

decomposed into multiple frequency segments—one for each processor. Table 4-2 shows 

the frequency segment of each processor when s processors are available. 

 
Table 4-2 Partition of frequency for FDMODES parallel run 

 

Processor 
Frequency 

segment 

Lower 

frequency 

Upper 

frequency 

1 1 f0 f1 

2 2 f1 f2 

      

j j fj-1 fj 

      

s s fs-1 fs 

 
Note that each processor contains the full model in the FDMODES computation, so that 

the mode shapes in the individual frequency segments are independent of each other. 

Figure 4.2 represents the schematic diagram: each processor solves the full model within 

its frequency segment. The only communication needed is when gathering the results for 

the master processor. Table 4-3 shows the eigensolutions obtained from each processor. 

 

Notes: 

 Although FDMODES reduces the frequency range for a process by decomposing 

the frequency domain, it is still ineffective with respect to large problem size. 

 Each processor contains the full model, so that finite element model partitioning 

is not required. For best load balance, V1 and V2 of EIGRL should be specified 

and ND omitted.  

 



35 35 

 
frequency range segment

[ f1    f2 ] [  fs-2   fs-1 ] [ fs-1     fs ]. . . .[ f0    f1 ]

0)(  aaaaa MK 

 
 
Figure 4.2 Frequency domain partitioning for the normal mode analysis of a whole finite 

element model 

 
 

       Table 4-3. The distribution of  eigensolution ( , ), },, ,{ 21 s    

       and },,,{ 21 sdiag   , with FDMODES parallel run 

 

Frequency domain 

Segment 1 … Segment j … Segment s 

),( 11   … ),( jj   … ),( ss   

 
 
 

Example: 
  
nastran example dmp=4 numseq=4 

 

This is the example used in GDMODES. FDMODES does not require domain 

decomposition. The .f06 file shows the number of eigenvalues calculated in each 
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processor. Each processor computes 94, 61, 26, and 27 eigenvalues, respectively. The 

total number of modes found is 208.  

 

The master processor collects the eigenvalues and eigenvectors of slave processors, and 

prints out the merged eigensolutions.  

 

 

 
       FREQUENCY DOMAIN PARALLEL LANCZOS METHOD 

 

 94  EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 1 

 

 61  EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 2                         

 

 26  EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 3 

 

 27  EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 4 

 

 

   E I G E N V A L U E  A N A L Y S I S   S U M M A R Y   (READ MODULE) 

 

 

              BLOCK SIZE USED ......................    7 

 

              NUMBER OF DECOMPOSITIONS .............    5 

 

              NUMBER OF ROOTS FOUND ................  208 

 

              NUMBER OF SOLVES REQUIRED ............   45 

 

 

$------------------------------------------------------------------------------- 

$          The list of all eigenvalues collected from the slave processor 

$------------------------------------------------------------------------------- 

 

                                               

                             R E A L   E I G E N V A L U E S 

MODE    EXTRACTION      EIGENVALUE      RADIANS     CYCLES      GENERALIZED     GENERALIZED 

 NO.       ORDER                                                   MASS          STIFFNESS                                                               

 1            1       1.696349E+07      4.118676E+03      6.555076E+02      1.000000E+00     1.696349E+07 

 2            2       1.848026E+07      4.298867E+03      6.841859E+02      1.000000E+00     1.848026E+07 

  

207          207      3.073819E+09      5.544203E+04      8.823873E+03      1.000000E+00     3.073819E+09 

208          208      3.123167E+09      5.588530E+04      8.894422E+03      1.000000E+00     3.123167E+09 

 

 

  

With "slaveout=yes", you can see the information about the eigenvalue problem on each 

slave processor. It also shows the number of eigenvalues found on the slave processors. 
 

 
 

**************** 

  S L A V E   1 

 ****************                                                     

 

  FREQUENCY DOMAIN PARALLEL LANCZOS METHOD 

                                   
EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 2 

 

 

**************** 

  S L A V E   2 

 ****************                                                     
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  FREQUENCY DOMAIN PARALLEL LANCZOS METHOD 

                                  
EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 3 

 

 

 

**************** 

  S L A V E   3 

 ****************                                                     

 

  FREQUENCY DOMAIN PARALLEL LANCZOS METHOD 

                                   
EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 4 
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4.3 Hierarchic Domain Normal Modes Analysis (HDMODES)  
 

nastran example dmp=p nclust=c 

 

The HDMODES scheme simultaneously combines the two previously presented methods, 

GDMODES and FDMODES. With this approach, a subset of processors or a cluster 

solves the eigenvalue problem for the local geometry while communicating with other 

subsets of processors or other clusters in order to consider the other frequency ranges. 

 

The HDMODES computation is based on the processor assignment shown in Table 4-4, 

where we have p * s processors available. For each frequency segment, p processors are 

used for GDMODES. In other words, s processors are used for FDMODES for each 

geometric portion.  For example, the ((j - 1) p+i)-th processor computes the eigenvalues 

of the j-th frequency segment j  and the i-th geometric partition of the corresponding 

eigenvectors i

j . The selection of the s and p value is problem dependent. 

 

Note that HDMODES solves the eigenvalue problem computationally exactly, just as the 

GDMODES and FDMODES methods do.  

 

Table 4-4 Hierarchic domain decomposition concept 

 

 

Frequency domain 

segment 

1 
… 

segment 

j 
… 

Segment 

s 

Geometry 

domain 

partition 

1 

1 

),( 1

1

1   
 

(j-1)*p+1 

),( 1

jj   
 

(s-1)*p+1 

),( 1

ss   

          

partition 

i 

i 

),( 11  i  
 

(j-1)*p+i 

),( j

i

j   
 

(s-1)*p+i 

),( s

j

s   

          

partition 

p 

p 

),( 11  p  
 

j*p 

),( j

p

j   
 

s*p 

),( s

p

s   

 

 

The preferred hardware environment for HDMODES is a cluster of multiprocessor 

workstations that is usually tied together by either a hardware switch or a network, as 

illustrated in Fig. 4.3.  

 

Assuming m workstations with n processors each, based on the scheme of Table 4-4, the 

tasks of each column (the geometric partitions of a particular frequency segment) reside 
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on one workstation. The tasks of each row (the various frequency segments of a 

particular geometry partition) are spread across the cluster, as shown in Fig. 4.4. 
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Figure 4.3. A scheme of cluster of multi-processor workstations 
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Figure 4.4. Mapping the hierarchic domain decomposition with n geometric domain 

partition and m frequency partition (Pi: geometric domain partition and Sj: frequency 

segment) to a cluster of multi-processor workstations. 

 
The HDMODES solution sequence combines two existing techniques of DMP 

processing: GDMODES and FDMODES. While the geometry partitions are solved 

within a set of processors called a cluster, frequency segments are also solved in parallel 

across multiple clusters. The advantage is a faster eigenvalue problem solution time for 

very large models. 

 

The keyword "dmp" defines the number of processors p, and the keyword "nclust" 

defines the number of clusters c. The number of geometry partitioning g in a cluster does 

not have to be defined explicitly. Note that   1<c<p and p=c*g.  The number of clusters c 

should be properly selected so that g is an integer greater than or equal to 2, and a power 

of 2.  For example, 2, 4, 8, 16, etc. are valid. 
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Example: 
  
nastran example dmp=4 nclust=2 

 

In the example below, HDMODES is executed with ‗dmp=4‘ and ‗nclust=2‘ keywords. 

Among the four processors, the first processor is the master processor, and the other 

processors are the slave processors. 

 

Note that HDMODES defines the local master and local slave processors inside of each 

cluster. 

 

The partitioning statistics with GPARTN describe the number of degrees of freedom for 

each cluster. In the example below, the first cluster has 223 degrees of freedom in the 

interior of domain 1, and 50 degrees of freedom in the boundary. The second cluster has 

the same local size as the first one. 
 

 
TOTAL PARTITIONS  TOTAL GRIDS TOTAL BDY. GRIDS  MOVES 

               2          496              50       0 

 PARTITION   INTERIOR GRIDS    BDY. GRIDS  FRACTION 

         1              223            50     .2242 

         2              223            50     .2242 

 

  HIERARCHIC DOMAIN PARALLEL LANCZOS METHOD 

 

 

 

In the .f06 file, the master processor prints the summary of the eigenvalue analysis and 

the list of eigenvalues. Be careful when interpreting the "number of roots found" 

information in the summary.  This information concerns the cluster in which the master is 

included. For example, in the model below, interpret the "number of roots found" 

message as indicating that cluster 1 found 155 eigenvalues. The master processor lists all 

208 eigenvalues that are merged from all of the local master processors. You should 

determine the total number of modes from the list of eigenvalues. 

 

 
 
 

VALUES FOUND IN DOMAIN # 1 

 

 

        E I G E N V A L U E  A N A L Y S I S   S U M M A R Y   (READ MODULE) 

 

 

 

                  BLOCK SIZE USED ......................    7 

 

                  NUMBER OF DECOMPOSITIONS .............    3 

 

                  NUMBER OF ROOTS FOUND ................  155 

 

                  NUMBER OF SOLVES REQUIRED ............   41 

 

 

$------------------------------------------------------------------------------- 

$          The list of all eigensolutions collected from the slave processor 

$------------------------------------------------------------------------------- 
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                        R E A L   E I G E N V A L U E S 

   MODE    EXTRACTION    EIGENVALUE    RADIANS     CYCLES   GENERALIZED  NERALIZED 

    NO.       ORDER                                           MASS       STIFFNESS                 

    1         1      1.696349E+07  4.118676E+03 6.555076E+02  1.000000E+00        1.696349E+07 

    2         2      1.848026E+07  4.298867E+03 6.841859E+02  1.000000E+00        1.848026E+07 

  

    207     207      3.073819E+09  5.544203E+04 8.823873E+03  1.000000E+00        3.073819E+09 

    208     208      3.123167E+09  5.588530E+04 8.894422E+03  1.000000E+00        3.123167E+09 

 

 

Again, be cautious when interpreting the output from slave processors. The summary of 

eigenvalue analysis for slave processors is confined to the corresponding processor. In 

the list of eigenvalues on the slave processors, the mode number does not represent the 

global mode number. 

 

With gpart=1, the master process does not broadcast the collected output to slave 

processors, so no eigenvalues are listed in the information from the slave processors. 
 

 

  

**************** 

  S L A V E   1 

 **************** 

  

53  EIGENVALUES FOUND IN DOMAIN # 1 

 

        E I G E N V A L U E  A N A L Y S I S   S U M M A R Y   (READ MODULE)   

 

  

  

                  BLOCK SIZE USED ......................    7 

  

                  NUMBER OF DECOMPOSITIONS .............    2 

  

                  NUMBER OF ROOTS FOUND ................    53 

  

                  NUMBER OF SOLVES REQUIRED ............   40 

 

 

**************** 

  S L A V E   2 

 **************** 

  

155  EIGENVALUES FOUND IN DOMAIN # 2 

 

          E I G E N V A L U E  A N A L Y S I S   S U M M A R Y   (READ MODULE) 

 

 

 

                    BLOCK SIZE USED ......................    7 

 

                    NUMBER OF DECOMPOSITIONS .............    3 

 

                    NUMBER OF ROOTS FOUND ................  155 

               

                    NUMBER OF SOLVES REQUIRED ............   41 

 

 

**************** 

  S L A V E   3 

 **************** 

  

53  EIGENVALUES FOUND IN DOMAIN # 2 
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          E I G E N V A L U E  A N A L Y S I S   S U M M A R Y   (READ MODULE) 

 

 

                    BLOCK SIZE USED ......................    7 

 

                    NUMBER OF DECOMPOSITIONS .............    2 

 

                    NUMBER OF ROOTS FOUND ................   53 

 

                    NUMBER OF SOLVES REQUIRED ............   40 
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4.4 Recursive Domain Normal Modes Analysis (RDMODES)  
 

nastran example dmp=p nrec=m 

 

 

The Recursive Domain Normal Modes (RDMODES) analysis extends the DMP parallel 

capability via substructuring technology for very large scale normal nodes analysis.  It is 

currently available in SOL 103 and 111.  It also supports modal analysis in superelement 

jobs. The RDMODES approach generally computes fewer modes with lower accuracy 

compared to standard Lanczos approaches in order to gain performance. 

 

RDMODES begins with partitioning the eigenvalue problem MxKx   into nrec 

external partitions. The following represents a reordering for the nrec=4 with total 7 

(=2*nrec-1) components for matrix K . 

 































1

1,33

1,73,77

1,63,66

1,22

1,52,55

1,42,44

******

**

**

oo

otoo

ototoo

ototoo

otoo

ototoo

ototoo

K

KK

KKK

KKK

KK

KKK

KKK

K  

 

(here the asterisks denote the transpose of the corresponding blocks in the upper 

triangular portion, as the matrices are symmetric). Matrix M  has the same structure. 

 

This partitioned eigenvalue problem may be solved by a special formulation of the sub-

structuring method. All components are distributed evenly into processors. Each interior 

eigensolution corresponding to its external partition is performed in serial, independent of 

the others. If the keyword nclust is specified, the processors are divided into n clusters as 

in HDMODES. In this case, each interior eigensolution is performed in GDMODES 

fashion in its own cluster.  

 

Contact conditions can be included in an RDMODES run. The input file should include a 

static subcase with the contact conditions, and a consecutive normal modes subcase 

which includes the STATSUB case control command. When you run with RDMODES 

and contact conditions combined, an automatic static condensation is performed by 

default during the static portion of the solution such that the contact iterations occur in a 

reduced representation. As a result, performance gains occur in both the static and the 

RDMODES portions. To run RDMODES without the static condensation, include the 

parameter setting PARAM,RDCNT,NO. 

The following is not supported when you combine RDMODES and contact conditions: 

 Inertia relief, which is defined with the INREL parameter. 
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 The constraint mode method of enforced motion. The absolute method can be 

selected instead with the system cell ENFMOTN.  

 

 

RDMODES Sparse Eigenvector Recovery 

 

In many instances, a user is only interested in the solutions at a few key locations instead 

of all degrees of freedom, especially for large problems with millions of degrees of 

freedom. In such cases, the sparse eigenvector recovery method can significantly reduce 

the overall computation time and storage resource.  

 

In RDMODES, the sparse eigenvector recovery option will be determined automatically 

based on the user‘s output request. If full eigenvectors are desired with only few output 

requests, a user can deactivate sparse data recovery with PARAM,RDSPARSE,NO in the 

BULK data.   

 

RDMODES with the rdsparse option supports residual vectors (PARAM, RESVEC), 

panel participation factors (PARAM, PANELMP), absolute displacement enforced 

motion (sys422=1), and modal contributions.  Note that PARAM,RESVINER is not 

supported. 

 

Note that the accelerated residual vector calculation with RDMODES takes advantage of 

the rdsparse option, and is more efficient than the original one in terms of computational 

time and I/O usage. The residual vectors with the accelerated calculation may differ 

slightly from the original, which cannot be used in conjunction with rdsparse. If 

necessary, the original resvec method may be requested by specifying PARAM, 

RDRESVEC, NO in the bulk data. In this case, the rdsparse option will be disabled 

automatically, which is likely to result in dramatically reduced performance. 

 

Running RDMODES  
 

RDMODES is activated by the Nastran keyword nrec. It can run in serial, SMP, and 

DMP with optional keywords nclust=c and rdscale. 

 

 
  

Serial Nastran example nrec=n 

SMP Nastran example parallel=p nrec=n 

DMP Nastran example dmp=p nrec=n 

 

 

Notes: 

 

1.  p is an integer equal to a power of 2. It can be 1 (i.e. p=1). 
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2. The keyword nrec must be a positive number. The efficiency of the method requires 

carefully choosing m, which should not be too small or too large. A nrec value with 

power of 2 is required for better performance. For a large problem (>1M DOFs) nrec 

equal to 128 or 256 would be a good choice.  

 

Number of grids NREC value 

1 ~ 5,000 4 

5,000 ~ 40,000 8 

15,000 ~ 80,000 16 

30,000 ~ 150,000 32 

60,000 ~ 300,000 64 

120,000 ~ 600,000 128 

250,000 ~1,200,000 256 

> 1,200,000 512 

 

This table does not suggest a unique nrec value for a given model. The best choice will 

depend on the model and on the user‘s machine configuration. 

 

3. If the keyword nclust is used, c should be properly selected so that p/c is an integer 

greater than or equal to 2 and a power of 2. 

 

4. The optional keyword rdscale is used to increase the accuracy of the solution. In most 

practical circumstances values in the range of 1.0 to 5.0 are acceptable. The trade off is 

that the computational time increases with higher values of rdscale. The default value is 

2.5. 

 

5. PARAM,OLDSEQ in the input file can be used to specify the method of creating the 

substructures. OLDSEQ is an existing parameter for geometric domain partitioning. 

 

OLDSEQ Description 

10 Metis with super-nodal and grid compressions 

11 
MLV with super-nodal and grid compressions 

(default) 

110 Metis with super-nodal compression 

111 MLV with super-nodal compression 

210 Metis with grid compression 

211 MLV with grid compression 

 

Example: 
  
nastran example dmp=4 nrec=8 
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In the example below, RDMODES is executed with ‗dmp=4‘ and ‗nrec=8‘ keywords. 

Among the four processors, the first processor is the master processor, and the other 

processors are the slave processors. 

 

After the special formulation of the substructuring method, RDMODES calls 4-way 

FDMODES for the reduced eigenvalue problem to obtain the global eigensolution. The 

master processor collects the eigenvalues and eigenvectors of slave processors, and prints 

out the merged eigensolution. 

 
FREQUENCY DOMAIN PARALLEL LANCZOS METHOD 

 
          94  EIGENVALUES FOUND IN DISTRIBUTED SEGMENT #           1 

 

          61  EIGENVALUES FOUND IN DISTRIBUTED SEGMENT #           2 

 

          26  EIGENVALUES FOUND IN DISTRIBUTED SEGMENT #           3 

 

          27  EIGENVALUES FOUND IN DISTRIBUTED SEGMENT #           4 

 

                          E I G E N V A L U E  A N A L Y S I S   S U M M A R Y   (READ MODULE) 

 

                                     BLOCK SIZE USED ......................    7 

 

                                     NUMBER OF DECOMPOSITIONS .............    4 

 

                                     NUMBER OF ROOTS FOUND ................  208 

 

                                     NUMBER OF SOLVES REQUIRED ............   43 

 

                                              R E A L   E I G E N V A L U E S 

                                         (BEFORE AUGMENTATION OF RESIDUAL VECTORS) 

   MODE    EXTRACTION      EIGENVALUE            RADIANS             CYCLES            GENERALIZED         GENERALIZED 

    NO.       ORDER                                                                       MASS              STIFFNESS 

        1         1        1.696475E+07        4.118829E+03        6.555319E+02        1.000000E+00        1.696475E+07 

        2         2        1.848272E+07        4.299153E+03        6.842314E+02        1.000000E+00        1.848272E+07 

     
 

      207       207        3.087263E+09        5.556315E+04        8.843149E+03        1.000000E+00        3.087263E+09 

      208       208        3.125765E+09        5.590854E+04        8.898121E+03        1.000000E+00        3.125765E+09 

 

With "slaveout=yes", you can see the information about the eigenvalue problem on each 

slave processor. It also shows the number of eigenvalues found on the slave processors. 

 
 

 

****************  

  S L A V E   1 

**************** 

   FREQUENCY DOMAIN PARALLEL LANCZOS METHOD 

     
          61  EIGENVALUES FOUND IN DISTRIBUTED SEGMENT #           2 

 

****************  

  S L A V E   2 

**************** 

   FREQUENCY DOMAIN PARALLEL LANCZOS METHOD 

     
          26  EIGENVALUES FOUND IN DISTRIBUTED SEGMENT #           3 

 

****************  

  S L A V E   3 

**************** 

   FREQUENCY DOMAIN PARALLEL LANCZOS METHOD 

     
          27  EIGENVALUES FOUND IN DISTRIBUTED SEGMENT #           4 
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48 48 

4.5 Recommendations for Method Selection 
 

It is recommended that you use FDMODES if you have a small model and a large 

frequency range of interest.  If you have a very large model and insufficient disk space, 

use either GDMODES or HDMODES.  Especially, HDMODES is recommended for a 

cluster of multiprocessor workstations. RDMODES is recommended for large frequency 

range, large models, and best performance when reduced accuracy is acceptable. 

 

 

Fig. 4.5 illustrates the general guide for selecting a suitable DMP computational method 

for normal modes analysis. 

 

     

Frequency 

range

FE model 

size

FDMODES

GDMODES

RDMODES

HDMODES

 
 

Figure 4.5 General guideline for the selection of DMP computational methods 

 

 

The selection of DMP computational methods introduced in this chapter is made 

according to the keywords, NREC, NUMSEG, and NCLUST. The method selection is 

described in Figure 4.6. Note the default value of NREC, NUMSEG and NCLUST is 0.  
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FINITE ELEMENT 

MODEL

NREC>0 RDMODES

NUMSEG>0 FDMODES

NCLUST>0 HDMODES

GDMODES

Yes

Yes

Yes

No

No

No

SOL 103

 
 

Figure 4.6   DMP normal mode analysis (SOL 103) 
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Chapter 5 - Methods for Response Analysis and 

Optimization 

 

5.1 Frequency Domain Frequency Response Analysis 
(FDFREQR)  
 

 

nastran example dmp=p 

 

 

The excitation frequencies, as specified on the FREQi entries, are split among the 

processors as evenly as possible, and the responses for the partitioned excitation 

frequencies are then calculated within each of the respective processors as shown in. 

Fig.5.1. The whole range of excitation frequencies is partitioned into many sub-intervals 

such as [Fi Fi+1].  Note that each processor contains the full model.  

 

excitation frequency range segment

[ F1   F2] [ Fs-2   Fs-1] [ Fs-1   Fs]. . . .[ F0   F1]

(Direct or Modal)

Frequency Response Problem

 
 

Figure 5.1 Excitation frequency domain partitioning for (direct or modal) frequency 

response analysis of a whole finite element model 

 

 

For SOL 108, if there are many forcing frequencies, FDFREQR should be used.  In 

FDFREQR, the resource requirements such as disk space and memory are as large as the 

resource requirements of a serial run. 
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Note that, for SOL 111, running a job with GDMODES, FDMODES, or HDMODES 

automatically performs FDFREQR without requesting it explicitly. Performing 

FDFREQR partitions the excitation frequencies among the number of processors defined 

with the "dmp" keyword. 

 

Example: SOL 108 
  
nastran example dmp=4 

 

For a finite element plate model that has 110 grid points and 100 CQUAD4 elements, 

SOL 108 analysis is performed in parallel with the FDFREQR method. The total number 

of excitation frequencies is 89 in the following entry of FREQ1. 
 

 
FREQ1   10      3.0     3.0     88 

 

 

The .f06 file describes the partitioned frequency range. In the example below, processors 

1, 2, 3, and 4 execute 23, 22, 22, and 22 excitation frequency ranges. Once each 

processor finishes its own analysis, the master processor collects the results and prints the 

output.  

 
 

 

  
     DISTRIBUTED MEMORY PARALLEL FREQUENCY RESPONSE 

     NUMBER OF FREQUENCY DOMAINS  =       4 

     NUMBER OF FREQUENCIES ON LOCAL PROCESSOR (ID=   1) =       23 

  
$------------------------------------------------------------------------------ 

$          The list of all responses collected from the slave processor 

$------------------------------------------------------------------------------ 

 

R E S P O N S E   O U T P U T 

 

**************** 

  S L A V E   1 

 **************** 

  
     DISTRIBUTED MEMORY PARALLEL FREQUENCY RESPONSE 

     NUMBER OF FREQUENCY DOMAINS  =       4     

     NUMBER OF FREQUENCIES ON LOCAL PROCESSOR (ID=   2) =       22 

  
**************** 

  S L A V E   2 

 **************** 

  
     DISTRIBUTED MEMORY PARALLEL FREQUENCY RESPONSE 

     NUMBER OF FREQUENCY DOMAINS  =       4 

     NUMBER OF FREQUENCIES ON LOCAL PROCESSOR (ID=   3) =       22 

  
**************** 
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  S L A V E   3 

 **************** 

  
     DISTRIBUTED MEMORY PARALLEL FREQUENCY RESPONSE 

     NUMBER OF FREQUENCY DOMAINS  =       4 

     NUMBER OF FREQUENCIES ON LOCAL PROCESSOR (ID=   4) =       22 
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5.2 DMODES + FDFREQR for SOL 111 
 
In SOL 111, the FDMODES, GDMODES, HDMODES, RDMODES methods will 

automatically continue to perform FDFREQR after the eigenvalue analysis is finished, so 

you do not need to request FDFREQR explicitly for the modal frequency response. 

Therefore, the parallel SOL 111 job can be run in exactly the same ways as the parallel 

SOL 103. The DMP tasks in SOL 111 are described in Figure 5.2. The method selection 

of DMP normal mode analysis is similar to that of SOL 103, which was introduced in 

Figure 4.6. 

 

 

FINITE ELEMENT 

MODEL

FDFREQR  

SOL 111 

DMP normal mode analysis

RDMODES / FDMODES / HDMODES /GDMODES

Depends on NREC, NUMSEG, NCLUST

 
 

Figure 5.2   DMP modal frequency response analysis (SOL 111) 

 
 
 

Example: SOL 111 (FDMODES + FDFRQR) 
  
nastran example dmp=4 

 
Each processor computes 94, 61, 26, and 27 eigenvalues, respectively, for the whole 

finite element model.  For the modal frequency response analysis, 19 excitation 

frequencies are split to 5, 5, 5, and 4, and distributed to each processor. 
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$------------------------------------------------------------------------------ 

$          The number of eigenvalues found at each processor 

$------------------------------------------------------------------------------ 

 

 94  EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 1 

 

 61  EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 2 

  

 26  EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 3 

 

 27  EIGENVALUES FOUND IN DISTRIBUTED SEGMENT # 4 

  
E I G E N V A L U E  A N A L Y S I S   S U M M A R Y   (READ MODULE) 

  
$------------------------------------------------------------------------------

$          The number of excitation frequencies partitioned for each processor 

$------------------------------------------------------------------------------ 

 

     PERFORMANCE SUMMARY TABLE FOR DISTRIBUTED MEMORY FREQUENCY RESPONSE 

     NUMBER OF FREQUENCY DOMAINS  =       4 

     NUMBER OF FREQUENCIES        =      19 

     PROCESSOR                    # FREQ.        CPU (SEC)      ELAPSED (SEC) 

       ---------                    -------        ---------      ------------- 

       1. ugs001                         5             1.57             2.22 

       2. ugs002                         5             1.87             2.22 

       3. ugs003                         5             1.75             2.22 

       4  ugs004                         4             1.49             2.20 

  
$------------------------------------------------------------------------------ 

$          The list of all responses collected from the slave processor 

$------------------------------------------------------------------------------ 

 

R E S P O N S E   O U T P U T 

 

  
**************** 

  S L A V E   1 

 **************** 

  
E I G E N V A L U E  A N A L Y S I S   S U M M A R Y   (READ MODULE) 

 

 

 

**************** 

  S L A V E   2 

 **************** 

  
E I G E N V A L U E  A N A L Y S I S   S U M M A R Y   (READ MODULE) 

 

**************** 

  S L A V E   3 

 **************** 

  
E I G E N V A L U E  A N A L Y S I S   S U M M A R Y   (READ MODULE) 
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5.3 DMODES + Serial transient calculation for SOL 112 
 
In the parallel SOL 112 run, once the eigenvalue analysis is performed in parallel, the 

modal transient response analysis is executed in serial. During the modal transient 

response analysis, all slave processors are idle.  The DMP task SOL112 is described in 

Figure 5.3. Note that transient response analysis (TRD1 module) does not benefit from 

DMP. The method selection of DMP normal mode analysis is similar to that of SOL 103, 

which is introduced in Figure 4.6. 

 

 

FINITE ELEMENT 

MODEL

Serial

transient  

calculation  

SOL 112

DMP normal mode analysis

RDMODES / FDMODES / HDMODES /GDMODES

Depends on NREC, NUMSEG, NCLUST

 
 

Figure 5.3 DMP modal transient response analysis (SOL 112) 

 

 

 

Example: SOL 112 (GDMODES + Serial transient calcuation) 
  
nastran example dmp=4 

 

The output of responses in the .f06 file is printed only on the master processor. 
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E I G E N V A L U E  A N A L Y S I S   S U M M A R Y   (READ MODULE) 

 

  
 

$----------------------------------------------------------------------------------

-$          Only the master processor run the transient responses analysis 

$----------------------------------------------------------------------------------

- 

 

 

R E S P O N S E   O U T P U T 

  
 

**************** 

  S L A V E   1 

 **************** 

  
E I G E N V A L U E  A N A L Y S I S   S U M M A R Y   (READ MODULE) 

 

  
**************** 

  S L A V E   2 

 **************** 

  
E I G E N V A L U E  A N A L Y S I S   S U M M A R Y   (READ MODULE) 

 

  
**************** 

  S L A V E   3 

 **************** 

  
E I G E N V A L U E  A N A L Y S I S   S U M M A R Y   (READ MODULE) 

 

  

 

 

 

 
5.4 DMODES + serial optimization process for SOL 200 
 

 In the optimization procedures, several different types of analyses may be involved. If 

any eigensolution is required, the eigenvalue analysis may be performed in parallel with 

the computational methods FDMODES, GDMODES, and HDMODES used as in SOL 

103. 

 

In each iteration of the optimization procedure, the optimization algorithm runs in serial 

on each processor except for the eigenvalue analysis. Whenever the eigenvalue analysis 

is performed in parallel, the collected and merged eigensolutions from the master 

processors are broadcast to all processors. This approach results in the same optimization 

results for every processor, because all processors proceed with the optimization using 

the same eigensolutions inside the optimization loop. The DMP task of optimization 



57 57 

procedure is described in Figure 5.4. The method selection of DMP normal mode 

analysis is similar to that of SOL 103, which is introduced in Figure 4.6. 

 

  

 

DMP normal mode analysis

RDMODES / FDMODES / HDMODES /GDMODES

Depends on NREC, GPART, NCLUST

ANALYSIS

OPTIMIZATION

IMPROVED 

DESIGN

INITIAL 

DESIGN

SOL 200

 
 

Figure 5.4   DMP design optimization (SOL 200) 

 

 

Example: SOL 200 (DMODES + Serial optimization process) 
  
nastran example dmp=4 (and/or nclust=2/numseq=4/nrec=n)  

 
 

The following .f06 is a typical output format in SOL 200 with DMP, in which all 

processors print the same output. 
 

 



58 58 

  
i-th  I T E R A T I O N 

  
$----------------------------------------------------------------------------------- 

$   run FDMODES, GDMODES, or HDMODES, and collect the local eigensolutions 

$   from the slave processors 

$----------------------------------------------------------------------------------- 

 

E I G E N V A L U E  A N A L Y S I S   S U M M A R Y   (READ MODULE) 

 

  
 

O P T I M I Z A T I O N   O U T P U T 

  
 

j-th  I T E R A T I O N 

  
**************** 

  S L A V E   1 

 **************** 

  
i-th  I T E R A T I O N 

  
$----------------------------------------------------------------------------------- 

$    run FDMODES, GDMODES, or HDMODES, and have the same eigensolutions 

$    as the master processor 

$----------------------------------------------------------------------------------- 

 

E I G E N V A L U E  A N A L Y S I S   S U M M A R Y   (READ MODULE) 

 

  
 

O P T I M I Z A T I O N   O U T P U T 

  
 

 

j-th  I T E R A T I O N 

  
**************** 

  S L A V E   2 

 **************** 

  
i-th  I T E R A T I O N 

  
$----------------------------------------------------------------------------------- 

$    run FDMODES, GDMODES, or HDMODES, and have the same eigensolutions  

$    as the master processor 

$----------------------------------------------------------------------------------- 

 

E I G E N V A L U E  A N A L Y S I S   S U M M A R Y   (READ MODULE) 

 

  
 

O P T I M I Z A T I O N   O U T P U T 
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j-th  I T E R A T I O N 

  
**************** 

  S L A V E   3 

 **************** 

  
i-th  I T E R A T I O N 

  
$----------------------------------------------------------------------------------- 

$    run FDMODES, GDMODES, or HDMODES, and have the same eigensolutions  

$    as the master processor 

$----------------------------------------------------------------------------------- 

 

E I G E N V A L U E  A N A L Y S I S   S U M M A R Y   (READ MODULE) 

 

  
 

O P T I M I Z A T I O N   O U T P U T 

  
j-th  I T E R A T I O N 

 

  
 

 

 

 

 

 

 

 



60 60 

Chapter 6 – Performance Study 

 

6.1 Performance of Parallel Processing 
 

The performance of a parallel processing is rated by its speedup or efficiency. The 

speedup Sp  is defined as: 

  pE
T

T
S

p

s
p *  

where Ts is the time to run a serial job, and Tp is the time it takes to run the same job 

with p processors.  

The efficiency E is defined as: 

  
)*( p

s

Tp

T
E   

For better performance, it is helpful to minimize the communication overhead by using 

high speed network switches. The ideal is to have high bandwidth and low latency. 

 

 

6.2 Industrial Case Study 1 
 

A trimmed car body FE model with SOL 103 is used as a case study to analyze the 

technologies presented in NX Nastran. This type of car model has all major components 

of the car, such as wheels, engine, etc. incorporated. Tables 6-1 and 6-2 present the 

details for this finite element model.  

 

Table 6-1 Model statistics of trimmed car body FE model 

 

Number of 

Nodes 

Number of 

shell elements 

Number of 

solid elements 

Number of 

rigid elements 

380,007 361,249 3,762 9,056 

 

 

 

Table 6-2 The size of sets for the trimmed car body FE model 

 

The size of set 

g-set n-set f-set a-set 

2,280,042 2,223,139 2,223,109 1,937,282 
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Table 6-3 demonstrates the effect of the automated geometric domain decomposition on 

this model by showing the number of interior and boundary nodes of the partitions. 

Several observations can be made. The interior range size depends on the quality of the 

automated partitioning. The boundary size increases with the number of partitions. 

Finally, the boundary size is at least two orders of magnitude smaller than the interior 

size, which is important to the computational efficiency.  

 

Table 6-3 Results of geometry domain decomposition 

 

Number of 

Partitions 

Maximum 

Interior 

Minimum 

Interior 

Maximum 

Boundary 

 

Minimum 

Boundary 

 

2 197,460 182,199 354 354 

4 104,788 90,791 572 418 

8 54,496 40,067 518 450 

 

 

The automated frequency domain decomposition results are shown in Table 6-4. There 

are 840 modes in the frequency range of interest. 

 

Table 6-4. Frequency domain decomposition statistics 

  

Number of 

segments 

Minimum number of 

modes among segments 

Maximum number of 

modes among segments 

2 380 460 

4 193 252 

6 133 165 

7 105 141 

8 92 119 

 

 

The automated geometric domain partitioning techniques usually provide only even, and 

preferably binary, numbered domains. This is because these techniques are primarily 

based on binary graph partitioning. This is not a restriction, as shared memory 

workstations tend to have an even number of processors. On the other hand, in the 

frequency domain decomposition, odd numbers of segments are also allowed. This 

technology is insensitive to that issue and enables the use of odd-numbered workstations 

via the hierarchic technology in a workstation cluster environment.  

The analysis was executed on a cluster of eight workstations, each containing eight 

processors with a 1.5 GHz clock cycle. The cluster had a one gigabyte Ethernet network 

connection. The option gpart=1 is used.  
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Table 6-5. Execution times on workstation cluster with HDMODES 

 

Number of 

processors 

Number of 

partitions 

Number of 

segments 
I/O (GB) 

Elapsed 

time[min:sec] 
Speedup 

1 1 1 1,028.4 528:58 1.00 

4 2 2 431.4 167:15 3.13 

8 4 2 266.9 83:41 6.26 

16 8 2 191.1 45:16 11.57 

32 8 4 98.3 34:07 15.35 

48 8 6 77.8 27:14 19.23 

56 8 7 67.1 24:41 21.22 

64 8 8 61.4 27:00 19.40 

 

 

The task of finding the natural frequencies and mode shapes of such a model is an 

enormous one. It is an overnight job with more than a terabyte of I/O operations. The 

execution on a single processor is impractical considering the work environment and time 

schedule at automobile companies.  

 

Fig. 6.1 and Fig. 6.2 show the elapsed time and disk I/O of HDMODES with 8 geometry 

partitions for different numbers of frequency segments. With 56 processors, 8 geometry 

partitions in each workstation and 7 frequency segments across workstations are used.   

The elapsed time for 32 processors is already a practical execution. The efficiency above 

decreases, but the speedup is still increasing. It peaks at 56 processors, although a wider 

frequency range for this model may extend that peak to 64 or higher. It means that 7 

frequency segments with 8 geometry partitioning for each frequency segment is the most 

suitable partitioning for this test FE model in this workstation cluster environment.    
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Fig. 6.1 Elapsed time of HDMODES with 8 geometry partitions for different numbers of 

frequency segment. 
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Fig. 6.2 Disk I/O of HDMODES with 8 geometry partitions for different numbers of 

frequency segment. 

 

 

6.3 Industrial Case Study 2 
 

A trimmed car body FE model with SOL 103 is used as a case study to analyze the 

performance of RDMODES in NX Nastran. This model has g-size around 20 million and 

f-size about 10 million. The number of grid points is around 3.6 million, and the number 

of ctetra elements is about 2.3 million.  

 

The example was run through RDMODES with rdsparse (sparse eigenvector recovery, 

new in NX Nastran 7.0) turned on and nrec=256.  

 

Scalability – elapsed time vs. number of processors 
 

It computed modes up to 10,000 Hz. The following table and graph will show the 

summary of the performance from one processor to 64 processors. 
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Table 6-6. Execution times on workstation cluster with RDMODES 

 

Number of 
processors 

Elapsed time 
(min:sec) 

I/O 
(G-bytes) 

CPU 
(seconds) speedup 

1 4370:52 9110.7G 186277 1.00 

2 2548:23 5136.2G 110519.1 1.78 

4 1402:05 2711.5G 58795.8 3.12 

8 1019:13 1431.5G 29086.3 4.29 

16 678:09 945.6G 19272.7 6.45 

32 505:36 637.8G 10731.6 8.64 

64 354:53 526.3G 8920.1 12.32 
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Fig. 6.3 Elapsed time of RDMODES with 256 geometry partitions for the different 

number of processors. 

 

 

The analysis was also executed on a Linux cluster of 64 nodes; each processor is 1.8 GHz 

clock cycle. The cluster had a one gigabyte Ethernet network connection.  

Due to the large dimension of this model, the task of finding the natural frequencies and 

mode shapes of such a model is more enormous. The elapsed time is saved significantly 

through RDMODES with more processors.  

 

Table 6-6 and Figure 6.3 showed that, when 64 processors are used, the computation is 

speedup by 12. The elapsed time is around 6 hours with 64 processors, while the time of 

one processor is 73 hours.   
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Scalability – elapsed time vs. number of modes 
 

The following table and graph show multi-level RDMODES runs (dmp=64, nrec=256) 

with respect to frequency range up to 10000, 20000, 30000, 40000 and 50000 Hz. It took 

about 110 extra minutes and found about 2900 more modes by increasing frequency 

range from 10000 to 50000. It clearly demonstrates that the RDMODES is capable for 

computing large number of modes.  

 

 

Modes 

below (Hz) 

RDMODES 

Elapsed 

time 

Number 

of modes 

10000 354:53 295 

20000 430:47 764 

30000 441:20 1453 

40000 455:09 2276 

50000 462:04 3255 
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Chapter 7 - Installation and Configuration of DMP 

 

7.1 Overview 

NX Nastran offers the ability to run certain solution sequences in parallel using the 

Message Passing Interface (MPI), an industry-wide standard library for C and Fortran 

message-passing programs. MPI programs can be run on SMP computers, NUMA 

computers, distributed computers, and any collection of computers supported by the MPI 

package. 

Note: Further information on MPI can be obtain online at 

http://www.mpi-forum.org 

MPI is included with the installation of NX Nastran.  

Special Considerations 

To install NX Nastran for Distributed Memory Parallel (DMP) operations, you must 

select one of the following three installation schemes if you want to use more than one 

host in a single NX Nastran job: 

 Install NX Nastran on a filesystem that is global to every host. This provides the 

easiest installation and system administration, but may present network load 

issues when the NX Nastran is started and the delivery databases are being read. 

 Install NX Nastran on every host on host-private filesystems. This is harder to 

install and administer, but reduces the network load when NX Nastran is started. 

 A combination of the above. 

 

Note: In all cases, the nastran command must have the same pathname, or be in the 

default PATH of every host that will run a DMP job. Recall that your ―.profile‖ and 

―.login‖ files are not used for rcp(1) and rsh(1) operations. 

  

7.2 Requirements  
 

Platform MPI 

X86_64 Linux Intel MPI is included with the NX Nastran installation, and is 

automatically invoked when a DMP job is executed on Linux. Intel 

MPI has specific requirements, for example, Python must be 

installed. These requirements are documented in the Intel MPI  

release notes found at: 

https://software.intel.com/en-us/articles/intel-mpi-library-

documentation 

http://www.mpi-forum.org/
https://software.intel.com/en-us/articles/intel-mpi-library-documentation
https://software.intel.com/en-us/articles/intel-mpi-library-documentation
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Windows-64 Intel MPI is included with the NX Nastran installation. See the 

Windows Single Host Instructions. 

 

In the descriptions that follow, the ―local‖ node is the computer you issue the nastran 

command on, the ―master‖ node is the first computer named by the ―hosts‖ keyword, and 

the ―slave‖ nodes are the remaining systems listed in the ―hosts‖ list. 

 

The following are some general requirements for running NX Nastran DMP jobs: 

 NX Nastran must be properly installed on all the hosts listed by the ―hosts‖ 

keyword. 

 On Linux, either rsh or ssh can be used as a remote command. Secure Shell (ssh) 

is supported on Linux provided that: 

a. The environment variable MPI_REMSH is set to ssh. 

b. The argument s.rsh=ssh is included on the nastran command line. 

c. The argument s.rcp=scp is included on the nastran command line. 

 You must have access to each system you want to access in a distributed job. For 

example, when using rsh, you can test this with the command: 
rsh <node>  [-1 <username>] date   

where <node> is the name of the node and <username> is an alternate username 

on the remote system if your current username is not valid. For example:  
rsh node1 date 

The output from the above command should be in a single line containing the 

current date on node1 in a format similar to  
Thu Jul 17 13:06:49 EST 2003 

If any other output is present, you should determine the source of the output and 

correct the problem. If you cannot eliminate the output, you will not be able to use 

the distributed execution capabilities of the nastran command. 

 You must have ―remote execution‖ privileges on all the hosts listed by the ―hosts‖ 

keyword. That is, a password must not be required to execute a remote copy (rcp) 

or remote shell (rsh or remsh) command. See your system administrator for 

information on this. 

 The input data file must be accessible on the local host. 

 INCLUDE files must be local-to, or visible-from, each host. 

 All default output files, i.e., those without ASSIGN statements, will be written to 

a directory accessible to the local host. 

 The scratch directory can be a global or local file system. Your scratch directory 

should be local to each host, i.e., you specify per-host ―sdirectory‖ values. 

 The pathname of the nastran command must be the same on all hosts, or on the 

default PATH of each host, used in the analysis. 

 If you execute a restart, you must specify the identical values for ―dmparallel‖ and 

―hosts‖ as were used on the cold start. 

 In a restart, i.e., a job that uses an existing database, the DBSets must be local-to, 

or visible-from, the remote system.   

 

Note: Recall that remote executions do not run a ―login‖ shell. That is, your ―.profile‖ or 

―.login‖ script is not executed. 
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When running a DMP job, nastran keywords are processed on both the local and 

master/slave systems. Keywords that control the job‘s output and interaction with you are 

processed on the local system. These are: 

Keyword Description 

append Requests the .f06, .f04, and .log files to be concatenated. 

dmparallel (or dmp) Specifies the number of tasks for a Distributed Memory Parallel 

(DMP) analysis. This value may only be set on the command line. 

gpart Selects the geometry partitioning option for a hierarchic dmp 

(HDMP) solution. 

hostovercommit Requests more tasks per host than CPUs. 

hosts Specifies list of hosts to use. Separate hosts with the PATH 

separator, i.e,  ;. 

mergeresults Specifies the results from each DMP task are to be merged into 

the standard files from the master host. 

nclust Specifies the number of frequency segments for a hierarchic dmp  

(HDMP) solution. 

ncmd Specifies an alternate notification command 

notify Requests notification when the job completes. 

old Specifies versioning or deletion of previously existing output 

files. 

oldtypes Specifies additional user file types to be versioned or deleted. 

out Specifies an alternate output file prefix. 

rcmd Specifies the nastran command path on the master/slave systems. 

scratch Specifies the database DBSets are to be deleted at job completion. 

sdirectory Specifies each per-host directory to contain NX Nastran 

temporary files. Separate directories with the PATH separator. 

slaveout Specifies the .f04 and .f06 files from the slave tasks are to be 

appended to the .f04 and .f06 files of the master task. 

xmonitor Requests XMONITOR to monitor the master task‘s progress. 

 

The ―sdirectory‖ keyword is special, as the command line, RC files on the current host, 

and RC files on the each master and slave host will all be considered when establishing a 

scratch directory. All remaining keywords are only scanned on the master and slave 

systems. 

 

Once ―dmparallel=number‖ is processed, the following processing takes place: 

1. Process the RC files on the local system if the ―version‖ keyword has been 

defined in the command initialization file or the command line. 

2. Process the RC file specified by the ―rcf‖ keyword if it was defined on the 

command line. 

3. Determine the full pathname of the input file so that its visibility from the master 

and each slave host can be tested. 

4. Create a ―touch‖ file in the specified output file so that its visibility from the 

master and each slave host can be tested. 
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5. If the ―dmpdeny‖ utility, i.e., install_dir/nxnr/arch/dmpdeny, exists and is 

executable, run it, and save its output. 

6. If the ―dmpaccept‖ utility, i.e., install_dir/nxnr/arch/ dmpaccept, exists and is 

executable, run it, and save its output. 

7. Ensure ―scratch=no‖ was set if the ―dbs‖ keyword was set. 

8. Determine every possible pairing of host and sdirectory by scanning each list in a 

round-robin order. That is, the first host is paired with the first sdirectory, the 

second host with the second sdirectory, and so on. 

9. Execute the following steps for each host-sdirectory pair determined above until 

host-sdirectory pairs have been assigned to each of the tasks requested by the 

―dmparallel‖ keyword or no more host-sdirectory pairs are available. Steps 9a. 

through 9f. are executed only once per host-sdirectory pair. 

a) Verify that host exists and you are able to run a command on that 

system. 

b) If the ―rcmd‖ keyword was specified, attempt to execute that 

command on host, display an error and cancel the job if it fails.  

Otherwise attempt to execute the pathname of the current nastran 

command on host. If it fails, attempt to execute the basename of 

the current nastran command on host. Display an error and cancel 

the job if both checks fail. 

c) Run the remote nastran command identified in the previous step to 

determine: if the input data file is visible; if the ―touch‖ file is 

visible, if the ―sdirectory‖ (if identified on the local system) exists; 

if the ―dbs‖ directory (if identified on the local system) exists; the 

―sdirectory‖ value in the RC files defined on host; and finally the 

numeric format of host. 

d) Drop this host-sdirectory pair from further consideration if a 

scratch directory was identified on the command line or in a local 

RC file, but does not exist on host. 

e) Display an error and cancel the job if the numeric format of host 

differs from the numeric format of the local host. 

f) Display an error and cancel the job if the directory specified by a 

―dbs‖ keyword on the command line or in a local RC file does not 

exist on host. 

g) Assign the current host-sdirectory pair to the next task; save the 

per-host visibility flags, ―rcmd‖, and ―sdirectory‖ values. 

10. Display an error and cancel the job if one or more of the tasks requested by the 

―dmparallel‖ keyword have not been assigned. 

11. Delete the ―touch‖ file created above. 

12. The remaining steps are done in a background process (possibly some time later) 

if ―batch=yes‖ or ―after‖ was specified. 

a) Copy the input data file to the scratch directory of any host that 

could not see the input data file. 

b) Set ―out‖ to the host-specific scratch directory value of every host 

that could not see the output directory. 
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c) Copy the remaining keywords on the command line that were not 

processed, to a local RC file in the scratch directory on the remote 

node. 

d) Run the DMP job using the system‘s MPI startup command. Note 

that each task will write its files to task-specific names. 

e) Process the ―old‖ and ―oldtypes‖ keywords on the local node. 

f) Copy the output files (.f04, .f06, .log, .ndb, .pch, .plt) from the 

master task to the directory specified by the ―output‖ keyword and 

delete the files from the master node if it could not see the output 

directory. 

g) Process the ―append‖ keyword on the local node. 

h) Process the ―notify‖ keyword on the local node. 

 

Once the job has completed, the .f06, .f04, .log, .ndb, .op2, .plt, .pch, and .xdb files from 

the master task will be present as if the job were run locally. 

 

Note: No attempt is made to copy DBSet files between the local and master/slave 

systems. If this is required, you must handle this yourself and set the ―dbs‖ keyword 

appropriately. 

 
7.3 Windows Single Host Instructions 
 

The following instructions describe how to install Windows DMP on a single host which 

includes multiple cores.  

 

Step 1: Before you can follow the remaining steps, an administrator will need to perform 

the following tasks. 

 You must have a login directory that you own. 

 You must have full permissions to all working directories and scratch directories. 

 Your working directory must be shared, for example, D:\workdir shared as 

\\host\workdir. 

 

Step 2: Install NX Nastran to the Windows host 

 Install NX Nastran to a directory with no spaces in the path. For example, do not 

install to the default path of C:\Program Files. Spaces in the path will prevent 

environment variables from being properly interpreted. 

 

Step 3: Set up the Intel MPI Windows Service 

 Login as the local administrator and open a DOS shell. 

 Go to the bin directory: 
cd /d …installation_path\nxnr\em64tnt\impi\bin 

 Enter the following: 
hydra_service.exe –install 

 

 

 



72 72 

Step 4: Unset PLATFORM_MPI 

 The environment variable PLATFORM_MPI was required in previous releases 

to run DMP. It must be unset if it is still defined on your system. Enter the 

following to check if it is defined: 
echo %PLATFORM_MPI% 

%PLATFORM_MPI% will return if it is undefined. 

If it is defined, a file system path will appear. 

Enter the following if you need to unset the variable: 
set PLATFORM_MPI= 

 

Step 5: Each user must set up password-less MPI in a DOS shell 

 Go to the bin directory: 
cd /d …installation_path\nxnr\em64tnt\impi\bin 

 Enter the following: 
mpiexec.hydra.exe –register 

 Follow the prompts to cache your password.  

 Repeat these steps whenever you change your password. 

 

Step 6: Define MPI_ROOT and update PATH 

 Define the MPI_ROOT environment variable: 
set MPI_ROOT=installation_path\nxnr\em64tnt\impi 

 Include the following ‗bin‘ directory in your PATH variable: 
set PATH=installation_path\nxnr\em64tnt\impi\bin;%PATH% 

 

Step 7:  Test Windows DMP with a .BAT script 

 Use a text editor to create the following .BAT file, replacing hostname with the 

actual host name. The example assumes a ‗workdir‘ and enabled sharing for this 

folder, and an NX Nastran installation location of D:\NXNr. Note the use of 

quoted, forward slashes for the shared directory.  

Name the file dmptest.BAT: 
@ECHO OFF 

set NXN_BASE=D:\NXNr 

%NXN_BASE%\bin\nastran.exe ^ 

“// hostname /workdir/plan10g.dat” ^ 

out=”// hostname /workdir” ^ 

mem=130mw dmp=2 hosts= hostname ^ 

sdir=D:\Scratch slaveout=yes scr=yes 

 Open a DOS shell, and change directories to ‗workdir‘: 
cd \\hostname\workdir 

 Copy the file plan10g.dat from the tpl directory: 
installation_path\nxnr\nast\tpl\plan10g.dat 

to //hostname/workdir/ 

 Execute the .BAT file: 
dmptest.bat 

 The results should look similar to the following: 
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7.4 Windows Multiple Host Instructions (True Cluster) 
 

The following instructions describe how to install Windows DMP across multiple hosts 

(in a cluster). See the Windows Single Host Instructions to install and run Windows DMP 

on a single host which includes multiple cores. 

 

General Requirements 

 NX Nastran must be installed in the same location on each node and must be 

accessible to each user.  

 Each user must have full permissions to all working directories and scratch 

directories. 

 All working directories must be shared to all nodes. 

 Only Server 2008 and Server 2012 are supported in the true cluster mode. 

 DMP Jobs must be launched from a DOS shell. 

 

Step 1: SUA Removal Instructions 

Since June 1, 2013, Microsoft has removed support for SUA and recommends that 

Cygwin be installed in its place: 

http://technet.microsoft.com/library/hh831568.aspx 

If SUA is installed on your cluster, it must be removed before installing Cygwin 64-bit. 

You can follow the following SUA removal instructions. Note that the SUA removal 

instructions must be repeated on each node of the cluster. 

If you do not have SUA installed, skip forward to the Cygwin 64-bit installation 

instructions in Step 2.  

 

A. Stop the SSHD service 

 Login as Administrator 

http://technet.microsoft.com/library/hh831568.aspx
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 Start Computer Management (Start, Search, ―Computer Management‖) 

 
 Select Services, right-click the sshd service, and select stop 

 
 

 When the service is stopped, close the Manage window 

 

B. Remove the SSHD service 

 Login as Administrator 

 Open a Command Prompt and cd to C:\Windows\System32 

 Remove the SSHD service with the command 
             sc delete “sshd” 

 

             
 

C. Remove the SUA SDK 

 Login as Administrator 

 Open Control Panel, select Uninstall a program 

 Select ―Utilities and SDK for UNIX-based Applications‖, and select Uninstall 
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D. Remove SUA as a Windows Feature 

 Login as Administrator 

 Open Control Panel, select Programs, then Programs and Features 

 Select Turn Windows features on or off 

 Un-check Subsystem for UNIX-based applications, and select OK 

 
 When asked to reboot the computer, select Restart Now. 

 

E. Verify that SUA is no longer a part of any environment variable. 

 After the previous re-boot, login as Administrator. 

 Right click on the desktop Computer icon, select Properties, Advanced System 

Settings. 

 Select Environment Variables and edit out any references to SUA for both User 

and System. 

                 
 

F. Remove the SUA directory (optional) 

 After the previous re-boot, login as Administrator 
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 Right click on the SUA directory, and select Delete 

                 
 

 

 

 

 

 

 

 

Step 2: Cygwin 64-bit Installation 

 

Prerequisites 

 Cygwin 64-bit is required for NX Nastran 

 If a previous version of Cygwin is installed, it should be removed before installing 

Cygwin 64-bit.   

 Instructions for removing previous versions of Cygwin can be found at 

http://cygwin.wikia.com/wiki/Uninstalling_Cygwin 

 NX Nastran requires Cygwin-64 to be installed to the C:\ drive under 

C:\cygwin64.  

 Cygwin-64 must be installed on each node of the cluster 

 

Begin the Installation 

A. Login as local Administrator 

 

B. Go to http://cygwin.com/install.html, right-click ―setup-x86_64.exe‖, choose save as 

target. Save to a local directory, such as C:\Temp.  

 

C. Double-click on C:\Temp\setup-x86_64.exe to begin the installation. Select Next 

on the setup window: 

 
 

D. Select ―Install from Internet‖, then Next. 

http://cygwin.wikia.com/wiki/Uninstalling_Cygwin
http://cygwin.com/install.html
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E. Make sure the installation directory is C:\cygwin64, select ―All Users‖, then Next. 

 
 

F. Select a suitable scratch directory to hold installation files, such as C:\Temp. Select 

Next. 

 
 

G. Select your internet connection, then Next. 

 
 

H. Choose a download site, for example http://mirrors.kernel.org. Select Next. 

 
I. From Select Packages:  

 Expand Shells, select tcsh and mksh. 

 
 

http://mirrors.kernel.org/
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 Expand Archive and select unzip and zip.  

 
 

 Expand Net category and select openssh and openssl.  

 
 

Additional packages can be selected later after the installation. Select Next to 

continue. 

 

J. A window will open listing dependencies. Select Next to resolve dependencies. 

 
 

K. A window will open to show the installation progress. Select Finish after the 

installation completes. 

 
 

 

Step 3: Cygwin 64-bit Configuration 
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A. Right-click the Computer icon, select Advanced Settings, then Environment 

Variables. Add C:\cygwin64\bin to the global PATH in the System 

Variables. 

                               
 

B. Administrator setup of SSH service 

Login as Administrator, open a Cygwin64 terminal, and issue the command:    
                           ssh-host-config 
You will be prompted to answer several questions: 

Questions Answers 

Should privilege separation be used?   Yes 

Should this script create a new local account ‗sshd‘?   Yes 

Do you want to install sshd as a service?   Yes 

Enter the value of CYGWIN for the daemon. ntsec 

Do you want to use a different name for the SSH service? This is optional, but 

it is simplest to enter 

No. 

 

Once the setup of the SSH service is complete, you should see something similar 

to the following: 

 
 

Note: If you plan to use a Management Agent, then follow the instructions given 

here: 

http://docs.oracle.com/cd/E24628_01/install.121/e22624/preinstall_req_cygwin_s

sh.htm 

 

C. Startup the SSH service from a Cygwin64 terminal with:   
                 cygrunsrv –S sshd 

 

Once the service starts, the command prompt should return without error. The 

service will also automatically start after each reboot. You can also verify that the 

http://docs.oracle.com/cd/E24628_01/install.121/e22624/preinstall_req_cygwin_ssh.htm
http://docs.oracle.com/cd/E24628_01/install.121/e22624/preinstall_req_cygwin_ssh.htm
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service is running by opening Control Panel, System and Security, and Selecting 

Administrative tools, and clicking on Services. 

 

D. Logout from the local Administrator account, then login as one of the cluster 

users. Double-click on the Cygwin64 Terminal icon from the desktop. Note 

that a new home directory is created as each user logs in. 

 

Verify that your shell shows correctly with 

 ‗echo $SHELL‘ (as shown below).  

Also verify that ssh is working, and that you can run ssh on the localhost (as 

shown below). 

 
 

Note: The Administrator can edit /etc/passwd to change the shell assigned to each 

user, after each user has logged in and their /home directory has been created. 

 

E. Final Cygwin 64-bit Configuration Steps 

 For each user of the cluster, repeat the previous step until all users have a 

home directory on the local node, and each can run ssh on the local node.  

(Instructions to setup password-less ssh are provided later.) 

 If necessary, the local Administrator can open a Cygwin64 terminal and 

edit /etc/passwd to define the appropriate shell for each user. 

 Each user‘s login directory must exist on all nodes with normal 

permissions to the user 

 Each user‘s shell should be set (for example, to /bin/ksh) 

 Repeat all of the above installation instructions for Cygwin 64-bit on each 

additional node in the cluster. 

 

After the installation and configuration of Cygwin 64-bit on each node of the cluster, the 

final step below shows how to setup password-less ssh for each user, install the latest 

version of NX Nastran, and configure MPI on the cluster for each user. 

 

 

Step 4: Remaining Installation Tasks for NX Nastran DMP 
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The remaining tasks to be completed in Step 4 are:   

A. Set up password-less SSH with Cygwin 64-bit for each user 

B. Install the latest release of NX Nastran or modify an existing release 

C. Set up Intel MPI Windows services 

D. Set up password-less MPI 

E. Test Windows DMP with a .BAT file from a DOS shell 

 

Note: If a previous version of NX Nastran with HP MPI is installed on the cluster,      

there is no need to remove it. It is not used with Intel MPI and NX Nastran 10. 

 

A. Set up password-less SSH with Cygwin 64-bit for each user 

 

Each user must open a Cygwin64 terminal, which will place them in their home directory. 

 Enter the command:   
ssh-keygen –t dsa (or, alternately with –t rsa) 

 Press Enter when you are presented a prompt. 

A text image will be displayed when ssh-keygen is done: 

 
 

 Enter the .ssh directory with:  cd .ssh 

 Display .ssh directory contents with:  ls –alt 

 Copy the public key with:  cp id_dsa.pub authorized_keys 

 Change permissions with:  chmod 644 authorized_keys 

 
 The first time you run ‗ssh hostname date‘, answer ‗yes‘ if prompted. All subsequent 

ssh commands to hostname will be password-less, as shown below. 
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 The final step in this process is to provide password-less ssh between all nodes for 

each user. In order to provide password-less ssh between any two nodes, each user 

needs to collect all of the public keys created in the /home/username/.ssh 

directories and insert them into /home/username/.ssh/authorized_keys on all the 

nodes. 

 

For example, if user harry created the following public keys on these nodes: 

Master:  C:\cygwin64\home\harry\.ssh\id_dsa.pub 

Slave1:   C:\cygwin64\home\harry\.ssh\id_dsa.pub 

Slave2:   C:\cygwin64\home\harry\.ssh\id_dsa.pub 

 

Then, user harry must insert the contents of those 3 public keys into authorized_keys 

on the following nodes: 

Master:  C:\cygwin64\home\harry\.ssh\authorized_keys 

Slave1:   C:\cygwin64\home\harry\.ssh\authorized_keys 

Slave2:   C:\cygwin64\home\harry\.ssh\authorized_keys 

 

When all public keys for all the nodes are contained in the authorized_keys file on 

each node, then any node may run ssh between any other node without being 

prompted for a password. 

 

Note that the permissions for authorized_keys must be set to 0600 from a Cygwin64 

Terminal. 

 

Also note that if a user‘s home directory is shared to all of the nodes, then it is only 

necessary to run ssh-keygen once, and create a single authorized_keys file in the 

user‘s $HOME/.ssh/ directory.  

Even though a node-name will appear at the end of the security string in the public 

key file (e.g., id_dsa.pub), which will be the name of the node on which ‗ssh-keygen‘ 

was launched, it is merely a comment and is ignored by SSH. 

If the home directories are not shared among the nodes, then it is necessary to run 

ssh-keygen on each node and copy all of the public keys generated into the 

authorized_keys file on each node. 

 

B. Install NX Nastran 10 to each Windows node 

 

 Install NX Nastran 10 on all the nodes of the cluster in the same location on each 

node.  
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 Using your Webkey account, download the NX Nastran installation (.zip file) from 

https://download.industrysoftware.automation.siemens.com/. 

 

 Unzip the installation file and launch autorun. Install to any directory that does not 

have spaces in the path name, for example, D:\NXNr. Do not install to the default path 

of C:\Program Files(x86). Spaces in the path will prevent several Environment 

variables from being properly interpreted. 

 

C. Set up Intel MPI Windows Service on each node 

 

 Login as local Administrator and open a Command Prompt. 

 

 Change directory with:  
cd /d D:\NXN10\nxn10\em64tnt\impi\bin 

 

 Type the following command:     
hydra_service.exe –install 

 

 Verify that the service is running  under Administrative Tools/Services      
 

 

D. Set up password-less MPI for each user on each node 

 

Each user must enter the following commands at a Command Prompt on each node of 

the cluster: 

 
set MPI_ROOT=D:\NXN10\nxn10\em64tnt\impi 

 

set PATH=D:\NXN10\nxn10\em64tnt\impi\bin;%PATH% 

 

cd /d D:\NXN10\nxn10\em64tnt\mpi\bin 

 

mpiexec.hydra.exe –register 

 

 

E. Test Windows DMP with a .BAT script 

 

 Use a text editor to create the following .BAT file, replacing nodei with the actual 

host names available on your cluster. Name the file dmptest.BAT. 

 
@ECHO OFF 

set NXN_BASE=D:\NXN10 

%NXN_BASE%\bin\nastran.exe 

"//node0/Workdir/UserName/plan10g.dat" 

out="//node0/Workdir/UserName" 

mem=130mw dmp=2 hosts=node0;node1 

sdir=D:\Scratch slaveout=yes scr=yes 

 

https://download.industrysoftware.automation.siemens.com/
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 Open a DOS shell, then cd \\node0\Workdir\UserName, where node0, Workdir 

and UserName are replaced with correct values for your hosts. 

 

 Copy a test file from the NX Nastran tpl to your current directory 

 
copy D:\NXN10\nxn10\nast\tpl\plan10g.dat 

 

 Execute the .BAT file: 

 
dmptest.bat 

 

 

7.5 Determining Hosts 
 

The nastran command uses the following hierarchy to determine the list of hosts to use: 

 

 The nastran command ―hosts‖ keyword on the command line 

 The nastran command ―hosts‖ keyword in an RC file. 

 The local host. 

 

Consider the following example: 

The following job will run on the local host: 
nxnr nastran example dmparallel=4 

 

The following job will run on the first four available nodes from the set ―node1‖, ―node2‖, 

―node3‖, ―node4‖, ―node5‖. 
nxnr nastran example dmparallel=4 hosts=node1:node2:node3:node4:node5 

 

The following job reads the file ―my.host.list‖. 
nxnr nastran example dmparallel=4 hosts=my.host.list 

 

The nastran command provides a simple host allocation method. If a host listed by the 

―hosts‖ keyword is unavailable, it will be skipped and the next host considered. As long 

as at least the number of processors specified by the ―dmparallel‖ keyword are available 

on one or more of the listed hosts, the job will be allowed to run. 

 

 

 

Hosts on Linux 

On Linux systems, the ―hosts‖ keyword needs to specify the host name of the compute 

nodes. A Linux example of job submittal is: 
nxnr nastran example dmparallel=4 hosts=n1:n2:n3:n4 

 

Using the “hosts” Keyword (Distributed Jobs Under LSF) 

The ―hosts‖ keyword will default to the value set by LSF when running as a distributed 

job and no other value for ―hosts‖ was set on the command line or in an RC file. 

Example: 
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bsub -n 4 nxnr nastran example dmp=4 

 

This job will use four hosts selected by LSF. Note, the number of tasks appears twice: 

once for use by LSF, and once for use by NX Nastran. 

 

Using PBS with NX Nastran 

 

Portable Batch System (PBS) is a queuing system that can be used to submit NX Nastran 

serial and DMP jobs. Once you have downloaded and installed PBS, you can use the 

following sample script to run an NX Nastran DMP job under PBS. 

 

The ―hosts‖ keyword will default to the value set by PBS_NODEFILE when running as a 

distributed job and no other value for ―hosts‖ was set on the command line or in an RC 

file. 

 
#!/bin/ksh 

# 

# pbs_nast: PBS script to use with NX Nastran 

# 

# Usage: qsub -lnodes=Number-Of-Nodes pbs-nast 

# 

# Assume the data file is located in the directory whence the qsub 

# command was issued. 

# 

dat=$PBS_O_WORKDIR/d10101d.dat 

# 

jobdat=${dat##*/} 

# 

# Change the working directory to the scratch directory. 

# 

TMPDIR=/scratch 

cd $TMPDIR 

# 

# Pull the bulk data file over. 

# 

rcp $PBS_O_HOST:$dat . 

# 

# Determine the number of ranks. 

# 

dmparallel=$(sed -n -e „$=‟ $PBS_NODEFILE) 

# 

# Build the hosts keyword value. 

# 

hostskwd=‟sed -e :a -e „/$/N; s/\n/:/; ta‟ $PBS_NODEFILE‟ 

# 

# Run the NX Nastran job. If using version 4.1 or above, comment the 

following 

# two lines and uncomment the next two commented lines. 

# 

nxnr nastran $jobdat dmparallel=$dmparallel hosts=$hostskwd \ 

scratch=yes batch=no 

# 

# If using version 4.1 or above, uncomment the following two commented 

lines 
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# comment out the two lines preceeding the comment lines here   

# 

# nxnr nastran $jobdat dmparallel=$dmparallel hosts=$PBS_NODEFILE \ 

# scratch=yes batch=no 

# 

# 

# 

# Push the files back to the submitting host. 

# 

jobout=${jobdat%.*} 

out=${dat%/*} 

rcp -p $jobout.log $PBS_O_HOST:$out 

rcp -p $jobout.f04 $PBS_O_HOST:$out 

rcp -p $jobout.f06 $PBS_O_HOST:$out 

rcp -p $jobout.op2 $PBS_O_HOST:$out 

# 

# END 

 

Note: Be aware that in order to receive your job‘s stdout and stderr, your .rhosts file on 

the node issuing the ―qsub‖ command must permit access from the remote host(s). 

 

7.6 Managing Host-Database Directory Assignments 
 

The performance of the disk subsystem containing the permanent end SCRATCH 

DBSets can have a significant impact on NX Nastran performance. In the case of a DMP 

job, the impact can be even greater if multiple tasks are using the same file system. To 

allow unique directories to be assigned to each task, the ―dbs‖, ―hosts‖, and ―sdirectory‖ 

keywords are treated as lists scanned in a round-robin order. With this feature, you can 

finely control the use of disk I/O access paths by your job. 

 

The following examples show the effect of the round-robin ordering. 

nxnr nastran example dmparallel=4 hosts=a:b 

sdirectory=/aa:/ba:/ab:/bb dbs=/aa:/ba:/ab:/bb 

 

This example will assign the following host-sdirectory pairs (assuming hosts ―a‖ and ―b‖ 

each have at least two processors): 

Task Host Scratch Directory DBS Directory 

1 a /aa /aa 

2 b /ba /ba 

3 a /ab /ab 

4 b /bb /bb 

 

If directory ―/ba‖ was not available for writing by you on host ―b‖, the tasks assignments 

would be (assuming host ―a‖ has at least three processors):   

Task Host Scratch Directory DBS Directory 

1 a /aa /aa 

2 a /ab /ab 

3 b /bb /bb 

4 a /aa /aa 
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7.7 Managing Files 
 

When an NX Nastran DMP job is running, the input file is directly read by each MPI task 

that can read the file, for example, via NFS. Each host that cannot read the input file will 

read a local copy of the file that is copied, via rcp(1), to the job‘s scratch directory 

(―sdirectory‖ keyword) before the job begins. 

 

A similar check is made for the output directory. Any host that can write to the output 

directory (―out‖ keyword) will directly write its .f04, .f06, .log and other default output 

files to that directory. Any host that cannot see the output directory will write its default 

output files to the job‘s scratch directory. These files will then be copied, again via rcp(1), 

back to the output directory at the end of the job. 

 

Note: The nastran command will perform these tests by converting your pathname value 

to an absolute pathname. As a result, a path that varies depending upon the host will be 

labeled as unreadable. 

 

If the ―sdirectory‖ keyword is not specified on the command line or in an RC file on the 

local host, each master or slave host will use its own scratch directory. This directory is 

determined on the master and each slave host by examining its command initialization 

file and version-specific RC files if the ―version‖ keyword was defined. 

Do not use an ASSIGN statement for any file that will be written by NX Nastran in a 

Distributed Memory Parallel (DMP) job. Instead, use the ―sdirectory‖ and ―dbs‖ 

keywords to specify names of the SCRATCH and permanent DB Sets. 

 

 

7.8 Performance Issues 
 

In addition to the normal performance issues associated with a serial or SMP job, a DMP 

job adds communication bandwidth as a critical performance characteristic. The basic 

communications channels are: 

 Shared memory - SMP and NUMA systems. 

 Interconnect, adapter, or switch - NUMA and distributed systems. 

 High-speed special-purpose network, for example, HIPPI - all systems. 

 TCP/IP network - all systems. 

 Infiniband, Myrinet and Quadrics network connections on Linux are supported 

out of the box. 

 

The performance of any NX Nastran job depends upon CPU, memory subsystem, and I/O 

subsystem performance. A Distributed Memory Parallel (DMP) job on an SMP or 

NUMA system is extremely sensitive to I/O subsystem performance since each task 

independently accesses the I/O subsystem. 

If you select independent disks (not in RAID configuration) for your scratch drives, you 

are encouraged on SMP and NUMA systems to partition your scratch directory and 
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database assignments on DMP jobs using the ―sdirectory‖ and ―dbs‖ nastran command 

keywords. 

 

Example 1: 

 
nxnr nastran example dmp=4 

sdir=/scr1:/scr2:/scr3:/scr4\ dbs=/dbs1:/dbs2:/dbs3:/dbs4 

 

The following assignments will be made in this job:   

Task sdirectory dbs 

1 /scr1 /dbs1 

2 /scr2 /dbs2 

3 /scr3 /dbs3 

4 /scr4 /dbs4 

The preceding example will perform substantially better than the following job, which 

uses the default assignments for the ―sdirectory‖ and the ―dbs‖ keywords. 

 

Example 2: 

 
install-dir\nxnr nastran example dmp=4 
 

While the ultimate effect of the communications channel on job performance is 

dependent upon the solution sequence, for best overall job performance, you should try to 

use the fastest communications channels available. 

 

7.9 Overview of Running a DMP job 
 

This section gives a brief overview of running DMP jobs. See the other sections of this 

guide for more complete details on this topic. 

 

Command-line Syntax 

 

You can start an NX Nastran DMP job using the command: 
$ nxnr nastran example dmp=2 hosts=n1:n2 

where ―n1:n2‖ indicates the hosts to be used in the run. 

Valid output is: 
Determining available hosts, please wait... 

DMP task 1: host="ugsclust1" sdir="/scratch" dbs="/scratch/plan10g"; 

DMP task 2: host="node1.local"; sdir="/scratch"; 

dbs="/scratch/plan10g"; 

NX Nastran beginning distributed job plan10g. 

NX Nastran V4.0 (Intel Linux 2.4.20-20.7smp) Mon May 23 11:21:37 2005 

NX Nastran V4.0 (Intel Linux 2.4.20-20.7bigmem) Mon May 23 11:21:37 

2005 

NX Nastran beginning child job plan10g.T22389_37.t1 on node1.local. 

NX Nastran beginning child job plan10g.t0 on ugsclust1 (master). 

 

Note: The ―beginning child job‖ lines may appear in a random order. 
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Error Examples 

The following error is an authorization problem.  

  
*** USER FATAL MESSAGE 3060 (PREFACE) 

    SUBROUTINE MODEL    - OPTION NAST NOT IN APPROVED LIST. 

    SYSTEM DATE (MM/DD/YY): mm/dd/yy 

    SYSTEM UGSID:  n (DECIMAL) n (HEXADECIMAL) 

 

Likely causes are: 

 The license or authorization file does not include the ability to make DMP runs. 

 The license or authorization file was not accessible to the first node in the hosts 

list. 
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Appendix 

 
SEQP STYLE DMP SOLUTIONS 

 
In the parallel processing of a finite element application, finite element model data should 

be distributed to each processor. There are two choices of method for domain partitioning 

in an NX Nastran parallel processing task: grid-based partitioning and degree of freedom-

based partitioning. The SEQP module performs grid-based partitioning, in which p 

domains are created by an automatic partitioner from the grid-based graph. The 

GPARTN module performs graph partitioning for the graph based on degrees of freedom 

or grids, whichever is better. 

 

The GPARTN-based method is available in more solution sequences than the SEQP-

based, and generally, the GPARTN module gives better performance than the module 

SEQP. For example, the GPARTN module provides better performance if the finite 

element model includes many Multi-Point Constraints (MPCs). It should be noted that 

the SEQP-based method can not handle a finite element model that includes acoustic 

fluid, glue elements, weld/fast elements, or modal effective mass requests. Also, grid 

point weight generator output reflects only the local portion of the model (rather than 

global) with the SEQP module, and thus the results may be unexpected. 

 

The partitioning method can be selected by the nastran command keyword „gpart‟ in the 

following way.  

 

Module Keyword  

SEQP gpart = 0   

GPARTN gpart = 1 default 

 

Each module provides two different algorithms for graph partitioning. The algorithm can 

be selected by the DMAP parameter oldseq. 

 

Module Method DMAP parameter  

SEQP 
EXTREME param, oldseq = 9  

MLV param, oldseq = 11 default 

GPARTN 
METIS param, oldseq = 10  

MLV param, oldseq = 11 default 

 
 

RDMODES, SOL111, SOL 112, and SOL 200 use GPARTN only. 
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GDMODES/HDMODES in SOL 103 and GDSTAT can use either partitioning module 

(GPARTN is the default). 

 

The following table lists the availability of domain partitioning modules for each 

computational method: 

 

 SEQP GPARTN 

GDSTAT X X(default) 

GDMODES X X(default) 

HDMODES X X(default) 

RDMODES Na X(default) 

 

In the above table, ‗X‘ means the partitioning module is available. ‗na‘ refers to ‗not 

applicable‘.  

 

Note: Neither the module SEQP or GPARTN is used in LDSTAT, FDMODES, and 

FDFREQR, because these computational methods do not require domain partitioning.  

 

In chapter 4, we already provided examples for GDMODES and HDMODES with 

GPARTN. Here we present examples with SEQP. 

 

A finite element plate model with 110 grid points and 100 CQUAD4 elements is 

executed in parallel with SOL 103 analysis. The total number of degrees of freedom is 

660. Four processors are used for the DMP run. 

 

1. GDMODES with SEQP 

GDMODES with SEQP is implemented with the nastran keyword "gpart=0".  

 

nastran example dmp=p gpart=0 

 
nastran example dmp=4 gpart=0  

 

When the domain is partitioned, the output from the SEQP module is shown as:  
 

 
     STATISTICS FROM AUTOMATIC MODEL PARTITIONER 

 

     THE NUMBER OF DOMAINS CREATED USING EDSMLV   IS        4 

     THE NUMBER OF GRID POINTS IN THE GLOBAL BOUNDARY IS         30 

     THE NUMBER OF ELASTIC ELEMENTS IN THE RESIDUAL IS          0 

     THE NUMBER OF RIGID ELEMENTS IN THE RESIDUAL IS          0 

 DOMAIN ID     # INTERNAL GRID POINTS     # EXTERNAL GRID POINTS     # OF ELEMENTS 

 ---------     ----------------------     ----------------------     ------------- 

    1                   20                         16                     25 

    2                   20                         16                     25 

    3                   20                         16                     25 

    4                   20                         16                     25 

 

  GEOMETRY DOMAIN PARALLEL LANCZOS METHOD 



92 92 

 

  

The partitioning statistics show the number of domains created, grid points, and elements 

for each sub-domain. 

 

Once the results of eigenvalue analysis on the slave processors are collected, the master 

processor prints the summary of merged eigensolutions. 
 

 
EIGENVALUES FOUND IN DOMAIN # 1 

 

 

      E I G E N V A L U E  A N A L Y S I S   S U M M A R Y   (READ MODULE) 

 

 

                BLOCK SIZE USED ......................    7 

 

                NUMBER OF DECOMPOSITIONS .............    3 

 

                NUMBER OF ROOTS FOUND ................  208 

 

                NUMBER OF SOLVES REQUIRED ............   41 

 

 

$------------------------------------------------------------------------------- 

$   The list of all eigensolutions collected from the slave processor 

$------------------------------------------------------------------------------- 

     

                        R E A L   E I G E N V A L U E S 

   MODE    EXTRACTION    EIGENVALUE    RADIANS     CYCLES   GENERALIZED  NERALIZED 

    NO.       ORDER                                           MASS       STIFFNESS 
     1          1             1.696349E+07    4.118676E+03     6.555076E+02  1.000000E+00    1.696349E+07 

     2          2             1.848026E+07    4.298867E+03     6.841859E+02  1.000000E+00    1.848026E+07 

  

      207       207           3.073819E+09    5.544203E+04     8.823873E+03  1.000000E+00    3.073819E+09 

      208       208           3.123167E+09    5.588530E+04     8.894422E+03  1.000000E+00    3.123167E+09 

 

  

With the gpart=0 option, the summary of eigenvalue analysis from the master processor 

is broadcasted to the slave processors, so that all processors print the same summary 

information. 
 
 

 **************** 

S L A V E   1 

****************         

  

 EIGENVALUES FOUND IN DOMAIN # 2 

 

 

    E I G E N V A L U E  A N A L Y S I S   S U M M A R Y   (READ MODULE) 

 

 

 

              BLOCK SIZE USED ......................    7 

 

              NUMBER OF DECOMPOSITIONS .............    3 

 

              NUMBER OF ROOTS FOUND ................  208 

 

              NUMBER OF SOLVES REQUIRED ............   41 

$------------------------------------------------------------------------------- 

$          The list of all eigensolutions collected from the slave processor 

$------------------------------------------------------------------------------- 
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                        R E A L   E I G E N V A L U E S 

   MODE    EXTRACTION    EIGENVALUE    RADIANS     CYCLES   GENERALIZED  NERALIZED 

    NO.       ORDER                                           MASS       STIFFNESS 
      1           1           1.696349E+07       4.118676E+03   6.555076E+02  1.000000E+00    1.696349E+07 

      2           2           1.848026E+07       4.298867E+03   6.841859E+02  1.000000E+00    1.848026E+07 

  

      207       207           3.073819E+09        5.544203E+04  8.823873E+03  1.000000E+00    3.073819E+09 

      208       208           3.123167E+09        5.588530E+04  8.894422E+03  1.000000E+00    3.123167E+09 

 

  

 

2.HDMODES with SEQP 

 

HDMODES with SEQP is implemented with the nastran keyword "gpart=0". 

 

nastran example dmp=p nclust=c gpart=0 

 

 

In the example below, HDMODES is executed with ‗dmp=4‘ and ‗nclust=2‘ keywords. 

Among the four processors, the first processor is the master processor, and the other 

processors are the slave processors. 

 

Note that HDMODES defines the local master and local slave processors inside of each 

cluster. 
 

nastran example dmp=4 nclust =2 gpart=0 
 

The partitioning statistics show the information of domains for each cluster. There are 

two domains for each cluster. The first domain of the cluster has 50 internal grids and 10 

external grids, and the second domain has the same local size. Generally, the size of each 

domain is different.  
 
 

     STATISTICS FROM AUTOMATIC MODEL PARTITIONER 

 

     THE NUMBER OF DOMAINS CREATED USING EDSMLV   IS        2 

     THE NUMBER OF GRID POINTS IN THE GLOBAL BOUNDARY IS         10 

     THE NUMBER OF ELASTIC ELEMENTS IN THE RESIDUAL IS          0 

     THE NUMBER OF RIGID ELEMENTS IN THE RESIDUAL IS          0 

     DOMAIN ID     # INTERNAL GRID POINTS     # EXTERNAL GRID POINTS     # OF ELEMENTS 

     ---------     ----------------------     ----------------------     ------------- 

         1                    50                         10                    50 

         2                    50                         10                    50          

 

 

  HIERARCHIC DOMAIN PARALLEL LANCZOS METHOD 

 

 

In this example, cluster 1 includes processors 1 and 3, and processors 2 and 4 are in 

cluster 2. Processors 1 and 2 are the local masters in clusters 1 and 2, respectively. In 

cluster 1, 155 eigenvalues are collected in processor 1.  Similarly, in cluster 2, 53 

eigenvalues are collected in processor 2. Once each local master processor collects the 
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results for each cluster, the master processor (processor 1) collects the information from 

the local masters. 

 

In the .f06 file, the master processor prints the summary of the eigenvalue analysis and 

the list of eigenvalues. Be careful when interpreting the "number of roots found" 

information in the summary.  This information concerns the cluster in which the master is 

included. For example, in the model below, interpret the "number of roots found" 

message from the eigenvalue analysis summary as indicating that cluster 1 found 155 

eigenvalues. The master processor eigenvalue table lists all 208 eigenvalues that are 

merged from all of the local master processors. You should determine the number of 

modes from the list of eigenvalues. 
 

 

 
 

EIGENVALUES FOUND IN DOMAIN # 1 

 

 

           E I G E N V A L U E  A N A L Y S I S   S U M M A R Y   (READ MODULE) 

 

 

 

                     BLOCK SIZE USED ......................    7 

 

                     NUMBER OF DECOMPOSITIONS .............    3 

 

                     NUMBER OF ROOTS FOUND ................  155 

 

                     NUMBER OF SOLVES REQUIRED ............   41 

 

$----------------------------------------------------------------------------------- 

$          The list of all eigensolutions collected from the slave processor 

$----------------------------------------------------------------------------------- 

 

                          

                        R E A L   E I G E N V A L U E S 

   MODE    EXTRACTION    EIGENVALUE    RADIANS     CYCLES   GENERALIZED  NERALIZED 

    NO.       ORDER                                           MASS       STIFFNESS                    

     1          1       1.696349E+07   4.118676E+03  6.555076E+02  1.000000E+00  1.696349E+07 

     2          2       1.848026E+07   4.298867E+03  6.841859E+02  1.000000E+00  1.848026E+07 

  

     207      207       3.073819E+09   5.544203E+04  8.823873E+03  1.000000E+00  3.073819E+09 

     208      208       3.123167E+09   5.588530E+04  8.894422E+03  1.000000E+00  3.123167E+09 

 

 

Again, be cautious when interpreting the output from slave processors. The summary of 

eigenvalue analysis for slave processors is confined to the corresponding processor. In 

the list of eigenvalues on the slave processors, the mode number does not represent the 

global mode number. 

 

 Note that, with the gpart=0, the master process broadcasts the collected output only to 

the local masters. In the example below, the local slave, processor 2, prints 208 

eigenvalues, while another local slave, processor 4, prints 53 eigenvalues. 
 

 

 

  

**************** 

  S L A V E   1 
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 **************** 

  

53  EIGENVALUES FOUND IN DOMAIN # 1 

 

  

        E I G E N V A L U E  A N A L Y S I S   S U M M A R Y   (READ MODULE)   

 

  

  

                  BLOCK SIZE USED ......................    7 

  

                  NUMBER OF DECOMPOSITIONS .............    2 

  

                  NUMBER OF ROOTS FOUND ................    53 

  

                  NUMBER OF SOLVES REQUIRED ............   39 

 

 

 

 

                        R E A L   E I G E N V A L U E S 

   MODE    EXTRACTION    EIGENVALUE    RADIANS     CYCLES   GENERALIZED  NERALIZED 

    NO.       ORDER                                           MASS       STIFFNESS                            

1         1         1.632620E+09   4.040570E+04  6.430766E+03  1.000000E+00  1.632620E+09 

2         2         1.633399E+09   4.041533E+04  6.432300E+03  1.000000E+00  1.633399E+09 

  

 

    52        52        3.073819E+09   5.544203E+04  8.823873E+03  1.000000E+00  3.073819E+09 

    53        53        3.123167E+09   5.588530E+04  8.894422E+03  1.000000E+00  3.123167E+09 

 

 

**************** 

  S L A V E   2 

**************** 

  

155  EIGENVALUES FOUND IN DOMAIN # 2 

 

 

          E I G E N V A L U E  A N A L Y S I S   S U M M A R Y   (READ MODULE) 

 

 

 

                    BLOCK SIZE USED ......................    7 

 

                    NUMBER OF DECOMPOSITIONS .............    3 

 

                    NUMBER OF ROOTS FOUND ................  155 

               

                    NUMBER OF SOLVES REQUIRED ............   41 

 

 

                        R E A L   E I G E N V A L U E S 

   MODE    EXTRACTION    EIGENVALUE    RADIANS     CYCLES   GENERALIZED  NERALIZED 

    NO.       ORDER                                           MASS       STIFFNESS         

    1         1        1.696349E+07    4.118676E+03  6.555076E+02  1.000000E+00  1.696349E+07 

    2         2         1.848026E+07   4.298867E+03   6.841859E+02  1.000000E+00 1.848026E+07 

  

    207       207       3.073819E+09   5.544203E+04   8.823873E+03  1.000000E+00 3.073819E+09 

    208       208       3.123167E+09   5.588530E+04   8.894422E+03  1.000000E+00 3.123167E+09 

 

 

**************** 

  S L A V E   3 

 **************** 

  

53  EIGENVALUES FOUND IN DOMAIN # 2 

 

         E I G E N V A L U E  A N A L Y S I S   S U M M A R Y   (READ MODULE) 

 

                   BLOCK SIZE USED ......................    7 

 

                   NUMBER OF DECOMPOSITIONS .............    2 

 

                   NUMBER OF ROOTS FOUND ................   53 

 

                   NUMBER OF SOLVES REQUIRED ............   39 
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                        R E A L   E I G E N V A L U E S 

   MODE    EXTRACTION    EIGENVALUE    RADIANS     CYCLES   GENERALIZED  NERALIZED 

    NO.       ORDER                                           MASS       STIFFNESS         

    1         1        1.632620E+09     4.040570E+04  6.430766E+03 1.000000E+00  1.632620E+09 

    2         2        1.633399E+0      4.041533E+04  6.432300E+03 1.000000E+00  1.633399E+09 

  

    52        52       3.073819E+09      5.544203E+04  8.823873E+03 1.000000E+00  3.073819E+09 

      53       3.123167E+09      5.588530E+04  8.894422E+03 1.000000E+00  3.123167E+09 

 

 

3. GDSTAT with SEQP 

 

GDSTAT with SEQP is implemented with the nastran keyword ―gpart=0‖. 

nastran example dmp=p gpart=0 

 
Example: 

  
nastran example dmp=4 gpart=0 

 

The static analysis is performed for a finite element cube model that has 2197 grid points 

for 1728 CHEXA elements and 6048 CQUAD4 elements. GDSTAT is implemented in a 

DMP run. The module SEQP partitioned the global finite element model into four sub-

domains and a boundary. The following information in the .f06 describes the detailed 

statistics of partitioning. 
 

 

 
     STATISTICS FROM AUTOMATIC MODEL PARTITIONER 
 

     THE NUMBER OF DOMAINS CREATED USING EXTREME  IS              4 

     THE NUMBER OF GRID POINTS IN THE GLOBAL BOUNDARY IS        361 

     THE NUMBER OF ELASTIC ELEMENTS IN THE RESIDUAL IS            0 

     THE NUMBER OF RIGID ELEMENTS IN THE RESIDUAL IS              0 

     DOMAIN ID     # INTERNAL GRID POINTS     # EXTERNAL GRID POINTS     # OF ELEMENTS 

     ---------     ----------------------     ----------------------     ------------- 

           1                   468                        174                   2060 

           2                   468                        169                   2016 

           3                   468                        169                   1880 

           4                   432                        205                   1820 

 

 

Each processor performs static analysis with the corresponding local domain and the 

boundary, and the master processor collects the results that you requested through 

communications. These outputs are printed only on the master processor.  

 
 

                                       D I S P L A C E M E N T   V E C T O R 

 

POINT ID.   TYPE          T1             T2             T3             R1             R2             R3 

   30060      G      1.578281E-05  -9.678060E-05  -2.301274E-04  -4.363790E-06  -3.554464E-06  -4.259573E-

09 

   40066      G     -1.578241E-05  -9.678057E-05  -2.301267E-04  -4.363756E-06   3.554413E-06   4.257577E-

09 

   70660      G     -1.578268E-05   9.677987E-05  -2.301273E-04  -4.363777E-06  -3.554452E-06   4.259614E-

09 

   80666      G      1.578229E-05   9.677984E-05  -2.301266E-04  -4.363744E-06   3.554401E-06  -4.257619E-

09 
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It is strongly recommended to use the nastran keyword "slaveout=yes" to print out 

analysis procedures from all processors. With "slaveout=yes", the f04, .f06, and .log files 

contain the outputs of master and slave processors in the following format.  
 

 

                                                                            




master processor 

                             * * * END OF JOB * * *  

 

**************** 

  S L A V E   1 

 ****************                                                     

                                                                                                                      




 slave 1 processor 

                             * * * END OF JOB * * * 

  

 **************** 

  S L A V E   2 

 **************** 

                                                                                                                     




 slave 2 processor 

                             * * * END OF JOB * * * 

  

 **************** 

  S L A V E   3 

 **************** 

                                                                                                                    




 slave 3 processor 

                             * * * END OF JOB * * * 
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